Weed of the Month (April 2009): Bur Clover Class of 2007

Total Page:16

File Type:pdf, Size:1020Kb

Weed of the Month (April 2009): Bur Clover Class of 2007 Photos by GCMGA By MG Marian Kimbrough Weed of the Month (April 2009): Bur Clover Class of 2007 A common clover- and purple stems. It germinate. While weed type plant that grows reproduces from seeds and feed fertilizers for Common SCientifiC in this area and is quite contained in “burred” lawns can be an effective name name invasive is known seedpods, as well as tool, they can stress or kill Large Bur Clover Medicago polymorpha as bur clover. Even spreading prostate landscape trees and shrubs though it is not a true stolons, which allow it if applied under or near Small Bur Clover Medicago minima clover, two species to tolerate close mowing, their drip line. identified in this area increasing its survival Over-the-top herbi- are commonly known and spreading abilities. cides or post-emergence damage the grass or other When using as large bur clover The exterior of burred herbicides like “broad- green, living plants that it herbicides and other (Medicago polymorpha) seedpods have numerous leaf weed killers” may be touches. Be sure to read pesticides, always and small bur clover velcro-like hooks that used in the spring. If you and follow the product’s read and follow label (Medicago minima). may become entangled in choose to use a post- label instructions and directions carefully. Both species are dicots animal coats or human emergence herbicide, do precautions. (broadleaf plants) in clothing, which serves so when the bur clover is the legume family and as a common means of actively growing. Apply a are closely related to dispersal. broadleaf lawn herbicide the true clovers. Large Preventive practices, containing a combina- bur clover and small such as good turf man- tion of 2,4-D and MCPP bur clover are native agement, are best in re- or triclopyr as its active to Europe but brought ducing infestation. Here ingredients late May or to the States as grazing in the Gulf Coast area, early June. More than one material (fodder crop) a lawn fertilization pro- application may be neces- for cattle. gram based on soil tests sary. To be most effective, Large bur clover will encourage growth the herbicide should be can grow from 6—22 of a dense, healthy turf, applied when tempera- inches and has flower which will inhibit the tures are between 60—80 clusters consisting of clover from becoming degrees, no rain is forecast 3—5 flowers, bloom- established. Mechanical for 24—48 hours, and no Bur clover can be readily identified by its small pea- ing in early spring. or physical removal is not wind is present to blow like yellow flower, three green clover-shaped leaves Small bur clover can recommended because the herbicide onto desir- and purple stems. grow from 6—18 stolons may break and able broadleaf plants. inches long with 10 or sprout, increasing rather For spot treatment of more flowers displayed than decreasing the infes- small, unwanted patches, per head (inflores- tation. you can avoid the use of cence). In this region, Pre-emergent herbi- a tank sprayer by mixing bur clover’s blooming cides like those con- the herbicide according period is from Febru- tained in “weed and feed to label directions and ary to June but can fertilizers” may be used to then applying it with a grow year round. Ger- prevent seed germination disposable paint brush or mination is in the fall in the fall. Timing of the a sponge tied to a stick. season when tempera- application is critical for Glyphosate (Roundup) tures are cooler. effective control. Early works well for this since Bur clover can be October is recommended the area may be reseeded readily identified by its as cool fronts typically seven days after applica- small pea-like yellow occur during this time tion. Be aware, though, The exterior of burred seedpods have numerous velcro- flower, three green and the seeds of cool that glyphosate is non- like hooks that may become entangled in animal coats clover-shaped leaves season weeds start to selective—it can kill or or human clothing which aides its dispersal..
