Cloud Microphysics

Total Page:16

File Type:pdf, Size:1020Kb

Cloud Microphysics Cloud microphysics Claudia Emde Meteorological Institute, LMU, Munich, Germany WS 2011/2012 Growth Precipitation Cloud modification Overview of cloud physics lecture Atmospheric thermodynamics gas laws, hydrostatic equation 1st law of thermodynamics moisture parameters adiabatic / pseudoadiabatic processes stability criteria / cloud formation Microphysics of warm clouds nucleation of water vapor by condensation growth of cloud droplets in warm clouds (condensation, fall speed of droplets, collection, coalescence) formation of rain, stochastical coalescence Microphysics of cold clouds homogeneous, heterogeneous, and contact nucleation concentration of ice particles in clouds crystal growth (from vapor phase, riming, aggregation) formation of precipitation, cloud modification Observation of cloud microphysical properties Parameterization of clouds in climate and NWP models Cloud microphysics December 15, 2011 2 / 30 Growth Precipitation Cloud modification Growth from the vapor phase in mixed-phase clouds mixed-phase cloud is dominated by super-cooled droplets air is close to saturated w.r.t. liquid water air is supersaturated w.r.t. ice Example ◦ T=-10 C, RHl ≈ 100%, RHi ≈ 110% ◦ T=-20 C, RHl ≈ 100%, RHi ≈ 121% )much greater supersaturations than in warm clouds In mixed-phase clouds, ice particles grow from vapor phase much more rapidly than droplets. Cloud microphysics December 15, 2011 3 / 30 Growth Precipitation Cloud modification Mass growth rate of an ice crystal diffusional growth of ice crystal similar to growth of droplet by condensation more complicated, mainly because ice crystals are not spherical )points of equal water vapor do not lie on a sphere centered on crystal dM = 4πCD (ρ (1) − ρ ) dt v vc Cloud microphysics December 15, 2011 4 / 30 P732951-Ch06.qxd 9/12/05 7:44 PM Page 240 240 Cloud Microphysics determined by the size and shape of the conductor. saturated vapor pressures over water and ice is a maxi- For a sphere, mum near this temperature. Consequently, ice crystals growing by vapor deposition in mixed clouds increase Ϫ Њ C ϭ ␲ in mass most rapidly at temperatures around 14 C. ␧ 4 r 0 The majority of ice particles in clouds are irregu- lar in shape (sometimes referred to as “junk” ice). ␧ ϫ where 0 is the permittivity of free space (8.85 This may be due, in part, to ice enhancement. 10Ϫ12 C 2 NϪ1 mϪ2). Combining the last two expres- However, laboratory studies show that under appro- sions, the mass growth rate of a spherical ice crystal priate conditions ice crystals that grow from the is given by vapor phase can assume a variety of regular shapes (or habits) that are either plate-like or column-like. The simplest plate-like crystals are plane hexagonal dM ϭ DC ␳ ϱ Ϫ ␳ ␧ [ v( ) vc] (6.36) dt 0 plates (Fig. 6.40a), and the simplest column-like Equation (6.36) is quite general and can be applied (a) to an arbitrarily shaped crystal of capacity C. Provided that the vapor pressure corresponding to ␳ ϱ v( ) is not too much greater than the saturation vapor pressure esi over a plane surface of ice, and the ice crystal is not too small, (6.36) can be written as (b) dM ϭ C ␧ GiSi (6.37) dt 0 where Si is the supersaturation (as a fraction) with ϱ Ϫ ͞ respect to ice, [e( ) esi] esi, and ϭ ␳ ϱ (c) Gi D v( ) (6.38) The variation of GiSi with temperature for the case of an ice crystal growing in air saturated with water is shown in Fig. 6.39. The product G S attains a Growth Precipitationi i Cloud modification maximum value at about Ϫ14 ЊC, which is due mainlyMass to the growthfact that the rate difference of an between ice crystal the (d) 4 ) 1 – 3 m 1 – Approximate form: (e) kg s 9 2 – dM = 4πCG S dt i i (10 i S i 1 G Maximum growth rate at about -14◦C 0 0 –10 –20 –30 –40 Fig. 6.40 Ice crystals grown from the vapor phase: (a) hexa- Temperature (°C) gonal plates, (b) column, (c) dendrite, and (d) sector plate. Figure from Wallace and Hobbs Fig. 6.39 Variation of GiSi [see Eq. (6.37)] with temperature [Photographs courtesy of Cloud and Aerosol Research Group, for an ice crystal growing in a water-saturated environment at University of Washington.] (e) Bullet rosette. [Photograph a total pressure of 1000 hPa. Cloud microphysics courtesy of DecemberA. Heymsfield.] 