Trajectory Control During an Aeroassisted Maneuver Between Coplanar Circular Orbits Willer Gomes Dos Santos1, Evandro Marconi Rocco1, Valdemir Carrara1

Total Page:16

File Type:pdf, Size:1020Kb

Trajectory Control During an Aeroassisted Maneuver Between Coplanar Circular Orbits Willer Gomes Dos Santos1, Evandro Marconi Rocco1, Valdemir Carrara1 doi: 10.5018/jatm.v6i2.351 Trajectory Control During an Aeroassisted Maneuver Between Coplanar Circular Orbits Willer Gomes dos Santos1, Evandro Marconi Rocco1, Valdemir Carrara1 ABSTRACT: This paper presents the simulation results of an aeroassisted maneuver around the Earth, between coplanar INTRODUCTION circular orbits, from a geostationary orbit to a low orbit. The simulator developed considers a reference trajectory and a An orbital maneuver is the transfer of a satellite from one trajectory perturbed by external disturbances combined with non-idealities of sensors and actuators. It is able to operate orbit to another by means of a change in velocity. To perform in closed loop, controlling the trajectory (drag-free control) at this change, the spacecraft has to engage the thrusters or use the each instant of time using a Proportional-Integral-Derivative natural forces of the environment. The Hohmann transfer and (PID) controller and propulsive jets. We adopted a spacecraft the bi-elliptic transfer are some alternatives to perform an with a cubic body composed of two rectangular plates arranged perpendicular to the velocity vector of the vehicle. orbital maneuver by propulsive means. In 1961, Howard London Propulsive jets are applied at the apogee of the transfer orbit presented the approach of using aerodynamic forces to change in order to keep the perigee altitude and control the rate the trajectory and velocity of a spacecraft, this new technique of heat transfer suffered by the vehicle during atmospheric passage. A PID controller is used to correct the deviation became known as aeroassisted maneuvers (Walberg, 1985). This in the state vector and in the keplerian elements. The U.S. type of orbital transfer can be accomplished in several layers Standard Atmosphere is adopted as the atmospheric model. of the atmosphere. The altitude reached by vehicle is linked The results have shown that the aeroassisted transfer to the mission’s purpose and to the maximum thermal load presents a smaller fuel consumption when compared to a Hohmann transfer or a bi-elliptic transfer. supported by the vehicle structure. The main advantage of this type of maneuver is the fuel economy. According to Walberg KEYWORDS: Aeroassisted maneuvers, Orbital dynamic, (1985), many papers on aeroassisted orbital transfer have been Trajectory control. made in recent decades and it has been shown that a significant reduction in fuel can be achieved using aeroassisted maneuvers instead of Hohmann transfer. Consequently, the reduction of fuel provides an increase in the payload capacity of the vehicle. Orbit transfer between two circular and coplanar orbits is very common. The technique of using atmospheric drag to reduce the semi-major axis is known as aerobraking and it was first used on March 19th, 1991, by spacecraft Hiten. The launch was conducted by the Institute of Space and Astronautical Science of Japan (ISAS). The spacecraft passed through Earth’s atmosphere at an altitude of 125.5 km over the Pacific Ocean at a speed of 11 km/s. The experience resulted in a decrease in apogee altitude of 8,665 km. In May 1993, an aerobraking maneuver was used on a mission to Venus by Magellan spacecraft, whose goal was to circularize the orbit of the spacecraft. In 1997, the probe U.S. Mars Global Surveyor (MGS) 1.Instituto Nacional de Pesquisas Espaciais – São José dos Campos/SP – Brazil Author for correspondence: Willer Gomes dos Santos | Instituto Nacional de Pesquisas Espaciais | Avenida dos Astronautas 1758, São José dos Campos/SP | CEP: 12227-010 – Brazil | Email: [email protected] Received: 12/01/2013 | Accepted: 03/25/2014 J. Aerosp. Technol. Manag., São José dos Campos, Vol.6, No 2, pp.159-168, Apr.-Jun., 2014 Gomes dos Santos, W., Rocco, E.M. and Carrara, V. 160 used its solar panels as “wings” to control its passage through the placed in opposite sides of the vehicle’s body. The inclination tenuous upper atmosphere of Mars and lower its apoapsis. angle of the plates, regarding its molecular flow (attack angle), There are several missions requirements that become feasible was fixed at 90 degrees, in order to maximize the projected with the use of aeroassisted vehicles, as for example, to reconfigure area and the drag force. The spacecraft will be transferred from orbital systems that are unable to perform an orbital maneuvering the GEO to a low orbit. The orbits are considered circular and (such as replacing a malfunctioning satellite by a spare), to transfer coplanar. A multipass aeroabraking strategy is used to perform space debris to a new orbit, to operate Space Transportation the transfer. Systems (STS), to use the atmospheric drag as a brake force to First, the spacecraft applies an impulse to take the vehicle provide orbit capturing of the vehicle, to assist the International out of the GEO and put it into an elliptical orbit with perigee Space