New Developments in the Biological Control of Invasive Weeds
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Release and Recovery of Bradyrrhoa Gilveolella on Rush Skeletonweed in Southern Idaho
478 Session 9 Post-release Evaluation and Management The Release and Recovery of Bradyrrhoa gilveolella on Rush Skeletonweed in Southern Idaho J. L. Littlefield1, G. Markin2, J. Kashefi3, A. de Meij1 and J. Runyon2 1Montana State University, Department of Land Resources & Environmental Sciences, PO 173120, Bozeman, MT 59717, USA [email protected] [email protected] 2US Forest Service (retired), Rocky Mountain Research Station, Forestry Sciences Laboratory, 1648 S. 7th Ave, Bozeman, MT 59717, USA [email protected] [email protected] 3USDA-ARS, European Biological Control Laboratory, Tsimiski 43, 7th Floor, Thessaloniki, Greece [email protected] Abstract Rush skeletonweed (Chondrilla juncea L.) is a major noxious weed in Idaho and other areas of the Pacific Northwest. A biological control program was implemented during the late 1970s in an attempt to manage infestations of rush skeletonweed and to limit its spread into new areas. Three agents, Cystiphora schmidti (Rübsaamen) (a gall midge), Aceria chondrillae (Canestrini) (a gall mite), and Puccinia chondrillina Bubak & Sydenham (a rust fungus) have been established in Idaho and other areas of the western United States. However these agents have provided only limited control of the weed. One additional agent, the root-feeding moth Bradyrrhoa gilveolella (Treitschke) (Lepidoptera, Pyralidae), was approved by the USDA-APHIS for release in the United States in 2002. Initial releases were made in southern Idaho in November 2002 and during the summers of 2003 through 2009 (excluding 2005). Releases were made using infested plants (the 2002 initial release) then utilizing first instar larvae and adults from greenhouse colonies. In total we released the moth at eight sites utilizing nine infested plants (est. -
Appendix B Natural History and Control of Nonnative Invasive Species
Appendix B: Natural History and Control of Nonnative Invasive Plants Found in Ten Northern Rocky Mountains National Parks Introduction The Invasive Plant Management Plan was written for the following ten parks (in this document, parks are referred to by the four letter acronyms in bold): the Bear Paw Battlefield-BEPA (MT, also known as Nez Perce National Historical Park); Big Hole National Battlefield-BIHO (MT); City of Rocks National Reserve-CIRO (ID); Craters of the Moon National Monument and Preserve-CRMO (ID); Fossil Butte National Monument-FOBU (WY); Golden Spike National Historic Site-GOSP (UT); Grant-Kohrs Ranch National Historic Site-GRKO (MT); Hagerman Fossil Beds National Monument-HAFO (ID); Little Bighorn Battlefield National Monument-LIBI (MT); and Minidoka National Historic Site-MIIN (ID). The following information is contained for each weed species covered in this document (1) Park presence: based on formal surveys or park representatives’ observations (2) Status: whether the plant is listed as noxious in ID, MT, UT, or WY (3) Identifying characteristics: key characteristics to aid identification, and where possible, unique features to help distinguish the weed from look-a-like species (4) Life cycle: annual, winter-annual, biennial, or perennial and season of flowering and fruit set (5) Spread: the most common method of spread and potential for long distance dispersal (6) Seeds per plant and seed longevity (when available) (7) Habitat (8) Control Options: recommendations on the effectiveness of a. Mechanical Control b. Cultural -
Environmental Assessment Twin Falls District Noxious Weed and Invasive
