Crystal Growth 101
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Growth and Characterization of Lif Single-Crystal Fibers by the Micro
ARTICLE IN PRESS Journal of Crystal Growth 270 (2004) 121–123 Growth and characterization of LiF single-crystal fibers by the micro-pulling-down method A.M.E. Santoa, B.M. Epelbaumb, S.P. Moratoc, N.D. Vieira Jr.a, S.L. Baldochia,* a Instituto de Pesquisas Energeticas! e Nucleares, IPEN-CNEN/SP, Av. Prof. Lineu Prestes, CEP 05508-900, Sao* Paulo, SP, Brazil b Department of Materials Science, University of Erlangen-Nurnberg, D-91058, Erlangen, Germany c LaserTools Tecnologia Ltda., 05379-130,Sao* Paulo, SP, Brazil Accepted 27 May 2004 Available online 20 July 2004 Communicated by G. Muller. Abstract Good optical quality LiF single-crystalline fibers ranging from 0:5to0:8 mm in diameter and 100 mm in length were successfully grown by the micro-pulling-down technique in the resistive mode. A commercial equipment was modified in order to achieve suitable conditions to grow fluoride single-crystalline fibers. r 2004 Elsevier B.V. All rights reserved. PACS: 81.10.Fq; 78.20.Àe Keywords: A2. Micro-pulling-down method; A2. Single crystal growth; B1. Fluorides 1. Introduction oxide single-crystals have already been grown by the laser heated pedestal growth (LHPG) [2] and There is an increasinginterest in the production by the micro-pulling-down (m-PD) [3] methods. of single-crystalline fibers. Their unique properties However, the growth and hence the possible indicate their use for production of a variety of applications of fluoride single-crystalline fibers optical and electronic devices [1]. The final shape has not yet been investigated. of the single-crystalline fiber is already in a form As it is already known from other methods of suitable for optical testingand applications, fluoride growth, these materials are very sensitive reducingthe time and cost of preparation. -
Growth of Srb4o7 Crystal Fibers Along the C-Axis by Micro-Pulling-Down Method
crystals Article Growth of SrB4O7 Crystal Fibers along the c-Axis by Micro-Pulling-Down Method Ryouta Ishibashi, Harutoshi Asakawa * and Ryuichi Komatsu Graduate School of Science and Engineering, Yamaguchi University, Yamaguchi 753-8511, Japan; [email protected] (R.I.); [email protected] (R.K.) * Correspondence: [email protected]; Tel.: +81-836-85-9631 Abstract: SrB4O7 (SBO) receives much attention as solid-state ultraviolet lasers for micro-machining, photochemical synthesis, and laser spectroscopy. For the application of SBO, the SBO crystals require the control of twinning to amplify the conversion light. We also expected that the inhibitation of the SrB2O4 appearance was essential. Here, we show the growth of SBO crystals along the c-axis through the micro-pulling-down method while alternating the application of electric fields (E). Without the application, single crystals were grown. At E = 400 V/cm no needle domains of SrB2O4 inside SBO crystals existed; however, composition planes were formed and twin boundaries did not appear. In contrast, the inversion of surface morphology emerged, and the convex size was especially large at 1000 V/cm. These results demonstrate that convection is generated perpendicular to the growth front by alternating the application of electric fields. This surface morphological change contradicts the conventional concept of growth through the micro-pulling-down method. The distance from seed crystals vs. grain density plot also showed that the density did not decrease with a sufficient slope. Consequently, we concluded that the selection of the c-axis as growth faces is not fruitful to fabricate Citation: Ishibashi, R.; Asakawa, H.; twins, and the selection of the growth condition, under which geometrical selection strongly affects, Komatsu, R. -
Bottom-Up Self-Assembly Based on DNA Nanotechnology