Station with the transfer of cargo between geostationary within the limits of the atmosphere. After each passage at orbit (GEO) and low earth orbit (LEO), among others. atmospheric region, a reduction of the apogee transfer orbit Within the context of this paper, we can cite the scientific occurs. When the spacecraft reaches its final apogee altitude, micro-satellite Franco-Brazilian (FBM) project, in partnership then, a new impulse is applied to the vehicle to remove between the Brazilian and French space agencies (INPE and it from the transfer orbit and insert it into the final orbit. CNES), which would be released as piggy-back on an Ariane 5, In order to control the rate of heat transfer suffered by the and then would perform aerobraking maneuvers to transfer vehicle during the passage through atmosphere, propulsive the satellite to the orbit service (Furlan, 1998). The Ariane 5 jets are applied at the apogee, correcting the decay of perigee. rocket has the capacity to carry up to eight microsatellites with This transfer strategy is shown in Fig. 1. a maximum individual weight of 120 kg through the Ariane Structure for Auxiliary Payload (ASAP). However, the rocket was designed to place satellites in geostationary transfer orbits. The propellant required to transfer the FBM to a low orbit (between 800 and 1,300 km) by means of chemical propellants, would deorbit (OTV) exceed the allowed amount of mass. This question has led space agencies to study the concept of aerobraking as a workaround. Atmosphere Limit However, CNES, in 2003, left the program which was subsequently discontinued (Brezun et al., 2000). In another interesting study with the same context, Schulz (2001) developed an optimal control law that minimizes the fuel consumption during an aeroassisted Target Orbit (LEO FOR OTV) maneuver, as well as analyzed orbital changes. Apoapsis trim Final circularization maneuvers to GEO and periapsis This paper will present the simulation of an aerobraking adjust periapsis raise maneuver maneuver between GEO and low orbit. The study aims at examinining the effects that this kind of maneuver can cause in Figure 1. Multipass aerobraking (Walberg, 1985). the orbital elements. It will also demonstrate the difference in fuel costs and the elapsed transfer time between an aeroassisted maneuver and a fully propulsive maneuver. The results show In this work, it was used the Aeroassisted Spacecraft Maneuver that the aeroassisted transfer has a propellant consumption Simulator (SAMS) based on the Spacecraft Trajectory Simulator lower than a Hohmann or a bi-elliptic transfer. (STRS), which uses a drag-free control architecture to control the spacecraft trajectory (Rocco, 2006, 2008, 2009, 2010). Usually, a ground based open loop control is used for maneuver correction and orbit transfer. However, in some drag-free PROBLEM DEFINITION missions (Gravity Probe B, Hipparcos, GOCE, etc) the feedback control is mandatory. The STRS and SAMS consider a reference In this paper, a spacecraft with a cubic body composed of trajectory and a trajectory perturbed by external disturbances, two rectangular plates was adopted, called aerodynamic plates, including the aerodynamic effects, combined with non-idealities J. Aerosp. Technol. Manag., São José dos Campos, Vol.6, No 2, pp.159-168, Apr.-Jun., 2014 Trajectory Control During an Aeroassisted Maneuver Between Coplanar Circular Orbits 161 of sensors and actuators. The simulator works in closed loop According to Theil and Silas-Guilherme (2005), drag-free controlling the trajectory at each instant of time, which is one of technology is essential for scientific missions which need a very the input parameters, using a Proportional-Integral-Derivative low disturbance environment. Several missions have used this (PID) controller and propulsive jets. Santos (2011) used the technology, such as Gravity Probe B (GP-B) to test the relativistic SAMS to study how the orbital elements can be changed by an effects on a gyroscope; STEP and MICROSCOPE had the objective aeroassisted maneuver and how much fuel is saved comparing of testing the weak principle of equivalence; Laser Interferometer with a propulsive maneuver. Figure 2 shows a basic diagram Space Antenna (LISA) for the detection of gravitational waves; of the running logic of the aeroassisted maneuver simulator. and Gravity Field and Steady State Ocean Circulation Explorer In this work, noises and non-idealities in the actuator and in (GOCE), launched in March 2009, to determine the gravity-field the sensor were not considered. anomalies with high accuracy; among others. AEROASSISTED MANEUVER The main forces acting on a spacecraft in LEO are gravitational Disturbance force (mg), thrusters force (Ts) and aerodynamic forces (F), + caused by the interaction of the satellite with the atmosphere. Reference + PID Propulsive + Orbital Disturbed state State - Controller System Dynamic The spacecraft position in space determines the magnitude of aerodynamic forces suffered by the spacecraft. The higher the Sensor planetary atmospheric density is, the stronger the aerodynamic forces are. The aerodynamic force can be divided into two: the drag force (FD), whose direction is opposite to the velocity Figure 2.
