Etnogeometrías: Patrones Geométricos Y Cultura

Total Page:16

File Type:pdf, Size:1020Kb

Etnogeometrías: Patrones Geométricos Y Cultura Etnogeometrías: Patrones geométricos y cultura Carlos Reynoso UNIVERSIDAD DE BUENOS AIRES1 http://carlosreynoso.com.ar [email protected] Versión 10.16 – Octubre de 2019 1 - Las etnogeometrías como compromisos antropológicos Sin duda no está lejos la época en que las coleccio- nes precedentes de esta parte del mundo abandona- rán los museos etnográficos para ocupar un lugar, en los museos de bellas artes, entre Egipto o Persia antiguos y la Edad Media europea. Pues este arte no desmerece junto a los más grandes y, durante el si- glo y medio que conocemos de su historia, han ates- tiguado una diversidad superior a la de aquéllos y ha desplegado dones aparentemente inagotables de re- novación. Claude Lévi-Strauss, La vía de las máscaras Lo primero que corresponde hacer en un trabajo que aspira a ser visceralmente antro- pológico es destacar no sólo la necesidad de imprimir un carácter transdisciplinario a cualquier emprendimiento dedicado al estudio de la geometría en la cultura sino admitir de plano que en el pasado esa iniciativa (de relevancia intelectual mayor a la que se sospecha) estuvo poquísimas veces en manos de la antropología, por más que el prefijo ‘etno-’ sugiera otra cosa. Debido al fluctuante estado de la teoría antropológica en va- rios momentos críticos de su historia y dado que las corrientes teóricas que se encuen- tran posicionadas más alto en el podio de las modas del día son de las que tienden a arrojar más calor que luz, esa ausencia no implica necesariamente una mala noticia. Pe- ro está claro que el estudio etnogeométrico en el seno de la academia podría y debería estar bastante mejor configurado disciplinariamente de lo que estuvo hasta ahora. Amén de admitir la falta de compromiso por parte de nuestra disciplina y antes de co- menzar el examen de las teorías y las prácticas geométricas existentes cabe asentar que el propósito primordial de este trabajo es dar los primeros pasos para que nuestro aná- lisis de las geometrías de otros contextos culturales abandone de aquí en más el hábito de las imputaciones de minorización, de no-proposicionalidad, de condescendencia, de 1 Los aspectos técnicos de este trabajo se desarrollaron con recursos del proyecto “Redes dinámicas y mo- delización en antropología – Nuevas vislumbres teóricas y su impacto en las prácticas”, UBACYT 20020130100662 (Programación Científica 2014-2017/2018). 1 exotismo, de “pensamiento lento”, de esteticismo y de diferenciación compulsiva, clau- suras en las cuales, con diversas excusas y eufemismos, el posestructuralismo deleu- ziano y el giro ontológico (las tendencias dominantes de la antropología contemporá- nea) pretenden recluirlas todavía hoy (Reynoso 2019b: 5, 71, 228). En el momento en que se iniciaba el declive de la antropología interpretativa (y dos décadas antes de declarar insultantemente que en la cultura no existen cosas tales como “sistemas”) Clifford Geertz ni siquiera se refirió con detenimiento a la geometría en su artículo so- bre “El arte como sistema cultural” (1994 [1983]), que es, en mi opinión, y solamente a la zaga de la entrevista titulada –precisamente– “I don’t do systems” (2002), el más desempoderador, snob y alejado del nivel de excelencia que jamás publicó. Figura 1.1 – František Kupka – Izq.: Organization of graphic motives (ca. 1912) – Der.: Localisation des mobiles graphiques (1917) – Pinturas del expresionismo geométrico anticipatorias de los fractales bifurcacionales de Lyapunov [ver]. Contrástese con las imágenes tridimensionales de Tom Gidden (2017). El suyo no es un caso aislado. A lo largo de una trayectoria más que centenaria y con apenas un puñado de excepciones (Haddon 1902; Boas 1927; Lévi-Strauss 1968; por momentos Gell 1998: 200 y cap. 5) la propia sub-disciplina de la antropología del arte ha mantenido una concepción técnicamente inarticulada y esquemática sobre la geome- tría en la cultura, indigna de la riqueza, variedad y