nanomaterials Review Bottom-Up Self-Assembly Based on DNA Nanotechnology 1, 1, 1 1 1,2,3, Xuehui Yan y, Shujing Huang y, Yong Wang , Yuanyuan Tang and Ye Tian * 1 College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China; [email protected] (X.Y.); [email protected] (S.H.); [email protected] (Y.W.); [email protected] (Y.T.) 2 Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China 3 Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China * Correspondence: [email protected] These authors contributed equally to this work. y Received: 9 September 2020; Accepted: 12 October 2020; Published: 16 October 2020 Abstract: Manipulating materials at the atomic scale is one of the goals of the development of chemistry and materials science, as it provides the possibility to customize material properties; however, it still remains a huge challenge. Using DNA self-assembly, materials can be controlled at the nano scale to achieve atomic- or nano-scaled fabrication. The programmability and addressability of DNA molecules can be applied to realize the self-assembly of materials from the bottom-up, which is called DNA nanotechnology. DNA nanotechnology does not focus on the biological functions of DNA molecules, but combines them into motifs, and then assembles these motifs to form ordered two-dimensional (2D) or three-dimensional (3D) lattices. These lattices can serve as general templates to regulate the assembly of guest materials. In this review, we introduce three typical DNA self-assembly strategies in this field and highlight the significant progress of each. -
Optimal Operation of an Integrated Bioreaction–Crystallization Process
中国科技论文在线 http://www.paper.edu.cn Chemical Engineering Science 56 (2001) 6165–6170 www.elsevier.com/locate/ces Optimal operation ofan integrated bioreaction–crystallization process for continuous production of calcium gluconate using external loop airlift columns Jie Baoa, Kenichi Koumatsua, Keiji Furumotob, Makoto Yoshimotoa, Kimitoshi Fukunagaa, Katsumi Nakaoa; ∗ aDepartment of Applied Chemistry and Chemical Engineering, Yamaguchi University, Tokiwadai, Ube, Yamaguchi 755-8611, Japan bOshima National College of Maritime Technology, Oshima, Yamaguchi 742-2106, Japan Abstract A kinetic model was proposed to optimize the integrated bioreaction–crystallization process newly developed for production of calcium gluconate crystals using external loop airlift columns. The optimal operating conditions in the bioreactor were determined using an objective function deÿned to maximize the productivity as well as to minimize biocatalyst loss. The optimization of the crystallizer was carried out by matching the crystallization rate to the optimal production rate in the bioreactor because the bioreaction was found to be the rate controlling process. The calcium gluconate productivity under the optimal conditions of the integrated process was obtained by the simulation based on the process model. The productivity ofthe proposed process was found to be comparable to that ofthe current batch fermentationprocess. ? 2001 Elsevier Science Ltd. All rights reserved. Keywords: Process kinetic model; Optimization; Calcium gluconate; Bioreaction–crystallization -
Crystallization in Patterns: a Bio-Inspired Approach**
PROGRESS REPORTS Crystallization in Patterns: A Bio-Inspired Approach** By Joanna Aizenberg* Nature produces a wide variety of exquisite, highly functional mineralized tissues using simple inorganic salts. Biomineralization occurs within specific microenvironments, and is finely tuned by cells and specialized biomacromolecules. This article surveys bio- inspired approaches to artificial crystallization based on the above concept: that is, the use of organized organic surfaces patterned with specific initiation domains on a sub- micrometer scale to control patterned crystal growth. Specially tailored self-assembled monolayers (SAMs) of x-terminated alkanethiols were micropatterned on metal films using soft lithography and applied as organic templates for the nucleation of calcium carbonate. Crystallization results in the formation of large-area, high-resolution inorganic replicas of the underlying organic patterns. SAMs provide sites for ordered nucleation, and make it possible to control various aspects of the crystallization process, including the precise localization of particles, nucleation density, crystal sizes, crystallographic orientation, morphology, polymorph, stability, and architecture. The ability to construct periodic arrays of uniform oriented single crystals, large single crystals with controlled microporosity, or films presenting patterns of crystals offers a potent methodology to materials engineering. 1. Technological Challenge and Biological Of the many challenges facing materials science, the devel- Inspiration opment of an alternative, bottom±up crystallization route, which would enable the direct, patterned growth of crystals The ability to control crystallization is a critical requirement with controlled physico-chemical properties, became an at- in the synthesis of many technologically important materi- tractive, strategic goal. The fundamental principles of the [12±17] als.[1±5] Crystalline inorganic structures with micrometer-scale bottom±up approach can be borrowed from nature. -