Recommended publications
  • STI Program Bibliography
    Scientific and Technical Information Program Affordable Heavy Lift Capability: 2000-2004 This custom bibliography from the NASA Scientific and Technical Information Program lists a sampling of records found in the NASA Aeronautics and Space Database. The scope of this topic includes technologies to allow robust, affordable access of cargo, particularly to low-Earth orbit. This area of focus is one of the enabling technologies as defined by NASA’s Report of the President’s Commission on Implementation of United States Space Exploration Policy, published in June 2004. Best if viewed with the latest version of Adobe Acrobat Reader Affordable Heavy Lift Capability: 2000-2004 A Custom Bibliography From the NASA Scientific and Technical Information Program October 2004 Affordable Heavy Lift Capability: 2000-2004 This custom bibliography from the NASA Scientific and Technical Information Program lists a sampling of records found in the NASA Aeronautics and Space Database. The scope of this topic includes technologies to allow robust, affordable access of cargo, particularly to low-Earth orbit. This area of focus is one of the enabling technologies as defined by NASA’s Report of the President’s Commission on Implementation of United States Space Exploration Policy, published in June 2004. OCTOBER 2004 20040095274 EAC trains its first international astronaut class Bolender, Hans, Author; Bessone, Loredana, Author; Schoen, Andreas, Author; Stevenin, Herve, Author; ESA bulletin. Bulletin ASE. European Space Agency; Nov 2002; ISSN 0376-4265; Volume 112, 50-5; In English; Copyright; Avail: Other Sources After several years of planning and preparation, ESA’s ISS training programme has become operational. Between 26 August and 6 September, the European Astronaut Centre (EAC) near Cologne gave the first ESA advanced training course for an international ISS astronaut class.
    [Show full text]
  • Crustal and Time-Varying Magnetic Fields at the Insight Landing Site on Mars
    ARTICLES https://doi.org/10.1038/s41561-020-0537-x Crustal and time-varying magnetic fields at the InSight landing site on Mars Catherine L. Johnson 1,2 ✉ , Anna Mittelholz1, Benoit Langlais3, Christopher T. Russell4, Véronique Ansan 3, Don Banfield 5, Peter J. Chi 4, Matthew O. Fillingim 6, Francois Forget 7, Heidi Fuqua Haviland 8, Matthew Golombek9, Steve Joy 4, Philippe Lognonné 10, Xinping Liu4, Chloé Michaut 11, Lu Pan 12, Cathy Quantin-Nataf12, Aymeric Spiga 7,13, Sabine Stanley14,15, Shea N. Thorne 1, Mark A. Wieczorek 16, Yanan Yu4, Suzanne E. Smrekar9 and William B. Banerdt 9 Magnetic fields provide a window into a planet’s interior structure and evolution, including its atmospheric and space environ- ments. Satellites at Mars have measured crustal magnetic fields indicating an ancient dynamo. These crustal fields interact with the solar wind to generate transient fields and electric currents in Mars’s upper atmosphere. Surface magnetic field data play a key role in understanding these effects and the dynamo. Here we report measurements of magnetic field strength and direction at the InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) landing site on Mars. We find that the field is ten times stronger than predicted by satellite-based models. We infer magnetized rocks beneath the surface, within ~150 km of the landing site, consistent with a past dynamo with Earth-like strength. Geological mapping and InSight seismic data suggest that much or all of the magnetization sources are carried in basement rocks, which are at least 3.9 billion years old and are overlain by between 200 m and ~10 km of lava flows and modified ancient terrain.