United States Department of the Interior Bureau of Land Management Environmental Assessment Twin Falls District Noxious Weed and Invasive Plant Treatment DOI-BLM-ID-T000-2012-0001-EA U.S. Department of the Interior Bureau of Land Management Twin Falls District 2878 Addison Avenue East Twin Falls, ID 83301 Phone: (208) 735-2060 FAX: (208) 735-2076 Table of Contents CHAPTER 1 - PURPOSE AND NEED FOR ACTION .............................................................. 13 Background ............................................................................................................................... 13 Introduction ............................................................................................................................... 14 Location of Proposed Action ................................................................................................ 15 Purpose and Need for Action .................................................................................................... 19 Conformance with Applicable Land Use Plans ........................................................................ 19 FMDA ................................................................................................................................... 20 Jarbidge RMP........................................................................................................................ 20 Craters of the Moon Monument MP ..................................................................................... 21 Owyhee Canyonlands Wilderness -
The Reproductive Biology, Natural Enemies and Biological Control of Delairea Odorata Lem
The Reproductive Biology, Natural Enemies and Biological Control of Delairea odorata Lem. by Carol Ann Rolando Submitted in fulfilment of the requirements for the degree of Master of Science in the School of Botany and Zoology, University of Natal, Pietermaritzburg, March 2000 ABSTRACT Delairea odorata Lem., an asteraceous perennial vine indigenous to southern Africa, has become naturalised and invasive in many subtropical regions including California, South Australia and Hawaii. Biological control offers a potential long term solution to the management of this species in exotic locations. This study analysed aspects ofthe biology ofD. odorata in its native environment to determine its suitability to classical biological control. To this end an examination of the reproductive biology and natural enemies of D. odorata was made. A study of the pyrrolizidine alkaloid profile was also conducted. Reproductive biology: Delairea odorata reproduces both sexually by seeds and asexually by stolons. The flowering season occurs over the autumn months from April to June. Results ofthe pollination trials indicate thatD. odorata is a cross compatible species and an obligate outbreeder. There is no specialised pollination system and the predorninant pollinators belong to the families Apidae, Syrphidae and Calliphoridae. Following pollination, numerous small achenes are produced. Laboratory trials indicate that these achenes germinate readily between 10 and 25 QC and, although germination occurs in both the light and dark, light clearly stimulates seed germination. Greenhouse trials conducted to determine the effect of light on growth and reproduction indicate that D. odorata is a shade tolerant species which shows plasticity in terms ofgrowth form and deployment ofbiomass in response to changes in light intensity. -
Manipulation of Plant Primary Metabolism by Leaf-Mining Larvae 4 in the Race Against Leaf Senescence 5 6 Mélanie J.A
bioRxiv preprint doi: https://doi.org/10.1101/777334; this version posted September 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Body et al. 1 Submitted to: Frontiers in Physiology 2 3 Manipulation of plant primary metabolism by leaf-mining larvae 4 in the race against leaf senescence 5 6 Mélanie J.A. Body1,2, Jérôme Casas1, and David Giron1* 7 8 (1) Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS/Université François- 9 Rabelais de Tours, Parc Grandmont, 37200 Tours, France 10 11 (2) Present address: Department of Environmental Sciences, Bowman-Oddy Laboratories, 12 2801 West Bancroft Street, University of Toledo, Toledo, Ohio 43606, United States of 13 America 14 15 * Corresponding author 16 David Giron 17 Address: Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS/Université 18 François-Rabelais de Tours, Parc Grandmont, 37200 Tours, France 19 Email: [email protected] 20 Phone number: +33 2 47 36 73 49 21 22 Running head: Plant nutrient alteration by a leafminer 23 24 Conflict of interest 25 26 The authors declare that there is no conflict of interest. 27 28 Author Contributions 29 30 MJAB and DG designed the overall study, and set up the analytical protocols for total 31 sugars, starches, and protein-bound and free amino acid analyses. MJAB carried out the 32 experiments and analyzed the data, supervised by DG. -