complejidad que se encuentra en los materiales sobre los que debería haber trabajado. Por un lado hay quienes están exultan- tes ante la existencia de una antropología del arte (y de una etno-estética) de las que alegan que prosperan en márgenes poco frecuentadas pero que gozan de buena salud; por el otro hay multitud de disconformes enfrascados con el mismo entusiasmo en sus respectivas deconstrucciones, demasiado fáciles y apiñadas en modas volátiles para me- recer reverencia; pero en éstas y en otras varias disciplinas centradas en tópicos del arte en la cultura no han sido muchos los que han sabido desentrañar geometrías (emic o etic) de manera técnica, científica y artísticamente solvente sin caer en los estereotipos 2 contrapuestos de la subvalorización de lo distinto o de la exaltación de sabidurías ocul- tas. Así y todo en la antropología del arte ha habido infinidad de observaciones de varia- do calibre a propósito de las geometrías emic o etic cuya lectura no tengo más remedio que dar aquí por ya consumada (cf. Balfour 1893: 66, 75, 117, 120, 124; Wingert 1962: 21, 38, 48, 69-70; Jopling 1971: 93; Otten 1971; Shiner 1971; Forge 1973; Flores Fratto 1978; 1985; Anderson 1989 [1979]; Mead 1979; Silver (1979); Guillon 1984; Hatcher 1985; Layton 1991; Gell 1988; Coote y Shelton 1992: 26, 141, 145; Dissanayake 1995; Van Damme 1996; 2003; Layton 2003; Bowden 2004; Coleman 2005; Morphy y Perkins 2006; Morphy 2009; Leuthold 2011: 6, 16, 128, 129). Como se verá en este estudio, no hay nada de rudimentario ni en la geometría en com- paración con la aritmética ni en las geometrías de otras culturas en relación con las nuestras; aquéllas no son supervivencias exangües de saberes tempranos ni preanuncios de conocimientos que recién llegarían a su plenitud en otros lugares, en otros tiempos y en manos de Euclides, de los no-euclideanos o de los geómetras de carrera. Son, por el contrario, manifestaciones culminantes de competencias comunicativas y de destrezas que (a caballo de la globalización) han llegado a constituirse en patrimonios inalienable- mente universales en paridad o por encima de cualesquiera otros, pero que en ese mis- mo plano global todavía no han sido objeto ni de una descripción a la altura de los tiempos, ni de una teorización explicativa satisfactoria, ni de una comparación soste- nible, ni de una gestión capaz de revivir, perpetuar y hacer conocer las prácticas. Figura 1.2 – Izq.: Leonardo da Vinci – Remolinos de agua – Der.: Fractal en el plano complejo: Conjunto de Julia (detalle). No es en absoluto verdad que los diseños mayormente geométricos de las otras culturas ocupen los jalones iniciales en el camino de una historia universal del arte cuyas instan- cias culminantes (sus obras maestras) son las que nosotros hemos hecho o las que esta- mos destinados a hacer en un campo en el que lo geométrico no puede sino estar al ser- vicio de (o subordinado a) la figuración. Si ese camino lineal y acumulativo existe (si hay o no progreso en la geometría – una discusión en la que no quisiera complicarme y que depende de cómo se articule el grano fino de la idea) creo que cabe pensar que en lo que a la práctica geométrica respecta los occidentales llevamos un sensible atraso en su recorrido y que en materia reflexiva estamos bochornosamente fuera de forma. Nuestro 3 punto de vista impensadamente etnocéntrico dista de haber sido –como antes se decía– un vantage point necesario o un regard éloignée suficiente para comprender el trabajo de los otros o el de nosotros mismos en ese rubro. No estamos (y dudosamente hayamos estado alguna vez) a la vanguardia de los otros en materia de geometría. Esta debería ser entonces la primera y más imperiosa constatación que se nos impone. Figura 1.3 – Izq.: Máscara Fang – Museo del Louvre MH 65-104.1.jpg – Dominio público. Centro: Pablo Picasso – Cabeza de mujer durmiendo (1907) – Metropolitan Museum, N.Y. – Idem. Der.: Silla “africana” Bauhaus por Marcel Breuer y Gunta Stölzl – Según Ahmed (2014: fig.. 22). En la perspectiva de unos cuantos círculos de especialistas, la