Single Crystal Growth for Topology and Beyond Chandra Shekhar#, Horst Borrmann, Claudia Felser, Guido Kreiner, Kaustuv Manna, Marcus Schmidt, and Vicky Sü
CHEMICAL METALS SCIENCE & SOLID STATE CHEMISTRY Single crystal growth for topology and beyond Chandra Shekhar#, Horst Borrmann, Claudia Felser, Guido Kreiner, Kaustuv Manna, Marcus Schmidt, and Vicky Sü Single crystals are the pillars for many technological advancements, which begin with acquiring the material. Since different compounds have different physical and chemical properties, different techniques are needed to obtain their single crystals. New classes of quantum materials, from insulators to semimetals, that exhibit non-trivial topologies, have been found. They display a plethora of novel phenomena, including topological surface states, new fermions such as Weyl, Dirac, or Majorana, and non-collinear spin textures such as antiskyrmions. To obtain the crystals and explore the properties of these families of compounds, it is necessary to employ different crystal growth techniques such as the chemical vapour transport method, Bridgman technique, flux growth method, and floating-zone method. For the last four years, we have grown more than 150 compounds in single crystal form by employing these methods. We sometimes go beyond these techniques if the phase diagram of a particular material allows it; e.g., we choose the Bridgman technique as a flux growth method. Before measuring the properties, we fully characterize the grown crystals using different characterization tools. Our TaAs family of crystals have, for the first time, been proven experimentally to exhibit Weyl semimetal properties. They exhibit extremely high magnetoresistance and mobility of charge carriers, which is indicative of the Weyl fermion properties. Moreover, a very large value of intrinsic anomalous Hall and Weyl physics with broken time-reversal symmetry is found in the full-Heuslers, while the half-Heuslers exhibit topological surface states. -
Solid-Phase Epitaxy
Published in Handbook of Crystal Growth, 2nd edition, Volume III, Part A. Thin Films and Epitaxy: Basic Techniques edited by T.F. Kuech (Elsevier North-Holland, Boston, 2015) Print book ISBN: 978-0-444-63304-0; e-book ISBN: 97800444633057 7 Solid-Phase Epitaxy Brett C. Johnson1, Jeffrey C. McCallum1, Michael J. Aziz2 1 SCHOOL OF PHYSICS, UNIVERSITY OF MELBOURNE, VICTORIA, AUSTRALIA; 2 HARVARD SCHOOL OF ENGINEERING AND APPLIED SCIENCES, CAMBRIDGE, MA, USA CHAPTER OUTLINE 7.1 Introduction and Background.................................................................................................... 318 7.2 Experimental Methods ............................................................................................................... 319 7.2.1 Sample Preparation........................................................................................................... 319 7.2.1.1 Heating.................................................................................................................... 321 7.2.2 Characterization Methods................................................................................................ 321 7.2.2.1 Time-Resolved Reflectivity........................................................................................ 321 7.2.2.2 Other Techniques ....................................................................................................323 7.3 Solid-Phase Epitaxy in Si and Ge .............................................................................................. 323 7.3.1 Structure -
Unsolved Problems in Nanotechnology