15, 2011 5 / 30 P732951-Ch03.qxd 9/12/05 7:41 PM Page 81 3.5 Water Vapor in Air 81 3.3 Can Air Be Saturated with Water Vapor?26 It is common to use phrases such as “the air is sat- cules between its liquid and vapor phases is urated with water vapor,”“the air can hold no (essentially) independent of the presence of air. more water vapor,” and “warm air can hold more Strictly speaking, the pressure exerted by water water vapor than cold air.” These phrases, which vapor that is in equilibrium with water at a given suggest that air absorbs water vapor, rather like a temperature is referred more appropriately to as sponge, are misleading. We have seen that the equilibrium vapor pressure rather than saturation total pressure exerted by a mixture of gases is vapor pressure at that temperature. However, the equal to the sum of the pressures that each gas latter term, and the terms “unsaturated air” and would exert if it alone occupied the total volume “saturated air,” provide a convenient shorthand of the mixture of gases (Dalton’s law of partial and are so deeply rooted that they will appear in pressures). Hence, the exchange of water mole- this book. to a plane surface of pure water at temperature T, and depend only on temperature. The variations with Ϫ the pressure es that is then exerted by the water vapor temperature of es and es esi are shown in Fig. 3.9, Ϫ is called the saturation vapor pressure over a plane where it can be seen that the magnitude of es esi surface of pure water at temperature T. reaches a peak value at about Ϫ12 °C. It follows Similarly, if the water in Fig. 3.8 were replaced by a Growththat if an ice particle is in water-saturatedPrecipitation air it will Cloud modification plane surface of pure ice at temperature T and the grow due to the deposition of water vapor upon it. rate of condensation of water vapor were equal to MassIn Section growth6.5.3 it is shown rate thatof this anphenomenon ice crystal the rate of evaporation of the ice, the pressure esi exerted by the water vapor would be the saturation vapor pressure over a plane surface of pure ice at T. Because, at any given temperature, the rate of evapo- 60 Ͼ ration from ice is less than from water, es(T) esi(T). The rate at which water molecules evaporate 50 from either water or ice increases with increasing 27 temperature. Consequently, both es and esi increase 40 Maximum growth rate at about with increasing temperature, and their magnitudes ◦ over pure water (hPa) -14 C s 0.28 e 30 0.24 ) es–esi difference between saturated · · · · · · 0.20 pressures over water and ice is · T, e · ·T, e s· · · · 20 0.16 maximal at this temperature · · · · · · es · · · (hPa) · · · 0.12 si · · e )ice crystals grow most rapidly · · · – · · · · 10 0.08 s · e Water Water 0.04 Saturation vapor pressure 0 0 (a) Unsaturated (b) Saturated –50 –40 –30 –20 –10 0 10 20 30 40 Temperature (°C) Fig. 3.8 A box (a) unsaturated and (b) saturated with respect to a plane surface of pure water at temperature T. Dots repre- Fig.Figure 3.9 fromVariations Wallace and Hobbswith temperature of the saturation (i.e., sent water molecules. Lengths of the arrows represent the equilibrium) vapor pressure es over a plane surface of pure relative rates of evaporation and condensation. The saturated Cloudwater microphysics (red line, scale at left) and the difference between es December 15, 2011 6 / 30 (i.e., equilibrium) vapor pressure over a plane surface of pure and the saturation vapor pressure over a plane surface of ice water at temperature T is es as indicated in (b). esi (blue line, scale at right). 