teoría geométrica occi- dental no ha alcanzado tampoco el mismo prestigio que la alta matemática, por más que haya sido en aquélla donde se manifestó por primera vez la axiomatización, el método teoremático y el desarrollo de la lógica formal (lo que no es poco) y por más que haya sido en las aritméticas (y no en las geometrías) donde el proyecto de axiomatización de las matemáticas estuvo a punto de desbarrancarse. Baruch Spinoza sabía que la geome- tría proporcionaba un modelo del razonar cercano a lo perfecto, pero (aparte de las be- llas y pocas incursiones geométicas de André Weil) los talibanes del grupo Bourbaki la excluyen junto con cualquier atisbo de grafismo del panteón de la matemática más exquisita, mientras que los cantabrigianos alineados en torno de Principia Mathematica, aferrados a números y cálculos, simplemense te han dado el luejo de ignorarla (Viljanen 2011; Osserman 1981; Whitehead y Russell 1910: 27; 1927a; 1927b). Branko Grün- baum y Geoffrey Colin Shephard, autores de uno de los libros más respetados sobre teselaciones y patrones, se vieron compelidos a repudiar la moda contemporánea que es- tablece que la geometría debe ser abstracta y conceptual (es decir, puramente argumen- tativa) si ha de ser considerada matemática avanzada y que debe por ello renunciar a to- do despliegue de dibujos o diagramas. Promover la geometría sin dibujos (como abogan autores que se proclaman "sofisticados") –dicen Grünbaum y Shephard– es como ensal- zar las virtudes de la música sin sonido, alegando que leerla en silencio directamente de las partituras es un signo de madurez analítica (1987: vii-viii). 4 Benoît Mandelbrot, el padre de la geometría fractal, lo dijo con todas la letras: hasta el día en que que llegó la temporada de los fractales las matemáticas eran iconoclastas: aborrecían las imágenes y hasta la geometría más ligada a formas, coordenadas y posi- ciones buscaba razonar sin apoyarse en ellas (cf.
Recommended publications
  • Using Fractal Dimension for Target Detection in Clutter
    KIM T. CONSTANTIKES USING FRACTAL DIMENSION FOR TARGET DETECTION IN CLUTTER The detection of targets in natural backgrounds requires that we be able to compute some characteristic of target that is distinct from background clutter. We assume that natural objects are fractals and that the irregularity or roughness of the natural objects can be characterized with fractal dimension estimates. Since man-made objects such as aircraft or ships are comparatively regular and smooth in shape, fractal dimension estimates may be used to distinguish natural from man-made objects. INTRODUCTION Image processing associated with weapons systems is fractal. Falconer1 defines fractals as objects with some or often concerned with methods to distinguish natural ob­ all of the following properties: fine structure (i.e., detail jects from man-made objects. Infrared seekers in clut­ on arbitrarily small scales) too irregular to be described tered environments need to distinguish the clutter of with Euclidean geometry; self-similar structure, with clouds or solar sea glint from the signature of the intend­ fractal dimension greater than its topological dimension; ed target of the weapon. The discrimination of target and recursively defined. This definition extends fractal from clutter falls into a category of methods generally into a more physical and intuitive domain than the orig­ called segmentation, which derives localized parameters inal Mandelbrot definition whereby a fractal was a set (e.g.,texture) from the observed image intensity in order whose "Hausdorff-Besicovitch dimension strictly exceeds to discriminate objects from background. Essentially, one its topological dimension.,,2 The fine, irregular, and self­ wants these parameters to be insensitive, or invariant, to similar structure of fractals can be experienced firsthand the kinds of variation that the objects and background by looking at the Mandelbrot set at several locations and might naturally undergo because of changes in how they magnifications.