    [Show full text]
  • Aerobraking to Lower Apogee in Earth Orbit with the Small Payload Orbit Transfer (SPORT™) Microsatellite Vehicle
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@USU SSC01-XI-8 Aerobraking to Lower Apogee in Earth Orbit with the Small Payload ORbit Transfer (SPORT™) Microsatellite Vehicle Paul Gloyer AeroAstro, Inc. 160 Adams Lane, Waveland, MS 39576 228-466-9863, [email protected] Tony Robinson AeroAstro, Inc. 520 Huntmar Park Drive, Herndon, VA 20170 703-709-2240 x133, [email protected] Adeena Mignogna AeroAstro, Inc. 520 Huntmar Park Drive, Herndon, VA 20170 703-709-2240 x126, [email protected] Yasser Ahmad Astronautic Technology Sdn. Bhd. 520 Huntmar Park Drive, Herndon, VA 20170 703-709-2240 x138, [email protected] Abstract. AeroAstro, Inc. and Astronautic Technology Sdn. Bhd. (a Malaysian space company) are commercially developing the Small Payload ORbit Transfer (SPORT) vehicle, which uses advanced earth aerobraking technology to achieve efficient orbit transfer from Geosynchronous-Transfer Orbit (GTO) to Low Earth Orbit (LEO). After being delivered to GTO by a large launch vehicle, such as Ariane, SPORT uses its onboard propulsion system to adjust its perigee altitude to about 150 km. At this altitude, the large deployable aerobrake produces enough drag to reduce the apogee altitude from 36,000+ km to about 1,000 km in approximately 300 orbits. Upon reaching the target apogee altitude, the propulsion system is used to raise the perigee to the desired altitude, thereby allowing SPORT to release its payload. Aerobraking technology enables orbit transfer in a cost-effective manner, reducing the overall mass of the spacecraft by drastically reducing the amount of propellant required to achieve the maneuver.
    [Show full text]
  • Re-Usable Launch and Payload Delivery System MDDP 2012/3
    Group 2 Re-usable Launch and Payload Delivery System MDDP 2012/3 Re-usable Launch and Payload Delivery System MDDP Group 2 James Dobberson Robert Taylor Matthew Chapman Timothy West Mukudzei Muchengeti William Wou Group 2 Re-usable Launch and Payload Delivery System MDDP 2012/3 1. Contents 1. Contents ..................................................................................................................................... i 2. Executive Summary .................................................................................................................. ii 3. Introduction .............................................................................................................................. 1 4. Down Selection and Integration Methodology ......................................................................... 2 5. Presentation of System Concept and Operations ...................................................................... 5 6. System Investment Plan ......................................................................................................... 20 7. Numerical Analysis and Statement of Feasibility .................................................................. 23 8. Conclusions and Future Work ................................................................................................ 29 9. Launch Philosophy ................................................................................................................. 31 10. Propulsion ..............................................................................................................................