26 For further discussion of this and some other common misconceptions related to meteorology see C. F. Bohren’s Clouds in a Glass of Beer, Wiley and Sons, New York, 1987. 27 As a rough rule of thumb, it is useful to bear in mind that the saturation vapor pressure roughly doubles for a 10 °C increase in temperature. Growth Precipitation Cloud modification Ice crystal shapes ice crystals in natural clouds have mostly irregular shapes partly due to ice enhancement under appropriate conditions, ice crystals that grow from vapor phase can have a variety of regular shapes/habits (e.g. plate-like, column-like) Figure from Libbrecht 2005 Cloud microphysics December 15, 2011 7 / 30 Growth Precipitation Cloud modification Morphology diagram Figure from Libbrecht 2005 Cloud microphysics December 15, 2011 8 / 30 P732951-Ch06.qxd 9/12/05 7:44 PM Page 241 6.5 Microphysics of Cold Clouds 241 Table 6.1 Variations in the basic habits of ice crystals with temperaturea Supersaturationb, c Between ice and Near to or greater than Temperature (ЊC) Basic habit water saturation water saturation 0 to Ϫ2.5 Plate-like Hexagonal plates Dendrites Ϫ1 to Ϫ2 ЊC Ϫ3 Transition Equiaxed Equiaxed Ϫ3.5 to Ϫ7.5 Column-like Columns Needles Ϫ4 to Ϫ6 ЊC Hollow columns Ϫ6 to Ϫ8 ЊC Ϫ8.5 Transition Equiaxed Equiaxed Ϫ9 to Ϫ40 Plate-like Plates and multiple habitsd Scrolls and sector plates Ϫ9 to Ϫ12 ЊC Dendrites Ϫ12 to Ϫ16 ЊC Sector plates Ϫ16 to Ϫ20 ЊC Ϫ40 to Ϫ60 Column-like Solid column rosettes below Ϫ41 ЊC Hollow column rosettes below Ϫ41 ЊC a From information provided by J.
Recommended publications
  • Winter Precipitation Liquid–Ice Phase Transitions Revealed with Polarimetric Radar and 2DVD Observations in Central Oklahoma
    MAY 2017 B U K O V CICETAL. 1345 Winter Precipitation Liquid–Ice Phase Transitions Revealed with Polarimetric Radar and 2DVD Observations in Central Oklahoma PETAR BUKOVCIC ´ NOAA/National Severe Storms Laboratory, and Cooperative Institute for Mesoscale Meteorological Studies, and School of Meteorology, and Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma DUSAN ZRNIC´ NOAA/National Severe Storms Laboratory, Norman, Oklahoma GUIFU ZHANG School of Meteorology, and Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma (Manuscript received 30 June 2016, in final form 8 November 2016) ABSTRACT Observations and analysis of an ice–liquid phase precipitation event, collected with an S-band polarimetric KOUN radar and a two-dimensional video disdrometer (2DVD) in central Oklahoma on 20 January 2007, are presented. Using the disdrometer measurements, precipitation is classified either as ice pellets or rain/freezing rain. The disdrometer observations showed fast-falling and slow-falling particles of similar size. The vast majority (.99%) were fast falling with observed velocities close to those of raindrops with similar sizes. In contrast to the smaller particles (,1 mm in diameter), bigger ice pellets (.1.5 mm) were relatively easy to distinguish because their shapes differ from the raindrops. The ice pellets were challenging to detect by looking at conventional polarimetric radar data because of the localized and patchy nature of the ice phase and their occurrence close to the ground. Previously published findings referred to cases in which ice pellet areas were centered on the radar location and showed a ringlike structure of enhanced differential reflectivity ZDR and reduced copolar correlation coefficient rhv and horizontal reflectivity ZH in PPI images.
