Cloud Microphysics Condensation & Coalescence

Total Page:16

File Type:pdf, Size:1020Kb

Cloud Microphysics Condensation & Coalescence Andrew Glen Summary 3 - Cloud Microphysics Condensation & Coalescence: There are 2 main precipitation processes, Coalescence which is known as a ‘warm’ cloud process and the Bergeron Findeisen process which is often known as a ‘cold’ process. Coalescence is a process which is independent of temperature but is exclusive to temperatures above 0˚C, and therefore has no involvement from ice. Battan (1953) describes how pre-1947 (Thunderstorm Project) most observed ‘warm’ cloud precipitation events had occurred over oceans. But the 1947 Thunderstorm Project data set shed light on the formation of precipitation in continental convective clouds by ‘warm’ rain processes. The Thunderstorm Project data set was collected during the summer of 1947 near Wilmington, Ohio using a modified 3-cm vertical scanning radar. The study by Battan (1953) discusses the observation of coalescence by looking at first echo studies, and identifying the level of the first formation of precipitation, and the thickness of the cloud. The radar observations can be interpreted in terms of drop size which can then be related to the initiation of precipitation. Several assumptions are used to develop this method; the main source of error can be associated with the assumption that all drops are the same size, but is not essential when vertical development is dealt with. The use of the vertical scanning radar allows the growth of the colloids to be observed as the first echo, the colloids then rapidly form droplets of the order of 100µm diameter, which are efficient coalescence elements. Figure 1 shows an example of a growth curve from the first echo study, Battan (1953). The plot shows the cloud development over time, the +8˚C curve indicates the cloud top temperature, which ascends over time. The +13˚C curve indicates the cloud base, which descends over time. It can be seen that the cloud always remains below the 0˚C altitude and therefore never experiences freezing. Figure 1. Example of cloud growth from a first echo study. Battan (1953) When considering ‘warm’ rain processes there are 2 main methods of droplet growth, condensation and coalescence. Condensation occurs first and is the condensing of liquid water onto a soluble particle known as a condensation nuclei (CN). This condensational growth can only occur in environments that are above saturation, and can be modeled by the Köhler curve. The Köhler curve is the relationship between the radius of a particle and the supersaturation of the environment while balancing the effects of vapour pressure and chemical composition known as the curvature and solution terms respectively. If a droplet can grow larger than the critical radius, which is the radius at peak supersaturation, then the droplets growth can be maintained as long as there is sufficient vapour around the population of CCN. Condensation droplets are typically between 1µm and 10µm, the process of condensation can take a fraction of a second at high supersaturations, but a droplet cannot grow large enough to precipitate by this process alone. The supersaturation is affected by condensation of vapour onto droplets, which decreases the supersaturation and an increase in supersaturation by maintaining an updraft. The rate of change of supersaturation is defined in equation 1. dS dz dw =Q − Q Equation 1 dt1 dt 2 dt Where: S is the supersaturation w is the mixing ratio of the liquid water condensate Q1 and Q 2 are constants There is a fundamental step between the Köhler curve and equation 1. The Köhler curve is calculated and describes the conditions for a single CCN droplet, whereas equation 1 represents a population of active CCN droplets. This is where coalescence takes over with drop to drop interactions of several condensation droplets. As condensation droplets grow, a size distribution occurs with a small amount of CN droplets larger than the mode size of the distribution. These larger droplets are what initiate coalescence growth, by having slightly higher terminal velocities they can collide with CN droplets of modal and smaller sizes within an air mass. Coalescence becomes efficient as soon as a few droplets become bigger than 40µm in diameter, Brenguier & Chaumat (2001). There are several parameters of influence for the coalescence process, drop shape, fall velocity, size distribution, electric charge, aerodynamic forces and turbulence. Typical fall velocities of drops can be seen in figure 2 from Beard (1976) and it can be seen that terminal velocity is a function of pressure due to an inverse relationship to air density. Figure 2. Drop terminal velocities as a function of drop diameter and ambient pressure. (Beard 1976) The collisions occur as the larger droplets fall faster and sweep out smaller CN droplets in their path. However not all droplets in the cylinder of air below the collector drop are swept out, due to