United States Patent (113,627,798 72 Inventor Laird Gordon Lindsay Ward 3,321,502 5/1967 Soeder

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent (113,627,798 72 Inventor Laird Gordon Lindsay Ward 3,321,502 5/1967 Soeder United States Patent (113,627,798 72 Inventor Laird Gordon Lindsay Ward 3,321,502 5/1967 Soeder ......................... 260/439 Suffern, N.Y. (21) Appl. No. 869,905 3,346,447 10/1967 Wright........ - - 167/31 22 Filed Oct. 27, 1969 3,390,160 6/1968 Heller et al.. 260/433 45) Patented Dec. 14, 1971 3,437,620 4/1969 Yamamoto................... 260/23 (73) Assignee The International Nickel Company, Inc. OTHER REFERENCES New York, N.Y. Teramura et al. Chem. Abst. 68 p. 1360, abstract of Japanese Patent 5424- (67) Kirk- Othmer, Encyclopedia of Chemical Technology In (54) PROCESS FOR PREPARING THE NICKEL terscience Publishers, N.Y., N.Y., Vol. 13, 1967, p. 754-755 DERVATIVES OF METHYLENEBSPHENOL Primary Examiner-Tobias E. Levow 11 Claims, NoDrawings Assistant Examiner-A. P. Demers 52) U.S. Cl........................................................ 260/439 R, Attorney-Maurice L. Pinel 260/45.75 N (51) int. Cl......................................................... C07f 15/04, C08f 45/62 ABSTRACT: A process for preparing nickel derivatives of (50) Field of Search............................................ 260/439, methylene bisphenols in which a methylene bisphenol, a 45.75 N; 252/42.7 Group a metal alkoxide and a nickel salt are reacted in an es sentially nonaqueous environment, and the nickel derivative is (56) References Cited precipitated from solution. Novel nickel derivatives of UNITED STATES PATENTS methylene bisphenol, e.g., nickel hexachlorophene, are effec 2,971,968 2/1961 Nicholson et al............. 260/439 tive as light stabilizing additives in vinyl polymers. 3,627,798 1 2 PROCESS FOR PREPARNGTHENICKELDERVATIVES ing of methanol, ethanol, propanol, isopropanol, n-butanol, OFMETHYLENEBSPHENOL isobutanol, sec-butanol, acetone, tetrahydrofuran, dimethox This invention relates to a novel process for preparing yethane and dimethylformamide; and precipitating the nickel nickel compounds which are derivatives of methylene derivative. bisphenols and, more particularly, to novel stabilizing com 5 The methylene bisphenol used in the process is beneficially pounds for vinyl polymers, such as polyvinylchloride. hexachlorophene having the general structure, Attempts to prepare nickel salts of methylene bisphenols, HO OH such as hexachlorophene, in aqueous media, have thus far not met with success. It is desirable that a method suitable for the Cl -CH- -Cl preparation of such compounds be provided. O Polyvinylchloride (PVC) and related vinyl polymers are -Cl Cl light sensitive and suffer degradation including both discolora tion and embrittlement upon exposure to light, Many attempts Cl Cl have been made to stabilize these polymers by introducing although other suitable methylene bisphenols can be em various additives, and improvement in the stability of these 15 ployed. With regard to the Group a metal alkoxide, rubidium materials upon exposure to light has been achieved in some and cesium are highly reactive Group a metals and for that cases. However, more effective and more economical stabil reason are less desirable for the contemplated reaction to izers are needed. produce an alkoxide. Also, rubidium chloride is not very solu A new process has now been discovered in which a ble in alcohol, and cesium chloride is quite hygroscopic, these methylene bisphenol, a Group a metal alkoxide and a nickel 20 properties being disadvantageous in the reactions of the inven halide are reacted to precipitate a nickel derivative of tion as will be more fully explained hereinafter. While the an methylene bisphenol. hydrous nickel halide can be used in its pure form as a reac It has further been discovered that the novel compounds tant to the extent that it is soluble in the nonaqueous solvent, it prepared by the process of the invention are useful as light sta is advantageous to provide the nickel halide in the more solu bilizers for vinyl polymers. 