    [Show full text]
  • Downloaded 10/01/21 08:52 PM UTC 186 WEATHER and FORECASTING VOLUME 16
    FEBRUARY 2001 NOTES AND CORRESPONDENCE 185 Further Investigation of a Physically Based, Nondimensional Parameter for Discriminating between Locations of Freezing Rain and Ice Pellets ROBERT M. RAUBER,LARRY S. OLTHOFF, AND MOHAN K. RAMAMURTHY Department of Atmospheric Sciences, University of Illinois at Urbana±Champaign, Urbana, Illinois KENNETH E. KUNKEL Midwestern Climate Center, Illinois State Water Survey, Champaign, Illinois 9 December 1999 and 16 August 2000 ABSTRACT The general applicability of an isonomogram developed by Czys and coauthors to diagnose the position of the geographic boundary between freezing precipitation (freezing rain or freezing drizzle) and ice pellets (sleet or snow grains) was tested using a 25-yr sounding database consisting of 1051 soundings, 581 where stations were reporting freezing drizzle, 391 reporting freezing rain, and 79 reporting ice pellets. Of the 1051 soundings, only 306 clearly had an environmental temperature and moisture pro®le corresponding to that assumed for the isonomogram. This pro®le consisted of a three-layer atmosphere with 1) a cold cloud layer aloft that is a source of ice particles, 2) a midlevel layer where the temperature exceeds 08C and ice particles melt, and 3) a surface layer where T , 08C. The remaining soundings did not conform to the pro®le either because 1) the freezing precipitation was associated with the warm rain process or 2) the ice pellets formed due to riming rather than melting and refreezing. For soundings conforming to the pro®le, the isonomogram showed little diagnostic skill. Freezing rain or freezing drizzle occurred about 50% of the time that ice pellets were expected.
    [Show full text]
  • News and Notes
    346 BULLETIN AMERICAN METEOROLOGICAL SOCIETY NEWS AND NOTES Air Force Scientists Develop Technique The feasibility of dissipating supercooled clouds by for Cutting Holes in "Cold" Clouds seeding with dry-ice was recognized many years ago. Airborne equipment, previously developed to do this, A new technique for creating holes in supercooled cloud crushed large blocks of dry-ice into particles suitable for layers has been developed by Air Force Cambridge Re- seeding purposes. search Laboratories scientists. During recent flight tests This equipment had two particular limitations. First, using this technique, holes more than 3 miles wide were these machines produced about half powdered dry-ice created in supercooled clouds. which evaporated immediately upon dispersal from the Major James F. Church, project scientist in AFCRL's aircraft and was wasted. Second, the logistical problem Meteorological Research Laboratory is directing research of supplying enough dry-ice where needed and the high on the dissipation of supercooled stratiform clouds. The evaporational losses suffered during storage until used, program is under the technical management of the Air severely limited the utility of this technique. Force System Command's Electronic Systems Division. The Cloudbuster makes ice pellets by passing liquid The principal objective of this research is to provide C02 through an expansion nozzle and then compacting Air Force cargo and transport pilots with an economical the solid dry-ice powder, which is then formed, into proper capability to seed supercooled clouds with dry-ice pellets, size. The Cloudbuster has been designed with the capa- made on the aircraft and dispersed at will, to create bility of making different-sized pellets at the touch of a sizable holes in such cloud decks.