droplets which can pass by the collector drop because they have little momentum and are forced to follow the stream lines around the collector drop, this is known as the collision efficiency, E c. The volume swept out can therefore be calculated by equation 2: +2π − = ERrC ( )( Vv ) Volume swept out Equation 2 Where: R and r are the radii of the droplets, large and small respectively V and v are the velocities of the droplets, large and small respectively There is also the coalescence efficiency Es, which is how likely 2 drops will merge and is affected by charge, size, oscillation and how well the viscous air between the 2 drops surfaces is removed. The collection efficiency E E, is defined as the product of the coalescence efficiency and the collisional efficiency as seen in equation 3. × = EC E S E E Equation 3 Figure 3 shows contours of collection efficiency as a function of the collector droplet radii (R) and collected droplet radii (r), as it shows the optimal collection efficiency is a R~100µm and r~10µm and decreases dramatically as the collected droplet radius (r) decreases, whereas if the collector droplet radius (R) increases the efficiency has less of a decrease. Coalescence doesn’t always end up in growth of a droplet, break up can occur spontaneously or due to the collision. The break up could result in a number of smaller drops, or the apparent identities that went into the initial collision. Figure 3. Contours of semi empirical collection efficiency E E as a function of large (R) and small (r) droplet radii. Beard & Ochs (1993) Modeling Condensation & Coalescence: Various models have been devised to simulate how droplet growth occurs from condensation and coalescence. Scott (1968) uses a stochastic analytical solution for coalescence growth without including condensation or cloud dynamics. This method of modeling has a number of flaws as it can only resolve specialized and non realistic efficiency formulas. Figure 4 shows the distribution of water content with respect to droplet size from the analytical model, initialized from a Gaussian distribution. The figure shows that initially there is a high concentration of water at relatively small sizes, then as time progresses the distribution shifts to larger sized droplets, and the distribution broadens as larger droplets coalesce with the smaller droplets. Figure 4. The distribution of water content with respect to droplet size, over a period of 1600 seconds. Scott (1968) A model was developed by Berry & Reinhardt (1974) to add a new concept to process of cloud droplet development. This process is known as large hydrometeor self collection and joins the 3 other methods of development, auto conversion, accretion and breakup. The model uses a density function proportional to a concentration of droplets in each size bin over a volume of cloud to represent the droplet distribution. Figure 5 shows how an initial bimodal distribution, of 2 distinct sizes develops over time and allows for the study of impact of the presence of larger droplets. The variance of the distribution, specifically the larger sized tail is what dictates how fast coalescence growth will occur. As the figure shows the spectrum on the left, the spectrum with a mode of 10µm decreases in amplitude as time progresses, and increases in radius slightly. However the spectrum on the right, the larger sized spectrum, grows in amplitude and width as time progresses. Together this indicates that the initial peak at large sizes coalesces with the 10µm droplets to create a larger droplet, which can in turn sweep out more smaller droplets to create a bimodal distribution weighted heavily at large sizes. The results from Berry & Reinhardt (1974) also show that even a small distribution of droplets at a large size have a significant effect in the growth of droplets, and that the wider the spectrum of large sizes in the distribution the faster the growth will occur. In the atmosphere a bimodal distribution is rarely seen, but a unimodal distribution with a few large sizes is enough to accelerate growth. Figure 5. Time evolution of the initial droplet spectra composed of 0.8gm -3 with a mode radius of 10µm, and 0.2gm -3 at a radius of 50µm. Berry & Reinhardt (1974) Yum & Hudson (2004) used an adiabatic condensational growth model to show that the broadness of cloud droplet spectra in adiabatic cloud parcels is significantly dependent on cloud supersaturation. With the model showing that the rate of narrowing is slower when cloud supersaturation is lower, this gives a broader spectrum for continental clouds or weaker updrafts. However typical observations oppose this finding with cleaner clouds generally having a broader spectrum. This disagreement between model and observations could be due to differences in the moisture content of an adiabatic model and that of the measured environment, also errors in measurements from the Fast-Forward Scattering Probe (FSSP) and CCN instruments and averaging of non-linear processes.