    [Show full text]
  • Mars Aerocapture/Aerobraking Aeroshell Configurations by Abraham Chavez
    Mars Aerocapture/Aerobraking Aeroshell Configurations by Abraham Chavez This presentation provides a review of those studies and a starting point for considering Aerocapture/Aerobraking technology as a way to reduce mass and cost, to achieve the ambitious science returns currently desired What is Aerocapture: is first of all a very rapid process, requiring a heavy heat shield resulting in high g-forces, Descent into a relatively dense atmosphere is suffciently rapid that the deceleration causes severe heating requiring What is Aerobraking: is a very gradual process that has the advantage that small reductions in spacecraft velocity are achieved by drag of the solar arrays in the outer atmosphere, thus no additional mass for a heat shield is necessary. an aeroshell. Sasakawa International Center for Space Architecture, University of Houston College of Architecture Aerocapture vs Aerobraking Entry targeting burn Atmospheric entry Atmospheric Drag Aerocapture Reduces Orbit Period Periapsis Energy raise dissipation/ maneuver Autonomous Aerobraking (propulsive) guidance Target ~300 Passes Jettison Aeroshell Hyperbolic Through Upper orbit Approach Atmosphere Controlled exit Orbit Insertion Pros Cons Burn Uses very little fuel--significant mass Needs protective aeroshell savings for larger vehicles Pros Cons Establishes orbit quickly (single pass) One-shot maneuver; no turning back, Little spacecraft design impact Still need ~1/2 propulsive fuel load much like a lander Gradual adjustments; can pause Hundreds of passes = more chance of Has
    [Show full text]
  • Envision – Front Cover
    EnVision – Front Cover ESA M5 proposal - downloaded from ArXiV.org Proposal Name: EnVision Lead Proposer: Richard Ghail Core Team members Richard Ghail Jörn Helbert Radar Systems Engineering Thermal Infrared Mapping Civil and Environmental Engineering, Institute for Planetary Research, Imperial College London, United Kingdom DLR, Germany Lorenzo Bruzzone Thomas Widemann Subsurface Sounding Ultraviolet, Visible and Infrared Spectroscopy Remote Sensing Laboratory, LESIA, Observatoire de Paris, University of Trento, Italy France Philippa Mason Colin Wilson Surface Processes Atmospheric Science Earth Science and Engineering, Atmospheric Physics, Imperial College London, United Kingdom University of Oxford, United Kingdom Caroline Dumoulin Ann Carine Vandaele Interior Dynamics Spectroscopy and Solar Occultation Laboratoire de Planétologie et Géodynamique Belgian Institute for Space Aeronomy, de Nantes, Belgium France Pascal Rosenblatt Emmanuel Marcq Spin Dynamics Volcanic Gas Retrievals Royal Observatory of Belgium LATMOS, Université de Versailles Saint- Brussels, Belgium Quentin, France Robbie Herrick Louis-Jerome Burtz StereoSAR Outreach and Systems Engineering Geophysical Institute, ISAE-Supaero University of Alaska, Fairbanks, United States Toulouse, France EnVision Page 1 of 43 ESA M5 proposal - downloaded from ArXiV.org Executive Summary Why are the terrestrial planets so different? Venus should be the most Earth-like of all our planetary neighbours: its size, bulk composition and distance from the Sun are very similar to those of Earth.
    [Show full text]
  • Energy, Power, and Transport
    Frontispiece Advanced Lunar Base In this panorama of an advanced lunar base, the main habitation modules in the background to the right are shown being covered by lunar soil for radiation protection. The modules on the far right are reactors in which lunar soil is being processed to provide oxygen. Each reactor is heated by a solar mirror. The vehicle near them is collecting liquid oxygen from the reactor complex and will transport it to the launch pad in the background, where a tanker is just lifting off. The mining pits are shown just behind the foreground figure on the left. The geologists in the foreground are looking for richer ores to mine. Artist: Dennis Davidson NASA SP-509, vol. 2 Space Resources Energy, Power, and Transport Editors Mary Fae McKay, David S. McKay, and Michael B. Duke Lyndon B. Johnson Space Center Houston, Texas 1992 National Aeronautics and Space Administration Scientific and Technical Information Program Washington, DC 1992 For sale by the U.S. Government Printing Office Superintendent of Documents, Mail Stop: SSOP, Washington, DC 20402-9328 ISBN 0-16-038062-6 Technical papers derived from a NASA-ASEE summer study held at the California Space Institute in 1984. Library of Congress Cataloging-in-Publication Data Space resources : energy, power, and transport / editors, Mary Fae McKay, David S. McKay, and Michael B. Duke. x, 174 p. : ill. ; 28 cm.—(NASA SP ; 509 : vol. 2) 1. Outer space—Exploration—United States. 2. Natural resources. 3. Space industrialization—United States. I. McKay, Mary Fae. II. McKay, David S. III. Duke, Michael B.