    [Show full text]
  • Snowflake Shapes Activity
    Primary Sources in the Classroom Smithsonian Institution Archives Wilson A. “Snowflake” Bentley Institutional History Division Snowflake Shape Activity siarchives.si.edu WILSON A. BENTLEY: SNOWFLAKE SHAPE ACTIVITY Objectives: Students will learn about how snowflakes form and the types of shapes that snowflakes are composed of. They will practice observational and comparison skills. They will identify snowflake types based on their shape. Time: 45 – 65 minutes (Adjust Time As Needed) ‐ introduction, (suggested: 15­ 20 minutes) ‐ study snowflake shapes outside, (suggested: 20 minutes) – if snow is falling ‐ study snowflake shapes inside, (suggested: 10 minutes) ‐ examine snowflakes and classify them by their shapes, (suggested: 10­15 minutes) Skills: Observation, Knowledge of basic shapes, Compare and contrast Content Area: Science, Art Materials: To study real snowflakes out of doors: ‐ cardboard, 8 x 10, one for every four students ‐ sheet of black felt or velvet, 8 x 10, one for every four students ‐glue ‐ magnifying glasses Classroom project: (contained below) ‐ snowflake type chart ‐ unidentified snowflake images answer sheet (2 sheets) Grade Level: Grades 3‐6 Historical Overview: For over forty years, Wilson “Snowflake” Bentley (1865‐ 1931) photographed thousands of individual snowflakes and perfected the innovative photomicrographic technique. His photographs and publications provide valuable scientific records of snow crystals and their many types. Five hundred of his snowflake photos now reside in the Smithsonian Institution Archives, donated by Bentley in 1903 to protect against “all possibility of loss and destruction, through fire or accident.” © Jericho Historical Society 1 Primary Sources in the Classroom Smithsonian Institution Archives Wilson A. “Snowflake” Bentley Institutional History Division Snowflake Shape Activity siarchives.si.edu Wilson A.
    [Show full text]
  • Quantification of Cloud Condensation Nuclei Effects on the Microphysical Structure of Continental Thunderstorms Using Polarimetr
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations & Theses in Earth and Atmospheric Earth and Atmospheric Sciences, Department of Sciences 11-2018 Quantification of Cloud Condensation Nuclei Effects on the Microphysical Structure of Continental Thunderstorms Using Polarimetric Radar Observations Kun-Yuan Lee University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/geoscidiss Part of the Atmospheric Sciences Commons, Meteorology Commons, and the Other Oceanography and Atmospheric Sciences and Meteorology Commons Lee, Kun-Yuan, "Quantification of Cloud Condensation Nuclei Effects on the Microphysical Structure of Continental Thunderstorms Using Polarimetric Radar Observations" (2018). Dissertations & Theses in Earth and Atmospheric Sciences. 113. https://digitalcommons.unl.edu/geoscidiss/113 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations & Theses in Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. i QUANTIFICATION OF CLOUD CONDENSATION NUCLEI EFFECTS ON THE MICROPHYSICAL STRUCTURE OF CONTINENTAL THUNDERSTORMS USING POLARIMETRIC RADAR OBSERVATIONS by Kun-Yuan Lee A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Earth and Atmospheric Sciences Under the Supervision of Professor Matthew S. Van Den Broeke Lincoln, Nebraska November, 2018 i QUANTIFICATION OF CLOUD CONDENSATION NUCLEI EFFECTS ON THE MICROPHYSICAL STRUCTURE OF CONTINENTAL THUNDERSTORMS USING POLARIMETRIC RADAR OBSERVATIONS Kun-Yuan Lee, M.S. University of Nebraska, 2019 Advisor: Matthew S.