Recommended publications
  • Cover Crops for Home Gardens West of the Cascades
    Cover Crops for Home Gardens West of the Cascades WASHINGTON STATE UNIVERSITY EXTENSION FACT SHEET • FS111E This fact sheet is one of a three-part series on cover crops for home gardeners. It focuses on choosing the best cover crops for gardens in Washington and Oregon, west of the Cascades. A companion fact sheet, Cover Crops for Home Gardens East of the Cascades, focuses on choosing the best cover crops for gardens in Washington and Oregon, east of the Cascades. The third fact sheet in this series, Methods for Successful Cover Crop Management in Your Home Garden, covers the management of garden cover crops, including planning, planting, managing nutrients, and terminating plants. What Is a Cover Crop? Table 1. Benefits of cover crops. • Replace soil organic matter Cover crops are plants grown to both cover and improve • Recycle nutrients the soil. They may be used as a living or dead mulch on the • Supply nitrogen (legumes only) soil surface, or they can be tilled into the soil as a “green manure.” Gardeners usually plant cover crops in the fall • Protect soil from rain and wind erosion for winter cover, but some gardeners also use cover crops • Reduce runoff and water erosion as part of a summer rotation. Cover crops can be any type • Reduce leaching of nutrients of plant but are generally grasses (including cereal grains), • Suppress weeds legumes, or grass/legume mixtures. Some non-legume • Break up compacted soil broadleaf plants can also be used. • Attract beneficial insects by providing pollen and nectar Why Grow a Cover Crop? • Reduce disease and nematodes Cover crops serve the gardener in many ways, typically by Cold-hardy cover crops protecting and improving the soil, suppressing weeds, and Gardeners usually plant these species in the fall as winter attracting beneficial insects (Table 1).
    [Show full text]
  • Alfalfa and Cool-Season Clovers1 A
    SS-AGR-173 Alfalfa and Cool-Season Clovers1 A. R. Blount and R. L. Stanley2 Cool-season legumes make the most of their growth in the observers and are environmentally acceptable as a source winter and spring when temperatures are too low for warm- of “natural,” slow-release nitrogen to reduce the potential of season forages to grow. Their growth is highly dependent nitrates in groundwater. on soil moisture, and therefore they can be grown in areas of the state where rainfall is sufficient to maintain good soil Alfalfa moisture—especially on soils with better-than-average soil Alfalfa (Medicago sativa) is popularly known as “the moisture-holding capacity or where irrigation is available queen of forages” and is often the forage by which all and affordable. Use of adapted cool-season legumes in a other forages are judged. It is an erect, upright-growing livestock enterprise can reduce the need for stored feed perennial with many leafy stems arising from large crowns during the winter months when warm-season forages are at the soil surface. Alfalfa (Figure 1) has a long taproot, dormant. Cool-season legumes are high in quality and making it drought tolerant, and it may grow as tall as 24–36 result in improved animal performance, including growth, inches. Although called a warm-season legume by some milk production, conception rate, weaning weight, and (top growth is killed by a freeze), it has been placed with weaning percentages. Legumes have the ability to “fix” the cool-season legumes because in Florida it is planted nitrogen, and those adapted to Florida can add from 50 to at the same time as other cool-season legumes, and its 200 lb per acre of nitrogen for use by grasses growing in best production occurs during the spring.
    [Show full text]
  • Small Broomrape Orobanche Minor
    Small broomrape Other common names: none noted USDA symbol: ORMI Orobanche minor ODA rating: B Introduction: Small broomrape is one species in a large group of parasitic plants that attack a wide diversity of host species. Small broomrape is important because it attacks economically important legume crops. Broomrape seeds are like dust and easily contaminate seed lots that are shipped around the world. It is present in the Willamette Valley. Distribution: The first documented site in Oregon was in 1923 in Multnomah County. It can be found in several north Willamette Valley counties wherever clover seed crops are grown. Description: Annual; blooms within a week of plant emergence. Grows 6 to 12 inches tall. Like other parasitic plants, small broomrape lacks chlorophyll. The flower stalk is yellowish-brown, unbranched with a purplish tint. Leaves look like small triangular scales. Flowers pinkish, yellow or white in color and arranged in an elongated spike. Impacts: Upon germination, the first root attaches to and penetrates the root of the host plant, usually clover and other legumes, disrupting nutrients and water transport in the host root system. It has the ability to produce up to 500,000 seeds per plant that are dispersed by wind, tillage equipment, harvesters, commodity movement and animals. An uprooted flowering plant will continue to produce seed. Heavy infestations can cause severe crop damage that may result in nearly total crop failure. It is especially problematic in clover crops where the Orbanche seeds are hard to detect or remove during mechanical cleaning of harvested seed. Biological controls: None identified. Oregon Department of Agriculture Noxious Weed Control Program Photos by Tom Forney, ODA 635 Capitol Street NE Salem, OR 97301 503-986-4621 www.oregon.gov/ODA/programs/Weeds/Pages/Default.aspx Oct 2014 .