Multi-Trophic Level Interactions Between the Invasive Plant
MULTI-TROPHIC LEVEL INTERACTIONS BETWEEN THE INVASIVE PLANT CENTAUREA STOEBE, INSECTS AND NATIVE PLANTS by Christina Rachel Herron-Sweet A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Land Resources and Environmental Sciences MONTANA STATE UNIVERSITY Bozeman, Montana May 2014 ©COPYRIGHT by Christina Rachel Herron-Sweet 2014 All Rights Reserved ii DEDICATION To my parents and grandparents, who instilled in me the value of education and have been my biggest supporters along the way. iii ACKNOWLEDGEMENTS Special thanks go to my two advisers Drs. Jane Mangold and Erik Lehnhoff for all their tremendous support, advice and feedback during my graduate program. My two other committee members Drs. Laura Burkle and Jeff Littlefield also deserve a huge thank you for the time and effort they put into helping me with various aspects of my project. This research would not have been possible without the dedicated crew of field and lab helpers: Torrin Daniels, Darcy Goodson, Daniel France, James Collins, Ann de Meij, Noelle Orloff, Krista Ehlert, and Hally Berg. The following individuals deserve recognition for their patience in teaching me pollinator identification, and for providing parasitoid identifications: Casey Delphia, Mike Simanonok, Justin Runyon, Charles Hart, Stacy Davis, Mike Ivie, Roger Burks, Jim Woolley, David Wahl, Steve Heydon, and Gary Gibson. Hilary Parkinson and Matt Lavin also offered their expertise in plant identification. Statistical advice and R code was generously offered by Megan Higgs, Sean McKenzie, Pamela Santibanez, Dan Bachen, Michael Lerch, Michael Simanonok, Zach Miller and Dave Roberts. Bryce Christiaens, Lyn Huyser, Gil Gale and Craig Campbell provided instrumental consultation on locating field sites, and the Circle H Ranch, Flying D Ranch and the United States Forest Service graciously allowed this research to take place on their property. -
Biological Control of Yellow Starthistle
Biological Control of Yellow Starthistle Lincoln Smith, USDA-ARS-WRRC, 800 Buchanan St, Albany CA 94710 Joe Balciunas, USDA-ARS-WRRC, 800 Buchanan St, Albany CA 94710 Michael J. Pitcairn, California Dept. of Food and Agriculture, 3288 Meadowview Road, Sacramento, CA 95832 Yellow starthistle (Centaurea solstitialis L.) is an alien plant that probably originated from the eastern Mediterranean. It was first collected in California in 1869, and now infests 42% of the state’s townships. It interferes with land use such as grazing and recreation, displaces native species, and is toxic to horses (Sheley, et al. 1999 and papers cited therein). This weed is much less invasive in its land of origin. This is presumably because natural enemies, such as insects, plant diseases, animals or competing plants help to keep it under natural control. We are exploring for insects and pathogens that attack this plant. They are tested for host specificity to make sure they do not attack other plants. After evaluation and approval by state and federal agencies, these agents will be released to try to reestablish the natural control that occurs in the land of origin. So far, six species of insect biological control agents have been introduced to control yellow starthistle (Turner et al. 1995; Rees et al. 1996; Jette, et al. 1999). All six attack the seedheads. The most promising agent is the hairy weevil (Eustenopus villosus), which is well established in California and occurs in high densities, attacking 25 to 80% of seedheads. Adults damage young flower buds by feeding on them, and lay eggs on later-developing flower buds. -
Том 4. Вып. 2 Vol. 4. No. 2
РОССИЙСКАЯ АКАДЕМИЯ НАУК Южный Научный Центр RUSSIAN ACADEMY OF SCIENCES Southern Scientific Centre CAUCASIAN ENTOMOLOGICAL BULLETIN Том 4. Вып. 2 Vol. 4. No. 2 Ростов-на-Дону 2008 Кавказский энтомол. бюллетень 4(2): 209—213 © CAUCASIAN ENTOMOLOGICAL BULL. 2008 Hibernation places and behavior of the some weevil species (Coleoptera: Curculionidae) Места зимовки и поведение некоторых видов жуков- долоносиков(Coleoptera: Curculionidae) L. Gültekin Л. Гюльтекин Atatürk University, Faculty of Agriculture, Plant Protection Department, Erzurum 25240 Turkey. E-mail: [email protected]; lgultekin@ gmail.com Университет им. Ататюрка, сельскохозяйственный факультет, кафедра