Recommended publications
  • Quantification of Cloud Condensation Nuclei Effects on the Microphysical Structure of Continental Thunderstorms Using Polarimetr
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations & Theses in Earth and Atmospheric Earth and Atmospheric Sciences, Department of Sciences 11-2018 Quantification of Cloud Condensation Nuclei Effects on the Microphysical Structure of Continental Thunderstorms Using Polarimetric Radar Observations Kun-Yuan Lee University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/geoscidiss Part of the Atmospheric Sciences Commons, Meteorology Commons, and the Other Oceanography and Atmospheric Sciences and Meteorology Commons Lee, Kun-Yuan, "Quantification of Cloud Condensation Nuclei Effects on the Microphysical Structure of Continental Thunderstorms Using Polarimetric Radar Observations" (2018). Dissertations & Theses in Earth and Atmospheric Sciences. 113. https://digitalcommons.unl.edu/geoscidiss/113 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations & Theses in Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. i QUANTIFICATION OF CLOUD CONDENSATION NUCLEI EFFECTS ON THE MICROPHYSICAL STRUCTURE OF CONTINENTAL THUNDERSTORMS USING POLARIMETRIC RADAR OBSERVATIONS by Kun-Yuan Lee A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Earth and Atmospheric Sciences Under the Supervision of Professor Matthew S. Van Den Broeke Lincoln, Nebraska November, 2018 i QUANTIFICATION OF CLOUD CONDENSATION NUCLEI EFFECTS ON THE MICROPHYSICAL STRUCTURE OF CONTINENTAL THUNDERSTORMS USING POLARIMETRIC RADAR OBSERVATIONS Kun-Yuan Lee, M.S. University of Nebraska, 2019 Advisor: Matthew S.
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • Precipitation Processes
    Loknath Adhikari PRECIPITATION PROCESSES This summary deals with the mechanisms of warm rain processes and tries to summarize the factors affecting the rapid growth of hydrometeors in clouds from (sub) micrometric cloud condensation nuclei to millimetric raindrop sized hydrometeors. Condensation, which accounts for the initial drop formation, and the collision coalescence process will be briefly described. The collision and coalescence process is largely dependent on the initial droplet spectrum in the clouds. Various models have been prepared based on detailed microphysics of clouds and dynamical aspects to quantify the transition from cloud droplets of typical diameter 10 µm to rain-sized drops of 1000 µm in some tens of minutes. These models underestimate the droplet spectra in real clouds. Some of these cloud models will be discussed and possible causes of the discrepancies between model output and real spectra will be analyzed based on works of various authors. Introduction Precipitation processes involves a complex mechanism in the atmosphere that produces raindrop-sized hydrometeors, in the milli-metric range, from diffusional condensation of water vapor in clouds and later collision and coalescence among the droplets formed through the diffusional processes (Brenguier and Chaumat, 2001; Beard and Ochs, 1993). Both of these processes are affected by entrainment of dry environmental air and turbulent mixing within the cloud. These factors show a tendency to broaden the drop size spectra. The droplet size larger than 40 µm is critical for the initiation of the warm rain process (Brenguier and Chaumat, 2001). Pre-existence of large condensation nuclei in the cloud has been taken as a plausible reason for the existence of such large hydrometeors that initiate rainfall.
    [Show full text]
  • Cloud Microphysics
    Cloud microphysics Claudia Emde Meteorological Institute, LMU, Munich, Germany WS 2011/2012 Growth Precipitation Cloud modification Overview of cloud physics lecture Atmospheric thermodynamics gas laws, hydrostatic equation 1st law of thermodynamics moisture parameters adiabatic / pseudoadiabatic processes stability criteria / cloud formation Microphysics of warm clouds nucleation of water vapor by condensation growth of cloud droplets in warm clouds (condensation, fall speed of droplets, collection, coalescence) formation of rain, stochastical coalescence Microphysics of cold clouds homogeneous, heterogeneous, and contact nucleation concentration of ice particles in clouds crystal growth (from vapor phase, riming, aggregation) formation of precipitation, cloud modification Observation of cloud microphysical properties Parameterization of clouds in climate and NWP models Cloud microphysics December 15, 2011 2 / 30 Growth Precipitation Cloud modification Growth from the vapor phase in mixed-phase clouds mixed-phase cloud is dominated by super-cooled droplets air is close to saturated w.r.t. liquid water air is supersaturated w.r.t. ice Example ◦ T=-10 C, RHl ≈ 100%, RHi ≈ 110% ◦ T=-20 C, RHl ≈ 100%, RHi ≈ 121% )much greater supersaturations than in warm clouds In mixed-phase clouds, ice particles grow from vapor phase much more rapidly than droplets. Cloud microphysics December 15, 2011 3 / 30 Growth Precipitation Cloud modification Mass growth rate of an ice crystal diffusional growth of ice crystal similar to growth of droplet by condensation more complicated, mainly because ice crystals are not spherical )points of equal water vapor do not lie on a sphere centered on crystal dM = 4πCD (ρ (1) − ρ ) dt v vc Cloud microphysics December 15, 2011 4 / 30 P732951-Ch06.qxd 9/12/05 7:44 PM Page 240 240 Cloud Microphysics determined by the size and shape of the conductor.