    [Show full text]
  • The Synopsis of the Genus Trigonella L. (Fabaceae) in Turkey
    Turkish Journal of Botany Turk J Bot (2020) 44: 670-693 http://journals.tubitak.gov.tr/botany/ © TÜBİTAK Research Article doi:10.3906/bot-2004-63 The synopsis of the genus Trigonella L. (Fabaceae) in Turkey 1, 2 2 Hasan AKAN *, Murat EKİCİ , Zeki AYTAÇ 1 Biology Department, Faculty of Art and Science, Harran University, Şanlıurfa, Turkey 2 Biology Department, Faculty of Science, Gazi University, Ankara, Turkey Received: 25.04.2020 Accepted/Published Online: 23.11.2020 Final Version: 30.11.2020 Abstract: In this study, the synopsis of the taxa of the genus Trigonella in Turkey is presented. It is represented with 34 taxa in Turkey. The name of Trigonella coelesyriaca was misspelled to Flora of Turkey and the correct name of this species, Trigonella caelesyriaca, was given in this study. The endemic Trigonella raphanina has been reduced to synonym of T. cassia and T. balansae is reduced to synonym of T. corniculata. In addition, T. spruneriana var. sibthorpii is reevaluated as a distinct species. Lectotypification was designated forT. capitata, T. spruneriana and T. velutina. Neotypification was decided for T. cylindracea and T. cretica species. Trigonella taxa used to be represented by 52 taxa in the Flora of Turkey. However, they have later been evaluated by different studies under 32 species (34 taxa) in Turkey. In this study, taxonomic notes, diagnostic keys are provided and general distribution as well as their conservation status of each species within the genus in Turkey is given. Key words: Anatolia, lectotype, Leguminosae, neotype, systematic 1. Introduction graecum L. (Fenugreek) were known and used for different The genus Trigonella L.
    [Show full text]
  • FORAGE LEGUMES Clovers, Birdsfoot Trefoil, Cicer Milkvetch, Crownvetch and Alfalfa
    FORAGE LEGUMES Clovers, Birdsfoot Trefoil, Cicer Milkvetch, Crownvetch and Alfalfa Craig C. Sheaffer Nancy J. Ehlke Kenneth A. Albrecht Jacob M. Jungers Minnesota Agricultural Jared J. Goplen Experiment Station Station Bulletin 608-2018 Forage Legumes Clovers, Birdsfoot Trefoil, Cicer Milkvetch, Crownvetch and Alfalfa Craig C. Sheaffer Nancy J. Ehlke Kenneth A. Albrecht Jacob M. Jungers Jared J. Goplen Station Bulletin 608-2018 Minnesota Agricultural Experiment Station University of Minnesota Saint Paul, Minnesota The University of Minnesota shall provide equal access to and opportunity in its programs, facilities, and employment without regard to race, color, creed, religion, national origin, gender, age, marital status, disability, public assistance status, veteran status, sexual orientation, gender identity, or gender expression. Editors Craig Sheaffer, Nancy Ehlke, and Jacob Jungers are agronomists with the University of Minnesota Department of Agronomy and Plant Genetics in the College of Food, Agricultural and Natural Resource Sciences, Saint Paul, Minnesota. Jared Goplen is an Extension Educator in Crops for University of Minnesota Extension. Kenneth Albrecht is an agronomist with the University of Wisonsin’s Department of Agronomy. Acknowledgments This publication is a revision of Minnesota Agricultural Experiment Station Bulletin 597-1993, Forage Le- gumes, orginally issued in 1993 and then updated in 2003 and then again in 2018. The editors of this third edition gratefully acknowledge the contributions of the coauthors of the original publication: Harlan Ford, Neal Martin, Russell Mathison, David Rabas and Douglas Swanson. Publications editing, design and development for the Minnesota Agricultural Experiment Station is by Shelly Gustafson, experiment station communications specialist. Photos are by Dave Hansen or Don Breneman.