защиты растений, Эрзерум 25240 Турция Key words: hibernation places, behavior, Curculionidae, Eastern Turkey. Ключевые слова: локализация диапаузы, поведение, Curculionidae, Восточная Турция. Abstract. Hibernation places and behavior of перед зимовкой. Cleonis pigra (Scopoli), Larinus onopordi the 40 species of weevil from subfamilies Lixinae, (Fabricius), L. inaequalicollis Capiomont, L. ochroleucus Ceutorhynchinae, Baridinae, Gymnetrinae and Entiminae Capiomont, L. sibiricus Gyllenhal, L. sp. n. pr. leuzeae Fabre, (Curculionidae) were determined in Eastern Turkey during L. filiformis Petri, Herpes porcellus Lacordaire и Mononychus 1997–2007. Larinus latus (Herbst), L. fucatus Faust, punctumalbum (Herbst) часто образуют скопления под Lixus ochraceus Boheman, L. furcatus Olivier, L. obesus камнями, корой растений или в почве. Conorhynchus Petri, L. siculus Boheman, L. korbi Petri, and Mononychus hololeucus (Pallas), Mecaspis incisuratus Gyllenhal, schoenherri Kolenati prefer to migrate by flight before Leucophyes pedesteris (Poda), Otiorhynchus brunneus hibernation. Cleonis pigra (Scopoli), Larinus onopordi Steven, O. latinasus Reitter зимуют под растительными (Fabricius), L. inaequalicollis Capiomont, L. ochroleucus остатками и под камнями. Gymnetron netum (Germar) Capiomont, L. sibiricus Gyllenhal, L. sp. n. pr. leuzeae и Larinus puncticollis Capiomont заселяют на зимовку Fabre, L. -
Description of Coleophora Oreiosella Baldizzone, Sp. N. And
SHILAP Revista de Lepidopterología ISSN: 0300-5267 ISSN: 2340-4078 [email protected] Sociedad Hispano-Luso-Americana de Lepidopterología España Baldizzone, G. Description of Coleophora oreiosella Baldizzone, sp. n. and new records on the distribution of some European Coleophoridae (Lepidoptera: Coleophoridae) SHILAP Revista de Lepidopterología, vol. 47, no. 186, 2019, May-August, pp. 269-277 Sociedad Hispano-Luso-Americana de Lepidopterología España Available in: https://www.redalyc.org/articulo.oa?id=45561111015 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative SHILAP Revta. lepid., 47 (186) junio 2019: 269-277 eISSN: 2340-4078 ISSN: 0300-5267 Description of Coleophora oreiosella Baldizzone, sp. n. and new records on the distribution of some European Coleophoridae (Lepidoptera: Coleophoridae) G. Baldizzone* Abstract A new species of the genus Coleophora Hübner, 1822, C. oreiosella Baldizzone, sp. n., known to be found only in the Sierra Nevada, Spain, is described. New data on the distribution of some European species are provided. The male of C. depunctella Toll, 1961, is shown for the first time. KEY WORDS: Lepidoptera, Coleophoridae, Coleophora, new species, new records, Europa. Descripción de Coleophora oreiosella Baldizzone, sp. n. y nuevos registros sobre la distribución de algunos Coleophoridae europeos (Lepidoptera: Coleophoridae) Resumen Se describe una nueva especie del género Coleophora Hübner, 1822, C. oreiosella Baldizzone sp. n., sólo conocida de Sierra Nevada, España. Se proporcionan nuevos datos sobre la distribución de algunas especies europeas. -
Montana Knapweeds
Biology, Ecology and Management of Montana Knapweeds EB0204 revised August 2017 Celestine Duncan, Consultant, Weed Management Services, Helena, MT Jim Story, Research Professor, retired, MSU Western Ag Research Center, Corvallis, MT Roger Sheley, former MSU Extension Weed Specialist, Bozeman, MT revised by Hilary Parkinson, former MSU Research Associate, and Jane Mangold, MSU Extension Invasive Plant Specialist Table of Contents Plant Biology . 3 SpeedyWeed ID . 5 Ecology . 4 Habitat . 4 Spread and Establishment Potential . 6 Damage Potential . 7 Origins, Current Status and Distribution . 8 Management Alternatives . 8 Prevention . 8 Mechanical Control . .9 Cultural Control . .10 Biological Control . .11 Chemical Control . .14 Integrated Weed Management (IWM) . 16 Additional Resources . 17 Acknowledgements . .19 COVER PHOTOS large - spotted knapweed by Marisa Williams, University of Arkansas, Fayetteville, bugwood.org top inset - diffuse knapweed by Cindy Roche, bugwood.org bottom inset - Russain knapweed by Steve Dewey, Utah State University, bugwood.org Any mention of products in this publication does not constitute a recommendation by Montana State University Extension. It is a violation of Federal law to use herbicides in a manner inconsistent with their labeling. Copyright © 2017 MSU Extension The U.S. Department of Agriculture (USDA), Montana State University and Montana State University Extension prohibit discrimination in all of their programs and activities on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, and marital and family status. Issued in furtherance of cooperative extension work in agriculture and home economics, acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture, Jeff Bader, Director of Extension, Montana State University, Bozeman, MT 59717. -