25 ble form of an anhydrous organic complex. Such a soluble or It is an object of the invention to provide a process for mak ganic complex may be prepared by reacting the hydrated ing the nickel derivative of hexachlorophene. nickel halide (chloride, bromide or iodide) with peroxide Another object of the invention is to provide a vinyl free, ethylene-glycol dimethylether (monoglyme). The polymer having improved stabilization characteristics against 30 product of this reaction is nickel halide dimethoxyethanate degradation by light. (nickel halide. EGDE complex). The nickel halide. EGDE Other objects and advantages will become apparent from complex is quite soluble in alcohol and it is also soluble in the following description. acetone, tetrahydrofuran, dimethoxyethane and dimethyl Generally speaking, the present invention contemplates a formamide. process for making nickel derivatives of methylene bisphenols 35 The alcohols employed in the process, which desirably con having the general formula, tain from one to four carbon atoms, may function as solvents as well as reactants, i.e., the stoichiometric amount of alcohol HO O-Ni-O gh functioning as a reactant while the excess alcohol functions as a solvent. Alcohols having more than four carbons atoms are R CH R. R- CH R 40 less reactive at the reaction temperatures characterizing this process and, for that reason, are not as well suited for use as R -R. R. -R. R. -R. R. -R solvents, although they will react with the alkali metal. Al cohols having up to 12 carbon atoms may be used as reactants, R R R R but the increasing viscosity of the higher alcohols, e.g., 45 isoamyl alcohol, slows the desired reactions, and the system may have to be heated to obtain the reaction. Further, no par in which R is selected from the group consisting of hydrogen; ticular benefit is secured by employing the higher alcohols. halogens, e.g., chlorine; alkyls, e.g., butyl; substituted alkyls, Under normal conditions, the tert-butyl alcohol does not react e.g., tertiary butyl; aryls, e.g., phenyl; alkylaryls, e.g., with lithium or sodium. methylphenyl; arylalkyls, e.g., benzyl; or combinations 50 In order to obtain a relatively pure product upon precipita thereof. The compounds provided in accordance with the in tion of the nickel derivatives of methylene bisphenols from vention are useful as light stabilizing additives for vinyl solution, it will be understood that the byproduct of the reac polymers such as polyvinylchloride and polyvinyl acetate. tion, i.e., the alkali metal halide, must be soluble in the solvent More particularly, the nickel derivatives of methylene employed to facilitate separation of the product from the bisphenols are prepared by reacting a methylene bisphenol 55 byproduct. Since alcohols are advantageous solvents, it will be having the general formula, apparent that reactants which result in the production of HO OH byproducts which are relatively insoluble, or only slightly solu ble, in alcohol, such as lithium fluoride, sodium fluoride, sodi R- -CH- -R um chloride, sodium bromide, potassium fluoride, potassium 60 chloride, potassium bromide rubidium fluoride, rubidium bro R -R. R. -R mide and cesium fluoride, are unsuitable for the practice of this process, if an alcohol is used assolvent. R R It is possible, though less convenient, to use other solvents in which R is selected from the group consisting of hydrogen; 