    [Show full text]
  • Sweet Clover Poisoning
    Beef Cattle Handbook BCH-3415 Product of Extension Beef Cattle Resource Committee Adapted from the Cattle Producer’s Library Sweet Clover Poisoning I. A. Schipper, Veterinarian, North Dakota State University Sweet clover poisoning is a problem of varying frequen- dicoumarin will interfere with the metabolism and syn- cy and intensity in livestock wherever sweet clover thesis of vitamin K. Vitamin K is essential to liver synthe- grows. The toxic compound produced in sweet clover sis of four components (prothrombin, and factors VII, IX, prevents normal blood clotting resulting in hemorrhages X) necessary to the prevention of seepage of blood from and associated symptoms. the circulatory system and to establish the clotting of The preliminary symptoms include stiffness, lame- blood expelled by injury or surgery. ness, dull attitude, and swellings beneath the skin Vitamin K1 is found in green plants such as alfalfa. (hematomas or blood clots) over all parts of the body, Vitamin K2 is formed by the microflora of the digestive but primarily at the hips, brisket, or neck. The mucous tract. These two sources are normally sufficient to pro- membranes may be pale—indicating that anemia exists. vide the requirements of cattle. Menadione (vitamin K3) Hemorrhage decreases the quantity of red blood cells is a synthetic compound that may be used as a feed available to transport oxygen to the body and carbon supplement or injectable product to counteract vitamin dioxide to the lungs. This results in varying degrees of K deficiency. respiratory stress, depending on the amount of red Not all moldy sweet clover is toxic, and the absence blood cell loss and physical exertion of the animal.
    [Show full text]
  • Biological Activities of Trifolium Pratense: a Review
    Acta Scientific Pharmaceutical Sciences (ISSN: 2581-5423) Volume 3 Issue 9 September 2019 Review Article Biological Activities of Trifolium Pratense: A Review Atiq-ur-Rehman1,2* 1University College of Pharmacy, University of the Punjab, Lahore, Pakistan 2Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan *Corresponding Author: Atiq-ur-Rehman, Faculty of Pharmacy, The University of Lahore and University College of Pharmacy, University of the Punjab, Lahore Pakistan. Received: July 25, 2019; Published: August 16, 2019 Abstract Trifolium pratense is an important plant of the Legume family. It has drawn the attention of several researchers around the globe. This plant was traditionally used as forage or as soil improver is now seen as the plant containing vast therapeutic activities which include anti-oxidative, anti-cancer, neuroprotective, anti-hyperglycemic, anti-hyperlipidemic, osteoprotective and cardio protective properties. The therapeutic properties are shown in various in vivo, in vitro and ex vivo experiments. The review highlights the Tri- forium pratense basic knowledge its extraction, components and their actions, major activities possessed by plant along with their mechanisms. Trifolium plant is mainmajorly used in menopausal women to reduce the discomfort and menopausal effects such as moderate cancer causing cells. Various strategies were applied and the plant is still under study for further development in its effects. hot flushes and increase in breast density. The plant is also majorly responsible for preventing breast cancer and other apoptosis of Keywords: Trifolium Pratense; Cancer; Trifolium Introduction Family The genus Trifolium comprises of almost 240 species each re- It belongs to the family Fabeaceae leguminosae. markable for its agricultural and therapeutic effects.
    [Show full text]
  • The Biology of Trifolium Repens L. (White Clover)
    The Biology of Trifolium repens L. (White Clover) Photo: Mary-Anne Lattimore, NSW Agriculture, Yanco Version 2: October 2008 This document provides an overview of baseline biological information relevant to risk assessment of genetically modified forms of the species that may be released into the Australian environment. For information on the Australian Government Office of the Gene Technology Regulator visit <http://www.ogtr.gov.au> The Biology of Trifolium repens L. (white clover) Office of the Gene Technology Regulator TABLE OF CONTENTS PREAMBLE ...........................................................................................................................................1 SECTION 1 TAXONOMY .............................................................................................................1 SECTION 2 ORIGIN AND CULTIVATION ...............................................................................3 2.1 CENTRE OF DIVERSITY AND DOMESTICATION .................................................................................. 3 2.2 COMMERCIAL USES ......................................................................................................................... 3 2.3 CULTIVATION IN AUSTRALIA .......................................................................................................... 4 2.3.1 Commercial propagation ..................................................................................................5 2.3.2 Scale of cultivation ...........................................................................................................5
    [Show full text]
  • Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
    Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S.