    [Show full text]
  • Object Oriented Programming
    No. 52 March-A pril'1990 $3.95 T H E M TEe H CAL J 0 URN A L COPIA Object Oriented Programming First it was BASIC, then it was structures, now it's objects. C++ afi<;ionados feel, of course, that objects are so powerful, so encompassing that anything could be so defined. I hope they're not placing bets, because if they are, money's no object. C++ 2.0 page 8 An objective view of the newest C++. Training A Neural Network Now that you have a neural network what do you do with it? Part two of a fascinating series. Debugging C page 21 Pointers Using MEM Keep C fro111 (C)rashing your system. An AT Keyboard Interface Use an AT keyboard with your latest project. And More ... Understanding Logic Families EPROM Programming Speeding Up Your AT Keyboard ((CHAOS MADE TO ORDER~ Explore the Magnificent and Infinite World of Fractals with FRAC LS™ AN ELECTRONIC KALEIDOSCOPE OF NATURES GEOMETRYTM With FracTools, you can modify and play with any of the included images, or easily create new ones by marking a region in an existing image or entering the coordinates directly. Filter out areas of the display, change colors in any area, and animate the fractal to create gorgeous and mesmerizing images. Special effects include Strobe, Kaleidoscope, Stained Glass, Horizontal, Vertical and Diagonal Panning, and Mouse Movies. The most spectacular application is the creation of self-running Slide Shows. Include any PCX file from any of the popular "paint" programs. FracTools also includes a Slide Show Programming Language, to bring a higher degree of control to your shows.
    [Show full text]
  • An Artistic and Mathematical Look at the Work of Maurits Cornelis Escher
    University of Northern Iowa UNI ScholarWorks Honors Program Theses Honors Program 2016 Tessellations: An artistic and mathematical look at the work of Maurits Cornelis Escher Emily E. Bachmeier University of Northern Iowa Let us know how access to this document benefits ouy Copyright ©2016 Emily E. Bachmeier Follow this and additional works at: https://scholarworks.uni.edu/hpt Part of the Harmonic Analysis and Representation Commons Recommended Citation Bachmeier, Emily E., "Tessellations: An artistic and mathematical look at the work of Maurits Cornelis Escher" (2016). Honors Program Theses. 204. https://scholarworks.uni.edu/hpt/204 This Open Access Honors Program Thesis is brought to you for free and open access by the Honors Program at UNI ScholarWorks. It has been accepted for inclusion in Honors Program Theses by an authorized administrator of UNI ScholarWorks. For more information, please contact [email protected]. Running head: TESSELLATIONS: THE WORK OF MAURITS CORNELIS ESCHER TESSELLATIONS: AN ARTISTIC AND MATHEMATICAL LOOK AT THE WORK OF MAURITS CORNELIS ESCHER A Thesis Submitted in Partial Fulfillment of the Requirements for the Designation University Honors Emily E. Bachmeier University of Northern Iowa May 2016 TESSELLATIONS : THE WORK OF MAURITS CORNELIS ESCHER This Study by: Emily Bachmeier Entitled: Tessellations: An Artistic and Mathematical Look at the Work of Maurits Cornelis Escher has been approved as meeting the thesis or project requirements for the Designation University Honors. ___________ ______________________________________________________________ Date Dr. Catherine Miller, Honors Thesis Advisor, Math Department ___________ ______________________________________________________________ Date Dr. Jessica Moon, Director, University Honors Program TESSELLATIONS : THE WORK OF MAURITS CORNELIS ESCHER 1 Introduction I first became interested in tessellations when my fifth grade mathematics teacher placed multiple shapes that would tessellate at the front of the room and we were allowed to pick one to use to create a tessellation.