65 in the process (with alcohol functioning only as a reactant) in halogens, e.g., chlorine; alkyls, e.g., butyl; substituted alkyls, cluding acetone, tetrahydrofuran, dimethoxyethane and e.g., tertiary butyl; aryls, e.g., phenyl; alkylaryls, e.g., dimethylformamide. The nickel halide EGDE complex and methylphenyl; arylalkyls, e.g., benzyl; or combinations the byproduct alkali metal halides such as lithium chloride, thereof; a Group a metal alkoxide, which advantageously is lithium iodide, lithium bromide, sodium iodide, potassium the reaction product of a Group a metal, e.g., lithium, sodium 70 iodide, rubidium iodide, cesium chloride, cesium bromide and or potassium, and an alcohol having from one to four carbon cesium iodide will dissolve in these solvents. atoms, e.g., methanol, ethanol, propanol, isopropanol, n-bu The sequence in which the reactions of the invention are tanol, isobutanol or sec-butanol; and an anhydrous, or sub conducted is of significant importance. Thus, the methylene stantially anhydrous, nickel halide; in an essentially nonaque bisphenol is first reacted with the Group a metal alkoxide to ous solvent, particularly one selected from the group consist 75 form a Group a metal methylene bisphenolate. The Group a 3,627,798 3 4. metal methylene bisphenolate is reacted with a nickel dihalide Preparation of Nickel Hexachlorophenate whereupon the Group a metal ions of two molecules of the bisphenolate are replaced by nickel which links the two Nickel di-(2,2')-methylene-3,4,6-Trichlorophenol-3,4,6'- molecules, and the products of the reaction are nickel trichlorophenate '6CHOH dimethylene bisphenolate and a Group a metal halide. A 8 grams (1.2 g atom) of lithium was added to a flask con direct reaction does not readily occur between nickel dihalide taining 1,500 milliliters of absolute methanol under a nitrogen and methylene bisphenol because there is insufficient driving atmosphere producing a solution of lithium methoxide. The force for this reaction. solution of lithium methoxide was refluxed at 65 C. and dur The desired reactions do not occur when attempted in aque ing this operation 488 grams (1.2 moles) of hexachlorophene ous solution. It has been found, for example, that, in aqueous 10 was added. This mixture was refluxed at 65 C. for 0.5 hour solution, precipitation of hexachlorophene occurs if the pH of and then a solution of 186 grams (0.6 mole) of anhydrous the solution falls below approximately 8. On the other hand, nickel bromide. EGDE complex in 600 milliliters of methanol when the pH of the solution is raised to keep hexachlorophene was added. The hot (55 C.) yellow-green reaction mixture in solution, nickel hydroxide is formed and the desired 15 was then reduced to a volume of about 1.5 liters and then product, nickel hexachlorophenate, is not achieved.
Recommended publications
  • 1000004316196.Pdf
    (This is a sample cover image for this issue. The actual cover is not yet available at this time.) This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Fluid Phase Equilibria 336 (2012) 34–40 Contents lists available at SciVerse ScienceDirect Fluid Phase Equilibria journa l homepage: www.elsevier.com/locate/fluid Osmotic and activity coefficients for the CsF + methanol or ethanol + water ternary systems determined by potentiometric measurements ∗ ∗ Jing Tang, Lei Wang, Shu’ni Li , Quanguo Zhai, Yucheng Jiang, Mancheng Hu Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, Shaanxi 710062, PR China a r t i c l e i n f o a b s t r a c t Article history: The thermodynamic properties of CsF in the ROH (R = methyl or ethyl) + water mixtures were determined Received 18 July 2012 using potentiometric measurements at 298.15 K with the mass fraction of ROH varying from 0.00 to 0.30.