    [Show full text]
  • Report of the in Situ Resources Utilization Workshop
    i i NASA Conference Publication 3017 Report of the In Situ Resources Utilization Workshop Edited by Kyle Fairchild and Wendell W. Mendell NASA Lyndon B. Johnson Space Center Houston, Texas Proceedings of a workshop cosponsored by National Aeronautics and Space Administration, Department of Energy, Large Scale Programs Institute, United Technologies Corporation, Kraft Foods, and Disney Imagineering, and hosted by United Technologies Corporation Lake Buena Vista, Florida January 28-30, 1987 National Aeronautics and Space Administration Scientific and Technical Information Division 1988 PREFACE This report contains the results of a workshop that investigated potential joint development of the key technologies and mechanisms required to enable the permanent habitation of space. Fifty representatives from the public and private sectors met at the United Technologies Center, Lake Buena Vista, Florida, January 28 to 30, 1987, to begin a joint public/private assessment of new technology requirements of future space options, to share knowledge on those required technologies that may exist in the private sector, and to investigate potential joint technology development opportunities. This report also provides input to a NASA technology development plan and docu- ments possibilities for collaborative technology development among the public 9 private, and academic sectors. This workshop represents the first "nucleation" phase of a continuing process. The participant list represents only a small fraction of all organ- izations that will contribute to future development of space technologies and activities. We attempted to assemble a representative cross section of business, academic, and government organizations to investigate the feasi- bility of potential technological collaborations and the organizational structures that would enable most effective collaboration.
    [Show full text]
  • The Aerobraking Space Transfer Vehicle
    / THE AEROBRAKING SPACE TRANSFER VEHICLE APRIL, 1990 VIRGINIA TECH AEROSPACE SENIOR DESIGN TEAM , :,:iCL _- (V i r,j if_i,a ;o i yt_chn i,c THE AEROBRAKING SPACE TRANSFER VEHICLE VIRGINIA TECH AEROSPACE SENIOR DESIGN TEAM Glen Andrews Brian Carpenter Steve Corns Robert Harris Brian Jun Bruce Munro Eric Pulling Amrit Sekhon Walt Welton Dr. A. Jakubowski THE AEROBRAKING SPACE TRANSFER VEHICLE iii )'/ INTENTIONALLY _ DgFGFDING FAGE BLANK NOT FIL_r, ED Abstract With the advent of the Space Station and the proposed Geosynchronous Operation Support Center (GeoShack) in the early 21st century, the need for a cost-effective, reusable orbital transport vehicle has arisen. This transport vehicle will be used in conjunction with the Space Shuttle, the Space Station, and GeoShack. The vehicle will transfer mission crew and payloads between low earth and geosynchronous orbits with minimal cost. Recent technological advances in thermal protection systems such as those employed in the Space Shuttle have made it possible to incorporate an aerobrake on the transfer vehicle to further reduce transport costs. This report presents the research and final design configuration of the aerospace senior design team from Virginia Polytechnic Insti- tute and State University working in conjunction with NASA and the direction of Dr. A. Jakubowsld. The report addresses the topic of aerobraking and focuses on the evolution of an Aerobraking Space Transfer Vehicle (ASTV). Ab_ra_ v IPAG__ _ INT(NTIOftALUl PRECEDING PAGE BLANK NOT FILMED Table of Contents NOMENCLATURE ...................................................... 1 1. INTRODUCTION ..................................................... 2 1.1 FOUNDATIONS OF THE ASTV ........................................ 2 1.1.1 PROJECT BACKGROUND ......................................... 2 1.1.2 RATIONALE FOR A SPACE BASED AEROBRAKING SYSTEM ..........
    [Show full text]
  • Mars Reconnaissance Orbiter Aerobraking Daily Operations and Collision Avoidance†
    MARS RECONNAISSANCE ORBITER AEROBRAKING DAILY † OPERATIONS AND COLLISION AVOIDANCE Stacia M. Long1, Tung-Han You2, C. Allen Halsell3, Ramachand S. Bhat4, Stuart W. Demcak4, Eric J. Graat4, Earl S. Higa4, Dr. Dolan E. Highsmith4, Neil A. Mottinger4, Dr. Moriba K. Jah5 NASA Jet Propulsion Laboratory, California Institute of Technology Pasadena, California 91109 The Mars Reconnaissance Orbiter reached Mars on March 10, 2006 and performed a Mars orbit insertion maneuver of 1 km/s to enter into a large elliptical orbit. Three weeks later, aerobraking operations began and lasted about five months. Aerobraking utilized the atmospheric drag to reduce the large elliptical orbit into a smaller, near circular orbit. At the time of MRO aerobraking, there were three other operational spacecraft orbiting Mars and the navigation team had to minimize the possibility of a collision. This paper describes the daily operations of the MRO navigation team during this time as well as the collision avoidance strategy development and implementation. 1.0 Introduction The Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005, onboard an Atlas V-401 from Cape Canaveral Air Station. Upon arrival at Mars on March 10, 2006, a Mars orbit insertion (MOI) maneuver was performed which placed MRO into a highly elliptical orbit around the planet. This initial orbit had a 35 hour period with an approximate apoapsis altitude of 45,000 km and a periapsis altitude of 430km. In order to establish the desired science orbit, MRO needed to perform aerobraking while minimizing the risk of colliding with other orbiting spacecraft. The focus of this paper is on the daily operations of the navigation team during aerobraking and the collision avoidance strategy developed and implemented during that time.