    [Show full text]
  • Ununfoldable Polyhedra with Convex Faces
    Ununfoldable Polyhedra with Convex Faces Marshall Bern¤ Erik D. Demainey David Eppsteinz Eric Kuox Andrea Mantler{ Jack Snoeyink{ k Abstract Unfolding a convex polyhedron into a simple planar polygon is a well-studied prob- lem. In this paper, we study the limits of unfoldability by studying nonconvex poly- hedra with the same combinatorial structure as convex polyhedra. In particular, we give two examples of polyhedra, one with 24 convex faces and one with 36 triangular faces, that cannot be unfolded by cutting along edges. We further show that such a polyhedron can indeed be unfolded if cuts are allowed to cross faces. Finally, we prove that \open" polyhedra with triangular faces may not be unfoldable no matter how they are cut. 1 Introduction A classic open question in geometry [5, 12, 20, 24] is whether every convex polyhedron can be cut along its edges and flattened into the plane without any overlap. Such a collection of cuts is called an edge cutting of the polyhedron, and the resulting simple polygon is called an edge unfolding or net. While the ¯rst explicit description of this problem is by Shephard in 1975 [24], it has been implicit since at least the time of Albrecht Durer,Ä circa 1500 [11]. It is widely conjectured that every convex polyhedron has an edge unfolding. Some recent support for this conjecture is that every triangulated convex polyhedron has a vertex unfolding, in which the cuts are along edges but the unfolding only needs to be connected at vertices [10]. On the other hand, experimental results suggest that a random edge cutting of ¤Xerox Palo Alto Research Center, 3333 Coyote Hill Rd., Palo Alto, CA 94304, USA, email: [email protected].
    [Show full text]
  • Pleat Folding, 6.849 Fall 2010
    Demaine, Demaine, Lubiw Courtesy of Erik D. Demaine, Martin L. Demaine, and Anna Lubiw. Used with permission. 1999 1 Hyperbolic Paraboloid Courtesy of Jenna Fizel. Used with permission. [Albers at Bauhaus, 1927–1928] 2 Circular Variation from Bauhaus [Albers at Bauhaus, 1927–1928] 3 Courtesy of Erik Demaine, Martin Demaine, Jenna Fizel, and John Ochsendorf. Used with permission. Virtual Origami Demaine, Demaine, Fizel, Ochsendorf 2006 4 Virtual Origami Demaine, Demaine, Fizel, Ochsendorf 2006 Courtesy of Erik Demaine, Martin Demaine, Jenna Fizel, and John Ochsendorf. Used with permission. 5 “Black Hexagon” Demaine, Demaine, Fizel 2006 Courtesy of Erik Demaine, Martin Demaine, and Jenna Fizel. Used with permission. 6 Hyparhedra: Platonic Solids [Demaine, Demaine, Lubiw 1999] 7 Courtesy of Erik Demaine, Martin Demaine, Jenna Fizel, and John Ochsendorf. Used with permission. Virtual Origami Demaine, Demaine, Fizel, Ochsendorf 2006 8 “Computational Origami” Erik & Martin Demaine MoMA, 2008– Elephant hide paper ~9”x15”x7” Courtesy of Erik Demaine and Martin Demaine. Used with permission. See also http://erikdemaine.org/curved/Computational/. 9 Peel Gallery, Houston Nov. 2009 Demaine & Demaine 2009 Courtesy of Erik Demaine and Martin Demaine. Used with permission. See also http://erikdemaine.org/curved/Limit/. 10 “Natural Cycles” Erik & Martin Demaine JMM Exhibition of Mathematical Art, San Francisco, 2010 Courtesy of Erik Demaine and Martin Demaine. Used with permission. See also http://erikdemaine.org/curved/NaturalCycles/. 11 Courtesy of Erik Demaine and Martin Demaine. Used with permission. See also http://erikdemaine.org/curved/BlindGlass/. Demaine & Demaine 2010 12 Hyperbolic Paraboloid Courtesy of Jenna Fizel. Used with permission. [Demaine, Demaine, Hart, Price, Tachi 2009/2010] 13 θ = 30° n = 16 Courtesy of Erik D.