    [Show full text]
  • The Preparation and Identification of Rubidium
    THE PREPARATION AND IDENTIFICATION OF RUBIDIUM TELLURO-MOLYBDATE AND OF CESIIDl TELLURO- MOLYBDA.TE SEP ZI 193B THE PREPARATION AlJD IDENTIFICATION or :RUBIDIUM TELLURO-MOLYBDATE AND OF CESIUM '?ELLURO-MOLYBDATE By HENRY ARTHUR CARLSON \ \ Bachelor of Science Drury College Springfield. Missouri 1936 Submitted to the Department of Chemistry Oklahoma Agricultural and Meohanica.l College In Partial Fulfillment of the Requirements For the degree of MASTER OF SCIENCE 1938 . ... ... .. .. .. ... .. ' :· ·. : : . .. .. ii S£p C"·J"··} ;.;:{ I' ' """"''· APPROVED:- \ Head~~stry 108627 iii ACKNOWLEDGMENT The author wishes to acknowledge the valuabl e advice and assistance of Dr. Sylvan R~ Wood, under whose direction this work was done. Acknowledgment is also made of the many help­ ful suggestions and cordial cooperation of Dr. H. M. Trimble. The author wishes to express his sincere appreciation to the Oklahoma Agricultural and Mechanical College for financial assistance in the fonn of a graduate assistantship in the Depart­ ment of Chemistry during the school years 1936-37 and 1937-38. iv TABLE OF CONTENTS I. Introduction------------------------------ 1 II. Materials Used-------------"--------------- 3 III. Preparation of Rubidium Telluro-molybdate---- 5 IV. Methods of Analysis------------------------ 6 Telluriur a-"---------"----------------------- 6 Molybdenum•----------------------------- 8 Rubi di um------------------"-------------... 10 \Yater of Hydration---------------------- 11 v. Calculation of: Formula---------------------- 12 VI. Preparation
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • SAFETY DATA SHEET Revision Date 01/15/2020 Print Date 09/18/2021
    Version 6.1 SAFETY DATA SHEET Revision Date 01/15/2020 Print Date 09/18/2021 SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1 Product identifiers Product name : Rubidium chloride Product Number : R2252 Brand : Aldrich CAS-No. : 7791-11-9 1.2 Relevant identified uses of the substance or mixture and uses advised against Identified uses : Laboratory chemicals, Synthesis of substances 1.3 Details of the supplier of the safety data sheet Company : Sigma-Aldrich Inc. 3050 SPRUCE ST ST. LOUIS MO 63103 UNITED STATES Telephone : +1 314 771-5765 Fax : +1 800 325-5052 1.4 Emergency telephone number Emergency Phone # : 800-424-9300 CHEMTREC (USA) +1-703- 527-3887 CHEMTREC (International) 24 Hours/day; 7 Days/week SECTION 2: Hazards identification 2.1 Classification of the substance or mixture Not a hazardous substance or mixture. 2.2 GHS Label elements, including precautionary statements Not a hazardous substance or mixture. 2.3 Hazards not otherwise classified (HNOC) or not covered by GHS - none SECTION 3: Composition/information on ingredients 3.1 Substances Formula : ClRb Molecular weight : 120.92 g/mol CAS-No. : 7791-11-9 EC-No. : 232-240-9 Aldrich - R2252 Page 1 of 8 The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the US and Canada No components need to be disclosed according to the applicable regulations. SECTION 4: First aid measures 4.1 Description of first aid measures General advice Consult a physician. Show this safety data sheet to the doctor in attendance. If inhaled If breathed in, move person into fresh air.
    [Show full text]
  • Provisional Peer-Reviewed Toxicity Values for Rubidium Compounds
    EPA/690/R-16/012F l Final 9-02-2016 Provisional Peer-Reviewed Toxicity Values for Rubidium Compounds (CASRN 7440-17-7, Rubidium) (CASRN 7791-11-9, Rubidium Chloride) (CASRN 1310-82-3, Rubidium Hydroxide) (CASRN 7790-29-6, Rubidium Iodide) Superfund Health Risk Technical Support Center National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Cincinnati, OH 45268 AUTHORS, CONTRIBUTORS, AND REVIEWERS CHEMICAL MANAGERS Puttappa R. Dodmane, BVSc&AH, MVSc, PhD National Center for Environmental Assessment, Cincinnati, OH Scott C. Wesselkamper, PhD National Center for Environmental Assessment, Cincinnati, OH DRAFT DOCUMENT PREPARED BY SRC, Inc. 7502 Round Pond Road North Syracuse, NY 13212 PRIMARY INTERNAL REVIEWER Paul G. Reinhart, PhD, DABT National Center for Environmental Assessment, Research Triangle Park, NC This document was externally peer reviewed under contract to: Eastern Research Group, Inc. 110 Hartwell Avenue Lexington, MA 02421-3136 Questions regarding the contents of this PPRTV assessment should be directed to the EPA Office of Research and Development’s National Center for Environmental Assessment, Superfund Health Risk Technical Support Center (513-569-7300). ii Rubidium Compounds TABLE OF CONTENTS COMMONLY USED ABBREVIATIONS AND ACRONYMS .................................................. iv BACKGROUND .............................................................................................................................1 DISCLAIMERS ...............................................................................................................................1
    [Show full text]