Unsolved Problems in Nanotechnology 61 Biographical sketch of Matthew Tirrell Matthew Tirrell received his undergraduate education in Chemical Engineering at Northwestern University and his Ph.D. in 1977 in Polymer Science from the University of Massachusetts. He is currently Dean of the College of Engineering at the University of California, Santa Barbara. From 1977 to 1999 he was on the faculty of Chemical Engineering and Materials Science at the University of Minnesota, where he served as head of the department from 1995 to 1999. His research has been in polymer surface properties including adsorption, adhesion, surface treatment, friction, lubrication and biocompatibilty. He has co-authored about 250 papers and one book and has supervised about 60 Ph.D. students. Professor Tirrell has been a Sloan and a Guggenheim Fellow, a recipient of the Camille and Henry Dreyfus Teacher-Scholar Award and has received the Allan P. Colburn, Charles Stine and the Professional Progress Awards from AIChE. He was elected to the National Academy of Engineering in 1997, became a Fellow of the American Institute of Medical and Biological Engineers in 1998, was elected Fellow of the American Association for the Advancement of Science in 2000 and was named Institute Lecturer for the American Institute of Chemical Engineers in 2001. 62 Unsolved Problems in Nanotechnology: Chemical Processing by Self-Assembly Matthew Tirrell Departments of Chemical Engineering and Materials Materials Research Laboratory California NanoSystems Institute University of California, Santa Barbara, CA 93106-5130 [email protected] Abstract The many impressive laboratory demonstrations of controllable self-assembly methods generate considerable hope and interest in self-assembly as a manufacturing method for nano-structured products. -
The Bio Revolution: Innovations Transforming and Our Societies, Economies, Lives
The Bio Revolution: Innovations transforming economies, societies, and our lives economies, societies, our and transforming Innovations Revolution: Bio The The Bio Revolution Innovations transforming economies, societies, and our lives May 2020 McKinsey Global Institute Since its founding in 1990, the McKinsey Global Institute (MGI) has sought to develop a deeper understanding of the evolving global economy. As the business and economics research arm of McKinsey & Company, MGI aims to help leaders in the commercial, public, and social sectors understand trends and forces shaping the global economy. MGI research combines the disciplines of economics and management, employing the analytical tools of economics with the insights of business leaders. Our “micro-to-macro” methodology examines microeconomic industry trends to better understand the broad macroeconomic forces affecting business strategy and public policy. MGI’s in-depth reports have covered more than 20 countries and 30 industries. Current research focuses on six themes: productivity and growth, natural resources, labor markets, the evolution of global financial markets, the economic impact of technology and innovation, and urbanization. Recent reports have assessed the digital economy, the impact of AI and automation on employment, physical climate risk, income inequal ity, the productivity puzzle, the economic benefits of tackling gender inequality, a new era of global competition, Chinese innovation, and digital and financial globalization. MGI is led by three McKinsey & Company senior partners: co-chairs James Manyika and Sven Smit, and director Jonathan Woetzel. Michael Chui, Susan Lund, Anu Madgavkar, Jan Mischke, Sree Ramaswamy, Jaana Remes, Jeongmin Seong, and Tilman Tacke are MGI partners, and Mekala Krishnan is an MGI senior fellow. -
Important Factors Influencing Protein Crystallization
Global Journal of Biotechnology and Biomaterial Science Mohnad Abdalla1*, Wafa Ali Eltayb1, Mini Review Abdus Samad1, Elshareef SHM1 and TIM Dafaalla2 1Hefei National Laboratory for Physical Sciences at the Important Factors Influencing Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People’s Protein Crystallization Republic of China 2College of Plant Science, Jilin University, Changchun 130062, China Abstract Dates: Received: 16 September, 2016; Accepted: The solution of crystallization problem was introduced around twenty years ago, with the 29 September, 2016; Published: 30 September, introduction of crystallization screening methods. Here reported some of the factors which affect 2016 protein crystallization, solubility, Concentration of precipitant, concentration of macromolecule, ionic *Corresponding author: Mohnad Abdalla, strength, pH, temperature, and