    [Show full text]
  • Algorithmic Folding Complexity∗
    Algorithmic Folding Complexity∗ Jean Cardinal1, Erik D. Demaine2, Martin L. Demaine2, Shinji Imahori3, Tsuyoshi Ito4, Masashi Kiyomi5, Stefan Langerman1, Ryuhei Uehara5, Takeaki Uno6 1 D´epartement d'Informatique, Universit´eLibre de Bruxelles, CP 212, B-1050 Brussels, Belgium. e-mail: fjcardin,[email protected] 2 Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technol- ogy, Cambridge, MA 02139, USA. e-mail: fedemaine,[email protected] 3 Department of Computational Science and Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan. e-mail: [email protected] 4 Institute for Quantum Computing and School of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada. e-mail: [email protected] 5 School of Information Science, Japan Advanced Institute of Science and Technology, Ishikawa 923-1292, Japan. e-mail: fmkiyomi,[email protected] 6 National Institute of Informatics, Chiyoda-ku, Tokyo 101-8430, Japan. e-mail: [email protected] Abstract. How do we most quickly fold a paper strip (modeled as a line) to obtain a desired mountain-valley pattern of equidistant creases (viewed as a binary string)? Define the folding complexity of a mountain-valley string as the minimum number of simple folds required to construct it. We first show that the folding complexity of a length-n uniform string (all mountains or all valleys), and hence of a length-n pleat (alternating mountain/valley), is O(lg2 n). We also show that a lower bound of the complexity of the problems is Ω(lg2 n= lg lg n). Next we show that almost all mountain-valley patterns require Ω(n= lg n) folds, which means that the uniform and pleat foldings are relatively easy problems.
    [Show full text]
  • Measuring the Fractal Dimensions of Empirical Cartographic Curves
    MEASURING THE FRACTAL DIMENSIONS OF EMPIRICAL CARTOGRAPHIC CURVES Mark C. Shelberg Cartographer, Techniques Office Aerospace Cartography Department Defense Mapping Agency Aerospace Center St. Louis, AFS, Missouri 63118 Harold Moellering Associate Professor Department of Geography Ohio State University Columbus, Ohio 43210 Nina Lam Assistant Professor Department of Geography Ohio State University Columbus, Ohio 43210 Abstract The fractal dimension of a curve is a measure of its geometric complexity and can be any non-integer value between 1 and 2 depending upon the curve's level of complexity. This paper discusses an algorithm, which simulates walking a pair of dividers along a curve, used to calculate the fractal dimensions of curves. It also discusses the choice of chord length and the number of solution steps used in computing fracticality. Results demonstrate the algorithm to be stable and that a curve's fractal dimension can be closely approximated. Potential applications for this technique include a new means for curvilinear data compression, description of planimetric feature boundary texture for improved realism in scene generation and possible two-dimensional extension for description of surface feature textures. INTRODUCTION The problem of describing the forms of curves has vexed researchers over the years. For example, a coastline is neither straight, nor circular, nor elliptic and therefore Euclidean lines cannot adquately describe most real world linear features. Imagine attempting to describe the boundaries of clouds or outlines of complicated coastlines in terms of classical geometry. An intriguing concept proposed by Mandelbrot (1967, 1977) is to use fractals to fill the void caused by the absence of suitable geometric representations.