  • Title on the Purification of Rubidium Chloride Author(S)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository Title On the Purification of Rubidium Chloride Author(s) Ishibashi, Masayoshi; Yamamoto, Toshio; Hara, Tadashi Bulletin of the Institute for Chemical Research, Kyoto Citation University (1959), 37(3): 153-158 Issue Date 1959-09-15 URL http://hdl.handle.net/2433/75711 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University On the Purification of Rubidium Chloride* Masayoshi ISHIBASHI,Toshio YAMAMOTOand Tadashi HARA** (Ishibashi Laboratory) ReceivedFebruary 4, 1959 There being no reliable method for the purification of rubidium chloride, three me- thods were devised for this purpose, the method used depending on the type of a smple. By these methods, it was shown that spectroscopically pure rubidium chloride can be easily obtained from various samples. INTRODUCTION As the rubidium stands at the middle of potassium and cesium in the peri- odic table and, moreover, since potassium, rubidium and cesium are very similar in their chemical properties, it is very difficult to purify the rubidium chloride in a sample containing potassium and cesium. A few methods have been already reported for the purification of rubidium chloride, but they seem still to be in- complete. Therefore, three simple methods : A, B and C for the purification of rubidium chloride have been proposed, based on knowledge obtained during the investigation of the conventional method for the analysis of rubidium. Method A is appropriate for a sample in which the concentration of rubi- dium chloride is large. The small amount of cesium in the sample is completely removed by dropping the concentrated solution of the alkali sulfate into a hot ethyl alcohol solution and repeating this crystallization process.
    [Show full text]
  • SAFETY DATA SHEET Santa Cruz Biotechnology, Inc
    SAFETY DATA SHEET Santa Cruz Biotechnology, Inc. Revision date 18-Aug-2014 Version 1 1. IDENTIFICATION OF THE SUBSTANCE/PREPARATION AND OF THE COMPANY/UNDERTAKING _____________________________________________________________________________________________________________________ Product identifier Product Name Rubidium Chloride Product Code SC-212792 Recommended use of the chemical and restrictions on use For research use only. Not intended for diagnostic or therapeutic use. Details of the supplier of the safety data sheet Emergency telephone number Santa Cruz Biotechnology, Inc. Chemtrec 10410 Finnell Street 800.424.9300 (Within USA) Dallas, TX 75220 703.527.3887 (Outside USA) 831.457.3800 800.457.3801 [email protected] 2. HAZARDS IDENTIFICATION _____________________________________________________________________________________________________________________ This chemical is not considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.122). Classification Not a dangerous substance or mixture according to the Globally Harmonized System (GHS) Label elements Signal word Not classified Hazard statements Not classified Symbols/Pictograms Not classified Precautionary Statements - Prevention Wash hands thoroughly after handling Precautionary Statements - Response IF exposed or concerned: Get medical advice/attention Hazards not otherwise classified (HNOC) Hazards not otherwise classified (HNOC) Not applicable Other Information Other hazards May be harmful if swallowed. NFPA Health hazards 0 HMIS Health hazards 1 Flammability
    [Show full text]
  • Safety Data Sheets
    SAFETY DATA SHEETS According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition Version: 1.0 Creation Date: Feb. 6, 2018 Revision Date: Feb. 6, 2018 1. Identification 1.1 GHS Product identifier Product name Rubidium chloride 1.2 Other means of identification Product number A610668 Other names Rubidium chloride 1.3 Recommended use of the chemical and restrictions on use Identified uses Used for research and development only. Uses advised against no data available 1.4 Supplier's details Company Sangon Biotech (Shanghai) Co., Ltd. Address 698 Xiangmin Road, Songjiang, Shanghai 201611, China Telephone +86-400-821-0268 / +86-800-820-1016 Fax +86-400-821-0268 to 9 1.5 Emergency phone number Emergency phone +86-21-57072055 number Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours). 2. Hazard identification 2.1 Classification of the substance or mixture Not classified. 2.2 GHS label elements, including precautionary statements Pictogram(s) no data available Signal word No signal word Hazard statement(s) none Precautionary statement(s) Prevention none Rubidium chloride Page 1 of 8 Response none Storage none Disposal none 2.3 Other hazards which do not result in classification no data available 3. Composition/information on ingredients 3.1 Substances Common names and CAS EC Chemical name Concentration synonyms number number Rubidium Rubidium chloride 7791-11-9 232-240-9 ≥99% chloride 4. First-aid measures 4.1 Description of necessary first-aid measures General advice Medical attention is required. Consult a doctor. Show this safety data sheet (SDS) to the doctor in attendance.