organism source of macromolecules, reducing or oxidizing environment, Hefei National Laboratory for Physical Sciences additives, ligands, presence of substrates, inhibitors, coenzymes, metal ions and rate of equilibration. at the Microscale and School of Life Sciences, The aim of this paper to give very helpful advice for crystallization. University of Science and Technology of China, Hefei, Anhui 230027, PR China, E-mail: Buffer is most straight forward way to make a crystallization www.peertechz.com problem by effect the protein behave. There are many rules and Keywords: Proteins; Crystallization; Isoelectric point; different protein crystallization methods, some of it has been pH; Solubility; Stability developed during the recent years. However, Protein crystallization still represents a great challenge for bio crystallography. The Introduction cumulation of crystallization information in crystallization databases and in structural articles it allow us to design crystallization X-ray crystallography has provided 3D structures of thousands experiments depending on the character of the protein. -
Growth of Piezoelectric Crystals by Czochralski Method D
Growth of piezoelectric crystals by Czochralski method D. Cochet-Muchy To cite this version: D. Cochet-Muchy. Growth of piezoelectric crystals by Czochralski method. Journal de Physique IV Proceedings, EDP Sciences, 1994, 04 (C2), pp.C2-33-C2-45. 10.1051/jp4:1994205. jpa-00252473 HAL Id: jpa-00252473 https://hal.archives-ouvertes.fr/jpa-00252473 Submitted on 1 Jan 1994 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL DE PHYSIQUE IV Colloque C2, supplBment au JournaI de Physique 111, Volume 4, fkvrier 1994 Growth of piezoelectric crystals by Czochralski method D. COCHET-MUCHY Crismatec, Usine de Gikres, 2 me des Essarts, 386610 Gi.?res, France Abstract : The Czochralski method is one of the most widely used industrial technique to grow single-crystals, since it applies to a very large range of compounds, such as semiconductors, oxides, fluorides, etc... Many exhibit piezoelectric properties and some of them find applications in Surface-Acoustic-Waves or Bulk- Acoustic-Waves devices. That explains the large amount of work made on the development of the corresponding growth processes and the high levels of production achieved in the world today. -
Automated Protocols for Macromolecular Crystallization at the MRC Laboratory of Molecular Biology
Journal of Visualized Experiments www.jove.com Video Article Automated Protocols for Macromolecular Crystallization at the MRC Laboratory of Molecular Biology Fabrice Gorrec1, Jan Löwe1 1 Laboratory of Molecular Biology, Medical Research Council Correspondence to: Fabrice Gorrec at [email protected] URL: https://www.jove.com/video/55790 DOI: doi:10.3791/55790 Keywords: Biochemistry, Issue 131, X-ray crystallography, protein crystallization, high-throughput screening, fully automated system, nanoliter droplets, vapor diffusion, initial screen, nanoliter dispenser, liquid handler, crystal optimization, 4-corner method, additive screening Date Published: 1/24/2018 Citation: Gorrec, F., Löwe, J. Automated Protocols for Macromolecular Crystallization at the MRC Laboratory of Molecular Biology. J. Vis. Exp. (131), e55790, doi:10.3791/55790 (2018). Abstract When high quality crystals are obtained that diffract X-rays, the crystal structure may be solved at near atomic resolution. The conditions to crystallize proteins, DNAs, RNAs, and their complexes can however not be predicted. Employing a broad variety of conditions is a way to increase the yield of quality diffraction crystals. Two fully automated systems have been developed at the MRC Laboratory of Molecular Biology (Cambridge, England, MRC-LMB) that facilitate crystallization screening against 1,920 initial conditions by vapor diffusion in nanoliter droplets. Semi-automated protocols have also been developed to optimize conditions by changing the concentrations of reagents, the pH, or by introducing additives that potentially enhance properties of the resulting crystals. All the corresponding protocols will be described in detail and briefly discussed. Taken together, they enable convenient and highly efficient macromolecular crystallization in a multi-user facility, while giving the users control over key parameters of their experiments.