    [Show full text]
  • SPICAM: Studying the Global Structure and Composition of the Martian Atmosphere
    SPICAM: Studying the Global Structure and Composition of the Martian Atmosphere J.-L. Bertaux1, D. Fonteyn2, O. Korablev3, E. Chassefière4, E. Dimarellis1, J.P. Dubois1, A. Hauchecorne1, F. Lefèvre1, M. Cabane1, P. Rannou1, A.C. Levasseur-Regourd1, G. Cernogora1, E. Quemerais1, C. Hermans2, G. Kockarts2, C. Lippens2, M. De Maziere2, D. Moreau2, C. Muller2, E. Neefs2, P.C. Simon2, F. Forget4, F. Hourdin4, O. Talagrand4, V.I. Moroz3, A. Rodin3, B. Sandel5 & A. Stern6 1Service d’Aéronomie du CNRS, F-91371, Verrières-le-Buisson, France Email: [email protected] 2Belgian Institute for Space Aeronomy, 3 av. Circulaire, B-1180 Brussels, Belgium 3Space Research Institute (IKI), 84/32 Profsoyuznaya, 117810 Moscow, Russia 4Laboratoire de Météorologie Dynamique, 4 place Jussieu, F-75252 Paris Cedex 05, Paris, France 5Lunar and Planetary Laboratory, 901 Gould Simpson Building, Univ. of Arizona, Tucson, AZ 85721, USA 6SouthWest Research Institute, Geophysics, Astrophysics and Planetary Science, 1050 Walnut Ave., Suite 400, Boulder, CO 80302-5143, USA The SPICAM (SPectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars) instrument consists of two spectrometers. The UV spectrometer addresses key issues about ozone and its H2O coupling, aerosols, the atmospheric vertical temperature structure and the ionosphere. The IR spectrometer is aimed primarily at H2O abundances and vertical profiling of H2O and aerosols. SPICAM’s density/temperature profiles will aid the development of meteorological and dynamical atmospheric models from the surface up to 160 km altitude. UV observations of the upper atmosphere will study the ionosphere and its direct interaction with the solar wind. They will also allow a better understanding of escape mechanisms, crucial for insight into the long-term evolution of the atmosphere.
    [Show full text]
  • Venus Express Aerobraking Results
    ILEWG Venus Express Aerobraking Results Håkan Svedhem ESA/ESTEC What is aerobraking? 1. Using the drag of atmosphere against the spacecraft body in order to reduce spacecraft speed. This will result in a lower apocenter altitude and a shorter orbital period. This will enable significant savings of fuel to reach an operational orbit and so enable new classes of missions. 2. The major limiting factors in aerobraking are the capability to maintain a stable attitude during the aerobraking, and the capability to withstand the dynamic loads and the aerothermal heat flux. All elements that related to the s/c design. 3. For the operations it is of great importance to ensure that the aerobraking is entered with the correct spacecraft attitude, therefore any safe modes should be avoided during this periods. Specific points for Venus Express 1. Venus Express has a body/solar array layout that results in a dynamically stable attitude. 2. A software mode to operate the spacecraft is during aerobraking is a part of the on board software. Aerobraking was initially foreseen as a backup in case the Venus orbit insertion would fail, however it was never intended to be used as a part of the nominal mission. Only limited testing of this has been performed. 3. The most limiting factor on Venus Express is likely to be the aerothermal heat input on the Multi Layer Insulation on the –Z platform. 4. The uncertainty and variable character of the Atmosphere. Pericentre velocity vs Orbital Period Examples (VEX): Delta-V needed for Reduction of orbital period: 24h-18h 90m/s 18h-16h 42m/s 18h-12h 116m/s Aim for experimental demonstration of concept: 24h-23h 12 m/s Reducing Apocentre altitude Venus Express Aerobraking 1.
    [Show full text]