    [Show full text]
  • Short Articles
    中国科技论文在线 http://www.paper.edu.cn 3108 J. Chem. Eng. Data 2009, 54, 3108–3111 Short Articles (Liquid + Solid) Equilibrium, Density, and Refractive Index for (Methanol + Sodium Chloride + Rubidium Chloride + Water) and (Ethanol + Sodium Chloride + Rubidium Chloride + Water) at Temperatures of (288, 298, and 308) K Shuni Li, Haiyan Guo, Quanguo Zhai, Yucheng Jiang, and Mancheng Hu* School of Chemistry and Materials Science and Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Chang An South Road 199#, Xi’an, Shaanxi, 710062, People’s Republic of China In this paper, (liquid + solid) equilibria, densities, and refractive indices are reported for (CH3OH + NaCl + RbCl + H2O) and (C2H5OH + NaCl + RbCl + H2O) at T ) (288.15, 298.15, and 308.15) K. The results show that the presence of either CH3OH or C2H5OH significantly reduces the solubility of NaCl and RbCl in aqueous solutions. The experimental solubility, density, and refractive index were correlated to empirical equations, which makes it possible to calculate these properties over the whole studied concentration. Calculated values are in good agreement with the experimental results. Introduction expand this work, we have also focused on the research of some quaternary mixtures composed of rubidium and cesium salts In recent years, liquid extraction with inorganic salts has 19 systems, such as (H2O + C3H7OH + Cs2SO4 + CsCl), (H2O become a useful separation and purification technology in a + + + 20,21 + + 1,2 C3H7OH KCl CsCl), and (H2O C3H7OH NaCl During the past 22 range of chemical and biological processes. + RbCl). In this work, the (liquid + solid) equilibrium, decade, there have been many studies in this area.
    [Show full text]
  • Studies of Unodped Glycine, Cesium Chloride Doped Glycine and Rubidium Chloride Doped Glycine Crystals
    International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 – 8958, Volume-6 Issue-6, August 2017 Studies of Unodped Glycine, Cesium Chloride Doped Glycine and Rubidium Chloride Doped Glycine Crystals P. Manimekalai, P. Selvarajan glycine which have been synthesized to grow single crystals Abstract- Glycine is one of the simplest amino acid that has no and characterize them [11-14]. asymmetric carbon atom and is optically inactive. It is mixed with The effect of additives has been investigated on the other organic or inorganic salts and acids to obtain new crystal morphology and polymorphism of glycine and it was complexes and these complexes have improved chemical stability, explained that the crystallization of the least stable form β and thermal, optical, mechanical, electrical, linear and nonlinear γ optical properties. Many glycine based crystals are known to be the stable form from aqueous solution correlated with having interesting properties and in this work, cesium chloride conditions that had inhibitory effects on the dimer formation, and rubidium chloride are separately added in small amounts into thus inhibiting the spontaneous nucleation of the α-form [15]. the lattice of glycine crystals to get the doped samples for the Profio et al. studied the selective nucleation of α− and research work. Single crystals of undoped, cesium chloride doped γ− forms of glycine by using microporous membranes [16]. and rubidium chloride doped glycine were grown by solution Recently, various studies on potassium nitrate doped glycine method and grown crystals were analyzed by various characterization techniques. Solubility was measured for the crystals were reported in the literature [17].