    [Show full text]
  • Language and Automata Theory and Applications
    LANGUAGE AND AUTOMATA THEORY AND APPLICATIONS Carlos Martín-Vide Characterization • It deals with the description of properties of sequences of symbols • Such an abstract characterization explains the interdisciplinary flavour of the field • The theory grew with the need of formalizing and describing the processes linked with the use of computers and communication devices, but its origins are within mathematical logic and linguistics A bit of history • Early roots in the work of logicians at the beginning of the XXth century: Emil Post, Alonzo Church, Alan Turing Developments motivated by the search for the foundations of the notion of proof in mathematics (Hilbert) • After the II World War: Claude Shannon, Stephen Kleene, John von Neumann Development of computers and telecommunications Interest in exploring the functions of the human brain • Late 50s XXth century: Noam Chomsky Formal methods to describe natural languages • Last decades Molecular biology considers the sequences of molecules formed by genomes as sequences of symbols on the alphabet of basic elements Interest in describing properties like repetitions of occurrences or similarity between sequences Chomsky hierarchy of languages • Finite-state or regular • Context-free • Context-sensitive • Recursively enumerable REG ⊂ CF ⊂ CS ⊂ RE Finite automata: origins • Warren McCulloch & Walter Pitts. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5:115-133, 1943 • Stephen C. Kleene. Representation of events in nerve nets and
    [Show full text]
  • Stem+Visual Art
    STEM+VISUAL ART A Curricular Resource for K-12 Idaho Teachers a r t Drew Williams, M.A., Art Education Boise State University + Table of Contents Introduction 1 Philosophy 2 Suggestions 2 Lesson Plan Design 3 Tips for Teaching Art 4 Artist Catalogue 5 Suggestions for Classroom Use 9 Lesson Plans: K-3 10 Lesson Plans: 4-6 20 Lesson Plans: 6-9 31 Lesson Plans: 9-12 42 Sample Images 52 Resources 54 References 55 STEM+VISUAL ART A Curricular Resource for K-12 Idaho Teachers + Introduction: Finding a Place for Art in Education Art has always been an integral part of students’ educational experiences. How many can remember their first experiences as a child manipulating crayons, markers and paintbrushes to express themselves without fear of judgement or criticism? Yet, art is more than a fond childhood memory. Art is creativity, an outlet of ideas, and a powerful tool to express the deepest thoughts and dreams of an individual. Art knows no language or boundary. Art is always innovative, as each image bears the unique identity of the artist who created it. Unfortunately as many art educators know all too well, in schools art is the typically among the first subjects on the chopping block during budget shortfalls or the last to be mentioned in a conversation about which subjects students should be learning. Art is marginalized, pushed to the side and counted as an “if-we-have-time” subject. You may draw…if we have time after our math lesson. We will have time art in our class…after we have prepared for the ISAT tests.
    [Show full text]
  • 2020 SIGACT REPORT SIGACT EC – Eric Allender, Shuchi Chawla, Nicole Immorlica, Samir Khuller (Chair), Bobby Kleinberg September 14Th, 2020
    2020 SIGACT REPORT SIGACT EC – Eric Allender, Shuchi Chawla, Nicole Immorlica, Samir Khuller (chair), Bobby Kleinberg September 14th, 2020 SIGACT Mission Statement: The primary mission of ACM SIGACT (Association for Computing Machinery Special Interest Group on Algorithms and Computation Theory) is to foster and promote the discovery and dissemination of high quality research in the domain of theoretical computer science. The field of theoretical computer science is the rigorous study of all computational phenomena - natural, artificial or man-made. This includes the diverse areas of algorithms, data structures, complexity theory, distributed computation, parallel computation, VLSI, machine learning, computational biology, computational geometry, information theory, cryptography, quantum computation, computational number theory and algebra, program semantics and verification, automata theory, and the study of randomness. Work in this field is often distinguished by its emphasis on mathematical technique and rigor. 1. Awards ▪ 2020 Gödel Prize: This was awarded to Robin A. Moser and Gábor Tardos for their paper “A constructive proof of the general Lovász Local Lemma”, Journal of the ACM, Vol 57 (2), 2010. The Lovász Local Lemma (LLL) is a fundamental tool of the probabilistic method. It enables one to show the existence of certain objects even though they occur with exponentially small probability. The original proof was not algorithmic, and subsequent algorithmic versions had significant losses in parameters. This paper provides a simple, powerful algorithmic paradigm that converts almost all known applications of the LLL into randomized algorithms matching the bounds of the existence proof. The paper further gives a derandomized algorithm, a parallel algorithm, and an extension to the “lopsided” LLL.