    [Show full text]
  • METAR/SPECI Reporting Changes for Snow Pellets (GS) and Hail (GR)
    U.S. DEPARTMENT OF TRANSPORTATION N JO 7900.11 NOTICE FEDERAL AVIATION ADMINISTRATION Effective Date: Air Traffic Organization Policy September 1, 2018 Cancellation Date: September 1, 2019 SUBJ: METAR/SPECI Reporting Changes for Snow Pellets (GS) and Hail (GR) 1. Purpose of this Notice. This Notice coincides with a revision to the Federal Meteorological Handbook (FMH-1) that was effective on November 30, 2017. The Office of the Federal Coordinator for Meteorological Services and Supporting Research (OFCM) approved the changes to the reporting requirements of small hail and snow pellets in weather observations (METAR/SPECI) to assist commercial operators in deicing operations. 2. Audience. This order applies to all FAA and FAA-contract weather observers, Limited Aviation Weather Reporting Stations (LAWRS) personnel, and Non-Federal Observation (NF- OBS) Program personnel. 3. Where can I Find This Notice? This order is available on the FAA Web site at http://faa.gov/air_traffic/publications and http://employees.faa.gov/tools_resources/orders_notices/. 4. Cancellation. This notice will be cancelled with the publication of the next available change to FAA Order 7900.5D. 5. Procedures/Responsibilities/Action. This Notice amends the following paragraphs and tables in FAA Order 7900.5. Table 3-2: Remarks Section of Observation Remarks Section of Observation Element Paragraph Brief Description METAR SPECI Volcanic eruptions must be reported whenever first noted. Pre-eruption activity must not be reported. (Use Volcanic Eruptions 14.20 X X PIREPs to report pre-eruption activity.) Encode volcanic eruptions as described in Chapter 14. Distribution: Electronic 1 Initiated By: AJT-2 09/01/2018 N JO 7900.11 Remarks Section of Observation Element Paragraph Brief Description METAR SPECI Whenever tornadoes, funnel clouds, or waterspouts begin, are in progress, end, or disappear from sight, the event should be described directly after the "RMK" element.
    [Show full text]
  • The Mesoscale Dynamics of Freezing Rain Storms Over Eastern Canada
    VOL. 56, NO.10 JOURNAL OF THE ATMOSPHERIC SCIENCES 15 MAY 1999 The Mesoscale Dynamics of Freezing Rain Storms over Eastern Canada K. K. SZETO Climate Processes and Earth Observation Division, Atmospheric Environment Service, Downsview, Ontario, Canada A. TREMBLAY Cloud Physics Research Division, Atmospheric Environment Service, Dorval, Quebec, Canada H. GUAN AND D. R. HUDAK Cloud Physics Research Division, Atmospheric Environment Service, Downsview, Ontario, Canada R. E. STEWART AND Z. CAO Climate Processes and Earth Observation Division, Atmospheric Environment Service, Downsview, Ontario, Canada (Manuscript received 2 June 1997, in ®nal form 9 June 1998) ABSTRACT A severe ice storm affected the east coast of Canada during the Canadian Atlantic Storms Project II. A hierarchy of cloud-resolving model simulations of this storm was performed with the objective of enhancing understanding of the cloud and mesoscale processes that affected the development of freezing rain events. The observed features of the system were reasonably well replicated in the high-resolution simulation. Diagnosis of the model results suggests that the change of surface characteristics from ocean to land when the surface warm front approaches Newfoundland disturbs the (quasi-) thermal wind balance near the frontal region. The cross-frontal circulation intensi®es in response to the thermal wind imbalance, which in turn leads to the development of an extensive above-freezing inversion layer in the model storm. Depending on the depth of the subfreezing layer below the inversion, the melted snow may refreeze within the subfreezing layer to form ice pellets or they may refreeze at the surface to form freezing rain. Such evolution of surface precipitation types in the model storm was reasonably well simulated in the model.
    [Show full text]
  • A Field Guide to Falling Snow
    Basic Snowflake Forms (from SnowCrystals.com) Although no two snowflakes are exactly alike, snow crystal forms usually fall into several broad categories. You can find a more descriptive guide in the book – The Snowflake: Winter’s Secret Beauty. Stellar Dendrites Dendrite means "tree-like", which describes the multi-branched appearance of these snow crystals. Stellar dendrites have six symmetrical main branches and a large number of randomly placed sidebranches. They can also be large, perhaps 5mm in diameter. Although they have complex shapes, each stellar dendrite is a single crystal of ice. The molecular ordering of the water molecules is the same from one side of the crystal to the other. Sectored Plates What identifies these crystals are the numerous ice ridges that seem to divide the plate-like arms into sectors -- hence the name. Like the stellar dendrites, sectored plates are flat, thin slivers of ice that grow into in a stunning diversity of complex shapes. Hollow Columns Plate-like snow crystals get the most attention, but columnar crystals are the main constituents of many snowfalls. The columns are hexagonal, like a wooden pencil, and they often form with conical hollow features in their ends. Needles Columnar crystals can grow so long and thin that they look like ice needles. Sometimes the needles contain thin hollow regions, and sometimes the ends split into additional needle branches. Spatial Dendrites Not all snowflakes form as thin flat plates or slender columns. Spatial dendrites are made from many individual ice crystals jumbled together. Each branch is like one arm of a stellar crystal, but the different branches are oriented randomly.