    [Show full text]
  • Twelve Lectures on Cloud Physics
    Twelve Lectures on Cloud Physics Bjorn Stevens Winter Semester 2010-2011 Contents 1 Lecture 1: Clouds–An Overview3 1.1 Organization...........................................3 1.2 What is a cloud?.........................................3 1.3 Why are we interested in clouds?................................4 1.4 Cloud classification schemes..................................5 2 Lecture 2: Thermodynamic Basics6 2.1 Thermodynamics: A brief review................................6 2.2 Variables............................................8 2.3 Intensive, Extensive, and specific variables...........................8 2.3.1 Thermodynamic Coordinates..............................8 2.3.2 Composite Systems...................................8 2.3.3 The many variables of atmospheric thermodynamics.................8 2.4 Processes............................................ 10 2.5 Saturation............................................ 10 3 Lecture 3: Droplet Activation 11 3.1 Supersaturation over curved surfaces.............................. 12 3.2 Solute effects.......................................... 14 3.3 The Kohler¨ equation and its properties............................. 15 4 Lecture 4: Further Properties of an Isolated Drop 16 4.1 Diffusional growth....................................... 16 4.1.1 Temperature corrections................................ 18 4.1.2 Drop size effects on droplet growth.......................... 20 4.2 Terminal fall speeds of drops and droplets........................... 20 5 Lecture 5: Populations of Particles 22 5.1
    [Show full text]
  • Cloud Microphysics
    Cloud microphysics Claudia Emde Meteorological Institute, LMU, Munich, Germany WS 2011/2012 Overview of cloud physics lecture Atmospheric thermodynamics gas laws, hydrostatic equation 1st law of thermodynamics moisture parameters adiabatic / pseudoadiabatic processes stability criteria / cloud formation Microphysics of warm clouds nucleation of water vapor by condensation growth of cloud droplets in warm clouds (condensation, fall speed of droplets, collection, coalescence) formation of rain, stochastical coalescence Microphysics of cold clouds homogeneous nucleation heterogeneous nucleation contact nucleation crystal growth (from water phase, riming, aggregation) formation of precipitation Observation of cloud microphysical properties Parameterization of clouds in climate and NWP models Cloud microphysics November 24, 2011 2 / 35 Growth rate and size distribution growing droplets consume water vapor faster than it is made available by cooling and supersaturation decreases haze droplets evaporate, activated droplets continue to grow by condensation growth rate of water droplet dr 1 = G S dt l r smaller droplets grow faster than larger droplets sizes of droplets in cloud become increasingly uniform, approach monodisperse distribution Figure from Wallace and Hobbs Cloud microphysics November 24, 2011 3 / 35 Size distribution evolution q 2 r = r0 + 2Gl St 0.8 1.4 t=0 t=0 0.7 t=10 t=10 1.2 t=30 t=30 0.6 t=50 t=50 1.0 0.5 0.8 0.4 0.6 0.3 n [normalized] n [normalized] 0.4 0.2 0.2 0.1 0.0 0.0 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 radius [arbitrary units] radius [arbitrary units] Cloud microphysics November 24, 2011 4 / 35 Growth by collection growth by condensation alone does not explain formation of larger drops other mechanism: growth by collection Cloud microphysics November 24, 2011 5 / 35 Terminal fall speed r 40µ .
    [Show full text]
  • Stochastic Coalescence in Lagrangian Cloud Microphysics
    Stochastic coalescence in Lagrangian cloud microphysics Piotr Dziekan and Hanna Pawlowska Institute of Geophysics, Faculty of Physics, University of Warsaw, Poland Correspondence to: P. Dziekan ([email protected]) Abstract. Stochasticity of the collisional growth of cloud droplets is studied using the super-droplet method (SDM) of Shima et al. (2009). Statistics are calculated from ensembles of simulations of collision-coalescence in a single well-mixed cell. The SDM is compared with direct numerical simulations and the master equation. It is argued that SDM simulations in which one computational droplet represents one real droplet are at the same level of precision as the master equation. Such sim- 5 ulations are used to study fluctuations in the autoconversion time, the sol-gel transition and the growth rate of lucky droplets, which is compared with a theoretical prediction. Size of the coalescence cell is found to strongly affect system behavior. In small cells, correlations in droplet sizes and droplet depletion slow down rain formation. In large cells, collisions between rain drops are more frequent and this also can slow down rain formation. The increase in the rate of collision between rain drops may be an artefact caused by assuming a too large well-mixed volume. The highest ratio of rain water to cloud water is found 10 in cells of intermediate sizes. Next, we use these precise simulations to determine validity of more approximate methods: the Smoluchowski equation and the SDM with mulitplicities greater than 1. In the latter, we determine how many computational droplets are necessary to correctly model the expected number and the standard deviation of autoconversion time.