    [Show full text]
  • College of Fine and Applied Arts Annual Meeting 5:00P.M.; Tuesday, April 5, 2011 Temple Buell Architecture Gallery, Architecture Building
    COLLEGE OF FINE AND APPLIED ARTS ANNUAL MEETING 5:00P.M.; TUESDAY, APRIL 5, 2011 TEMPLE BUELL ARCHITECTURE GALLERY, ARCHITECTURE BUILDING AGENDA 1. Welcome: Robert Graves, Dean 2. Approval of April 5, 2010 draft Annual Meeting Minutes (ATTACHMENT A) 3. Administrative Reports and Dean’s Report 4. Action Items – need motion to approve (ATTACHMENT B) Nominations for Standing Committees a. Courses and Curricula b. Elections and Credentials c. Library 5. Unit Reports 6. Academic Professional Award for Excellence and Faculty Awards for Excellence (ATTACHMENT C) 7. College Summary Data (Available on FAA Web site after meeting) a. Sabbatical Requests (ATTACHMENT D) b. Dean’s Special Grant Awards (ATTACHMENT E) c. Creative Research Awards (ATTACHMENT F) d. Student Scholarships/Enrollment (ATTACHMENT G) e. Kate Neal Kinley Memorial Fellowship (ATTACHMENT H) f. Retirements (ATTACHMENT I) g. Notable Achievements (ATTACHMENT J) h. College Committee Reports (ATTACHMENT K) 8. Other Business and Open Discussion 9. Adjournment Please join your colleagues for refreshments and conversation after the meeting in the Temple Buell Architecture Gallery, Architecture Building ATTACHMENT A ANNUAL MEETING MINUTES COLLEGE OF FINE AND APPLIED ARTS 5:00P.M.; MONDAY, APRIL 5, 2010 FESTIVAL FOYER, KRANNERT CENTER FOR THE PERFORMING ARTS 1. Welcome: Robert Graves, Dean Dean Robert Graves described the difficulties that the College faced in AY 2009-2010. Even during the past five years, when the economy was in better shape than it is now, it had become increasingly clear that the College did not have funds or personnel sufficient to accomplish comfortably all the activities it currently undertakes. In view of these challenges, the College leadership began a process of re- examination in an effort to find economies of scale, explore new collaborations, and spur creative thinking and cooperation.
    [Show full text]
  • Fractals, Self-Similarity & Structures
    © Landesmuseum für Kärnten; download www.landesmuseum.ktn.gv.at/wulfenia; www.biologiezentrum.at Wulfenia 9 (2002): 1–7 Mitteilungen des Kärntner Botanikzentrums Klagenfurt Fractals, self-similarity & structures Dmitry D. Sokoloff Summary: We present a critical discussion of a quite new mathematical theory, namely fractal geometry, to isolate its possible applications to plant morphology and plant systematics. In particular, fractal geometry deals with sets with ill-defined numbers of elements. We believe that this concept could be useful to describe biodiversity in some groups that have a complicated taxonomical structure. Zusammenfassung: In dieser Arbeit präsentieren wir eine kritische Diskussion einer völlig neuen mathematischen Theorie, der fraktalen Geometrie, um mögliche Anwendungen in der Pflanzen- morphologie und Planzensystematik aufzuzeigen. Fraktale Geometrie behandelt insbesondere Reihen mit ungenügend definierten Anzahlen von Elementen. Wir meinen, dass dieses Konzept in einigen Gruppen mit komplizierter taxonomischer Struktur zur Beschreibung der Biodiversität verwendbar ist. Keywords: mathematical theory, fractal geometry, self-similarity, plant morphology, plant systematics Critical editions of Dean Swift’s Gulliver’s Travels (see e.g. SWIFT 1926) recognize a precise scale invariance with a factor 12 between the world of Lilliputians, our world and that one of Brobdingnag’s giants. Swift sarcastically followed the development of contemporary science and possibly knew that even in the previous century GALILEO (1953) noted that the physical laws are not scale invariant. In fact, the mass of a body is proportional to L3, where L is the size of the body, whilst its skeletal rigidity is proportional to L2. Correspondingly, giant’s skeleton would be 122=144 times less rigid than that of a Lilliputian and would be destroyed by its own weight if L were large enough (cf.
    [Show full text]