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
    ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere.
    [Show full text]
  • Precipitation Processes
    Loknath Adhikari PRECIPITATION PROCESSES This summary deals with the mechanisms of warm rain processes and tries to summarize the factors affecting the rapid growth of hydrometeors in clouds from (sub) micrometric cloud condensation nuclei to millimetric raindrop sized hydrometeors. Condensation, which accounts for the initial drop formation, and the collision coalescence process will be briefly described. The collision and coalescence process is largely dependent on the initial droplet spectrum in the clouds. Various models have been prepared based on detailed microphysics of clouds and dynamical aspects to quantify the transition from cloud droplets of typical diameter 10 µm to rain-sized drops of 1000 µm in some tens of minutes. These models underestimate the droplet spectra in real clouds. Some of these cloud models will be discussed and possible causes of the discrepancies between model output and real spectra will be analyzed based on works of various authors. Introduction Precipitation processes involves a complex mechanism in the atmosphere that produces raindrop-sized hydrometeors, in the milli-metric range, from diffusional condensation of water vapor in clouds and later collision and coalescence among the droplets formed through the diffusional processes (Brenguier and Chaumat, 2001; Beard and Ochs, 1993). Both of these processes are affected by entrainment of dry environmental air and turbulent mixing within the cloud. These factors show a tendency to broaden the drop size spectra. The droplet size larger than 40 µm is critical for the initiation of the warm rain process (Brenguier and Chaumat, 2001). Pre-existence of large condensation nuclei in the cloud has been taken as a plausible reason for the existence of such large hydrometeors that initiate rainfall.
    [Show full text]
  • International Olympic Committee, Lausanne, Switzerland
    A PROJECT OF THE INTERNATIONAL OLYMPIC COMMITTEE, LAUSANNE, SWITZERLAND. WWW.OLYMPIC.ORG TEACHING VALUESVALUES AN OLYYMPICMPIC EDUCATIONEDUCATION TOOLKITTOOLKIT WWW.OLYMPIC.ORG D R O W E R O F D N A S T N E T N O C TEACHING VALUES AN OLYMPIC EDUCATION TOOLKIT A PROJECT OF THE INTERNATIONAL OLYMPIC COMMITTEE, LAUSANNE, SWITZERLAND ACKNOWLEDGEMENTS The International Olympic Committee wishes to thank the following individuals for their contributions to the preparation of this toolkit: Author/Editor: Deanna L. BINDER (PhD), University of Alberta, Canada Helen BROWNLEE, IOC Commission for Culture & Olympic Education, Australia Anne CHEVALLEY, International Olympic Committee, Switzerland Charmaine CROOKS, Olympian, Canada Clement O. FASAN, University of Lagos, Nigeria Yangsheng GUO (PhD), Nagoya University of Commerce and Business, Japan Sheila HALL, Emily Carr Institute of Art, Design & Media, Canada Edward KENSINGTON, International Olympic Committee, Switzerland Ioanna MASTORA, Foundation of Olympic and Sport Education, Greece Miquel de MORAGAS, Centre d’Estudis Olympics (CEO) Universitat Autònoma de Barcelona (UAB), Spain Roland NAUL, Willibald Gebhardt Institute & University of Duisburg-Essen, Germany Khanh NGUYEN, IOC Photo Archives, Switzerland Jan PATERSON, British Olympic Foundation, United Kingdom Tommy SITHOLE, International Olympic Committee, Switzerland Margaret TALBOT, United Kingdom Association of Physical Education, United Kingdom IOC Commission for Culture & Olympic Education For Permission to use previously published or copyrighted
    [Show full text]