Population Buildup and Combined Impact of Introduced Insects on Yellow Starthistle (Centaurea Solstitialis L.) in California
Proceedings of the X International Symposium on Biological Control of Weeds 747 4-14 July 1999, Montana State University, Bozeman, Montana, USA Neal R. Spencer [ed.]. pp. 747-751 (2000) Population Buildup and Combined Impact of Introduced Insects on Yellow Starthistle (Centaurea solstitialis L.) in California MICHAEL J. PITCAIRN1, DALE. M. WOODS1, DONALD. B. JOLEY1, CHARLES E. TURNER2, and JOSEPH K. BALCIUNAS2 1California Department of Food and Agriculture, Biological Control Program, 3288 Meadowview Road, Sacramento, California 95832, USA 2United States Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, California 94710, USA Abstract Seven exotic seed head insects have been introduced into the western United States for control of yellow starthistle. Six are established; three are widespread. Preliminary evaluations suggest that no one insect species will be able to reduce yellow starthistle abundance in California. Rather, a combination of the current, and possibly, future natu- ral enemies may be necessary. Studies were initiated in 1993 to evaluate the population buildup, combined impact, and interaction of all available biological control insects on yellow starthistle. Three field sites were established in different climatic regions where yellow starthistle is abundant. Four insects, Bangasternus orientalis, Urophora sirunase- va, Eustenopus villosus, and Larinus curtus, were released at each site in 1993 and 1994 and long-term monitoring was initiated. The accidentally-introduced insect, Chaetorellia succinea, was recovered in 1996-98 at these sites. Four years after the first releases, we have evidence that these biological control agents are having an impact on yellow starthistle seed production that may translate into a decline in mature plant populations. -
Biological Control of Noxious Weeds in Oregon
Biological Control of What is Biological Weed Control? DALMATIAN TOADFLAX GORSE Linaria dalmatica Ulex europaeus Invasive noxious weeds in Oregon cost millions of dollars It is important to make sure the correct species of biocontrol Key to Biocontrol Agent Status Noxious Weeds in Oregon in economic and environmental damage. Biological agents are released, to use the most effective species, and to Gorse seed weevil control is a tool vegetation managers employ to help The following general information is provided for each document the release and establishment of weed biocontrol Exapion ulicis naturally suppress weed infestations. This pamphlet agents. biocontrol agent. shows many of the common biological agents you may Year: 1956 Distribution: Widespread A guide to common biological Since 1947, 77 species of biocontrol agents have been released Year: Year of introduction. encounter in Oregon. Attack rate: Heavy Control: Good control agents found in Oregon in Oregon against 32 species of targeted weeds. A total of Distribution: Distribution of agent in host infested counties. Collectability: Mass Release No. 100 Classical biological control is the use of selected natural Dalmatian toadflax stem weevil 67 species are established. The majority of the bioagents Widespread >50% Limited <50% Timing: Apr–May Method: Sweep net/ enemies to control targeted weeds. Most of our worst are insects (71), plus three mites, one nematode, and two Mecinus janthiniformis racquet Stage: Adult Comment: No need for Attack rate: noxious weeds originated from other continents. pathogens. Successful projects can generate 15:1 benefit to Percent of plants attacked. Year: 2001 Distribution: Widespread redistribution. Prospective biocontrol agents are thoroughly tested to cost ratios.