    [Show full text]
  • Collision-Coalescence Dr
    ESCI 340 - Cloud Physics and Precipitation Processes Lesson 7 - Growth by Collision-Coalescence Dr. DeCaria References: A Short Course in Cloud Physics, 3rd ed., Rogers and Yau, Ch. 8 Terminal Velocity • The equilibrium fall speed of a droplet (terminal velocity is a balance between the frictional drag and the weight of the droplet. Friction: Frictional force is given by π F = r2u2ρC ; (1) r 2 D where u is the fall speed and CD is the drag coefficient. { The drag coefficient itself may be a function of the fall speed. Weight: The weight of the droplet is given by 4 F = πr3gρ : (2) g 3 l • Setting (1) equal to (2) and solving for the fall speed leads to the formula for the terminal velocity of the droplet r8 gρ r u = l : (3) 3 ρCD • Table 1 shows empirical formulas for terminal velocity for droplets in varying size ranges. Radius Terminal Velocity Parameter Values r < 40 µm u = ar2 a = 1:19 × 106 cm−1 s−1 40 µm ≤ r < 0:6 mm u = br b = 8 × 103 s−1 1=2 3 1=2 −1 −3 r ≥ 0:6 mm u = c(ρ0/ρ)r c = 2:2 × 10 cm s ; ρ0 = 1:20 kg m Table 1: Empirical formulas for terminal velocity for different droplet sizes. Growth Due to Droplet Collisions • Figure 1 illustrates the volume swept out by a large droplet of radius R falling through a population of smaller droplets of radius r. 1 Figure 1: Collection volume swept out by a large droplet of radius R in a population of smaler droplets of radius r.
    [Show full text]
  • A History of Radar Meteorology: People, Technology, and Theory
    A History of Radar Meteorology: People, Technology, and Theory Jeff Duda Overview • Will cover the period from just before World War II through about 1980 – Pre-WWII – WWII – 1940s post-WWII – 1950s – 1960s – 1970s 2 3 Pre-World War II • Concept of using radio waves established starting in the very early 1900s (Tesla) • U.S. Navy (among others) tried using CW radio waves as a “trip beam” to detect presence of ships • First measurements of ionosphere height made in 1924 and 1925 – E. V. Appleton and M. A. F. Barnett of Britain on 11 December 1924 – Merle A. Tuve (Johns Hopkins) and Gregory Breit (Carnegie Inst.) in July 1925 • First that used pulsed energy instead of CW 4 Pre-World War II • Robert Alexander Watson Watt • “Death Ray” against Germans • Assignment given to Arnold F. “Skip” Wilkins: – “Please calculate the amount of radio frequency power which should be radiated to raise the temperature of eight pints of water from 98 °F to 105 °F at a distance of 5 km and a height of 1 km.” – Not feasible with current power production Watson Watt 5 Pre-World War II • Watson Watt and Wilkins pondered whether radio waves could be used merely to detect aircraft • Memo drafted by Watson Watt on February 12, 1935: “Detection of Aircraft by Radio Methods” – Memo earned Watson Watt the title of “the father of radar” – Term “RADAR” officially coined as an acronym by U.S. Navy Lt. Cmdr. Samuel M. Tucker and F. R. Furth in November 1940 • The Daventry experiment – February 26, 1935 – First recorded detection of aircraft by radio waves – Began the full-speed-ahead
    [Show full text]
  • Simulated Electrification of a Small Thunderstorm with Two-Moment
    Simulated Electrification of a Small Thunderstorm with Two-Moment Bulk Microphysics Edward R. Mansell ∗ NOAA/OAR/National Severe Storms Laboratory (NSSL) Norman, Oklahoma, U.S.A. Conrad L. Ziegler NOAA/OAR/National Severe Storms Laboratory (NSSL) Norman, Oklahoma, U.S.A. Eric C. Bruning Cooperative Institute for Climate Studies, Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland ABSTRACT Electrification and lightning are simulated for a small continental multicell storm. The results are consistent with observations and thus provide additional understanding of the charging processes and evolution of this storm. The first six observed lightning flashes, all negative cloud-to-ground (CG) flashes, indicated at least an inverted dipole charge structure (negative charge above positive). Negative CG flashes should be energetically favorable only when the negative charge region contains appreciably more charge than the lower positive region. The simulations support the hypothesis that the negative charge is enhanced by noninductive charge separation higher in the storm that also causes development of an upper positive charge region, resulting in a “bottom-heavy” tripole charge structure. The two-moment microphysics scheme used for this study can predict mass mixing ratio and number concentration of cloud droplets, rain, ice crystals, snow, graupel, and hail. (Hail was not needed for the present study.) Essential details of the scheme are presented. Bulk particle density of graupel and hail can also be predicted, which increases diversity in fall speeds. The prediction of hydrometeor number concentration is critical for effective charge separation at higher temperatures (−5 <T < −15) in the mixed-phase region, where ice crystals are produced by rime fracturing (Hallett-Mossop process) and by splintering of freezing drops.