    [Show full text]
  • Rubidium Chloride Safety Data Sheet Rubidium Sds Rubidium Isotope
    Safety Data Sheet for Rubidium Chloride, Enriched Rubidium Chloride According to ISO 11014:2010 First Print Date: 5-Mar-2015 Revision Date: 18-Aug-2019 Version: 1.1.1. Section 1: Identification of the Substance/Mixture and of the Company/Undertaking Product Identifier: Identification as on the label/Trade name: Rubidium Chloride, Enriched Rubidium. Molecular weight: 120.92 Chemical formula: RbCl Synonyms: None. Details of the supplier of the Safety Data Sheet: Neonest AB Storgatan 70C, Solna SE-17152 Sweden Contact details: +46-76-219-9731 24-hour Emergency Contact: Swedish Poisons Centre Phone: 112 - Ask for Poisons Information, 112 – begär Giftinformation. Other International Contacts: CHEMTREC 24-hour: +1-703-741-5500 (US + Worldwide) NHS: 111 (UK) Charite: +49 30 450 531 000 (Netherlands) INTCF: +34 917689800 (Spain) CapTv: +33 1 40 05 48 48 (France) Section 2: Hazards Identification Classification of the substances or mixture: The mixture is classified according to: Regulation EC 1272/2008 [EU-GHS/CLP] Hazard classes/Hazard categories: Hazard statement: Not classified as hazardous. None required. Label elements: Hazard pictograms: Not required. Signal Words: Not required. Hazard Statements: Not required. Precautionary Statements: None. Other hazards: None known. Safety Data Sheet (SDS) for Rubidium Chloride, Enriched Rubidium https://www.buyisotope.com Page 1/9 Safety Data Sheet for Rubidium Chloride, Enriched Rubidium Chloride According to ISO 11014:2010 First Print Date: 5-Mar-2015 Revision Date: 18-Aug-2019 Version: 1.1.1. Section 3: Composition/Information on Ingredients Substance/Mixture: Substance. Ingredients: CAS-No. Molecular Concentration Classification Substance name (IUPAC/EC) EC-No. weight % by weight EC1272/2008 7791-11-9 Rubidium chloride 120.92 >99% Not Classified.
    [Show full text]
  • Rubidium Rb 82 Generator Shown in Table 4
    Since eluate obtained from the generator is intended for To correct for physical decay of rubidium Rb 82, the fraction intravenous administration, aseptic techniques must be ® of rubidium chloride Rb 82 injection remaining in all 15 sec- strictly observed in all handling. Only additive free Sodium ond intervals up to 300 seconds after time of calibration are Chloride Injection USP should be used to elute the genera- Rubidium Rb 82 Generator shown in Table 4. tor. Do not administer eluate from the generator if there is any evidence of foreign matter. TABLE 4 As in the use of any radioactive material, care should be Physical Decay Chart: Rb-82 half-life 75 seconds 43-8200 taken to minimize radiation exposure to the patient consis- Fraction Fraction tent with proper patient management and to insure mini- For Elution of Rubidium Chloride Rb 82 Injection Seconds Remaining Seconds Remaining Diagnostic: Intravenous 0* 1.000 165 .218 mum radiation exposure to occupational workers. 15 .871 180 .190 Radiopharmaceuticals should be used only by physicians 30 .758 195 .165 who are qualified by training and experience in the safe use DESCRIPTION 45 .660 210 .144 and handling of radionuclides and whose experience and ® Cardiogen-82 (Rubidium Rb 82 Generator) contains accel- 60 .574 225 .125 training have been approved by the appropriate government erator produced strontium Sr 82 adsorbed on stannic oxide 75 .500 240 .109 agency authorized to license the use of radionuclides. in a lead-shielded column and provides a means for obtain- 90 .435 255 .095 Carcinogenesis, Mutagenesis, Impairment of Fertility ing sterile nonpyrogenic solutions of rubidium chloride Rb 105 .379 270 .083 No long-term studies have been performed to evaluate car- 82 injection.
    [Show full text]