    [Show full text]
  • Mountain & Desert Thunderstorms
    Mountain & Desert Thunderstorms Their Formation & Field-Forecasting Guidelines 2nd Edition, Revised August 2016 Jim Bishop The author…who is this guy anyway? Basically I am a lifelong student of weather, educated in physical science. I have undergraduate degrees in physics and in geology, a masters degree in geology, and advanced courses in atmospheric science. I served as a NOAA ship’s officer using weather information operationally, and have taught meteorology as part of wildfire-behavior courses for firefighters. But most of all, I love to watch the sky, to try understand what is going on there, and I’ve been observing and learning about the weather since childhood. It is my hope that this description of thunderstorms will increase your own enjoyment and understanding of what you see in the sky, and enable you to better predict it. It emphasizes what you can see. You need not absorb all the quantitative detail to get something out of it, but it will deepen your understanding to consider it. Table of Contents Summer storms………..……………………………………………………...2 What this paper applies to……………………………………………….……3 An overview…………………………….……………..……………….……..3 Setting the stage………………………………………………………………3 Early indications, small cumulus clouds…..…………………………………5 Further cumulus development………………………………………………..7 Onward and upward to cumulonimbus……………………………………....8 Ice formation, an interesting story and important development…..…………9 Showers……………………………………………………………………...10 Electrification and lightning…………………………………………………13 Lightning Safety Guidelines…………………………………………………14 Gauging cloud heights, advanced field observations.………..……………...14 Summary……………………………………………………………………..15 Glossary……………….……………………………………………………..16 References……………………………………………………………………18 Summer storm examples High on the spine of the White Mountains in California you have hiked and worked all week in brilliant sunshine and clear skies, with a few pretty afternoon cumulus clouds to accent the summits of the White Mtns.
    [Show full text]
  • The Electrification of Thunderstorms and the Formation of Precipitation
    The Electrification of Thunderstorms and the Formation of Precipitation J. DoylLe Sartor National Center for Atmospheric Research*, Boulder, Colorado, USA The problem of how thunderstorms become so highly electrified and whether the electricity in thunderstorms has anything to do with the growth of precipitation, especially in some of its unusual forms like hail, has been with science for a long time. Many controversies have developed over the explanation of the electrification. It now seems probable that the complexity of the questions and the severe difficulties encountered in making scientific measurements within thunderstorms have held up progress in this field. The acquisition of very high-speed high-storage capacity compu- ters and high-resolution fast-response airborne instruments to cope with this com- plexity has made possible some recent and very significant progress in the under- standing of these phenomena. We may conclude now that the bouncing, shattering and breaking of colliding particles in the developing electric field of cumulonimbus clouds will organize the electrical conditions in the cloud to produce the observed characteristics of thunderstorms. An extremely rapid growth rate of the small droplets being formed continuously at cloud base is required in mature thunderstorms to insure that they are not carried through the cloud by the strong updraft without producing the observed heavy pre- cipitation and hail. It has been shown that the electrical conditions inside thunder- storms ,:an act to produce a greatly enhanced growth rate among these very small cloud droplets that otherwise would accrete only extremely slowly. Introduction of water vapor, being of opposite sign, would be attracted to each other to form larger drops and finally rain.
    [Show full text]