    [Show full text]
  • Borer Moth (Papaipema Marginidens (Guenee))
    Conservation Assessment for the Brick-Red Borer Moth (Papaipema marginidens (Guenee)) USDA Forest Service, Eastern Region December 6, 2005 James Bess OTIS Enterprises 13501 south 750 west Wanatah, Indiana 46390 This document is undergoing peer review, comments welcome This Conservation Assessment was prepared to compile the published and unpublished information on the subject taxon or community; or this document was prepared by another organization and provides information to serve as a Conservation Assessment for the Eastern Region of the Forest Service. It does not represent a management decision by the U.S. Forest Service. Though the best scientific information available was used and subject experts were consulted in preparation of this document, it is expected that new information will arise. In the spirit of continuous learning and adaptive management, if you have information that will assist in conserving the subject taxon, please contact the Eastern Region of the Forest Service - Threatened and Endangered Species Program at 310 Wisconsin Avenue, Suite 580 Milwaukee, Wisconsin 53203. TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................ 1 ACKNOWLEDGEMENTS............................................................................................................ 1 NOMENCLATURE AND TAXONOMY ..................................................................................... 1 DESCRIPTION OF SPECIES.......................................................................................................
    [Show full text]
  • Trifolium Douglasii House Douglas' Clover Fabaceae - Pea Family Status: State Endangered, BLM Sensitive, USFS Sensitive Rank: G2 / S1
    Trifolium douglasii House Douglas' clover Fabaceae - pea family status: State Endangered, BLM sensitive, USFS sensitive rank: G2 / S1 General Description: Nonrhizomatous (occasionally reported to be rhizomatous) perennial from a thick taproot, usually hairless; stems generally several, erect, simple or with a few branches, 4-8 dm tall. Leaves compound; leaflets 3, linear to oblong-elliptic, 4-10 cm long, the margins very finely serrated to spiny. Petioles usually shorter than the stipules. Stipules oblong-lanceolate, 2-7 cm long, adnate to the petiole most of their length, the margins finely serrated. Floral Characteristics: Heads axillary as well as terminal and long-pedunculate, spherical to ovoid-cylindric, about 3 cm thick, as long to nearly twice as long, with 50-200 flowers, and not subtended by an involucre. Flowers erect, spreading, or the lowest reflexed, 14-20 mm long, reddish purple. Calyx 1/2 Illustration by Jeanne R. Janish, to 3/5 as long as the corolla, hairless, the tube with 17-25 ©1961 University of Washington nerves. Upper pair of calyx teeth broader than the lower 3 and Press usually conspicuously curved downward. Sinuses between the lateral teeth deeper than that between the upper pair. Blooms June to July. Fruits: Pods usually 1-seeded. Identification Tips: Distinguished from other species of Trifolium by its perennial habit, flowers lacking a true involucre, 3 leaflets, and hairless calyx tube generally with 20 prominent nerves. The plants are usually over 5 dm tall, and the flower heads are elongate, usually 3-5 cm long but not as thick. Range: Historically from Spokane Co., WA, to Baker Co., OR, east to adjacent ID.
    [Show full text]
  • Classification of Medicago Sativa L. Using Legume Characters And
    28 ~ 00/ !~12.5 ~ ~i2.8 111113.5 1.0 I.ii = 1.0 W s=== Ii: 32 32 1 Ii: 1Dll 2.2 a..: ~ L. I~ ~ I~ ~ - ~ ~ W :r ~ '" "" ... ...,",I.;.,," . 1.1 ..... ~ --1.1 -- ""'1.8 11I1I1.2~ 111111.4 11111 1.6 111111.25 111111.4 111111.6 MICROCOPY RESOLUTION TEST CHART MICROCOPY RESOLUTION TEST CHART NAlIONA, BUREAU or 5T~NOARDS 1903·/, NAlIONAL BUREAU or 51 ANDARD5-1963-A CLASSIFICATION OF MEDICAGO SATIVA L. US I NG LEGlJv1E a-JARACTERS AND FLCMER COLORS By Charles R. Gwm, \\T. H. Skrdla, and H. C. Spencer Technical Bulletin No. 1574 Agricultural Research Service UNITED STATES DEPAR1NENT OF AGRICULWRE Washington, D.C. February 1978 ACKNa~LEDGt-iENTS The following scientists contributed taxonomic and agro­ nomic data for this bulletin: r. K. Barnes, Plant Science Research Laboratory, Agricultural Research Service CARS), f..t. Paul, ~linn.; E. T. Bingham, Agronomy Department, University of WIsconsin, rradison; T. E. Devine, Cell Culture and Nitro­ gen Fixation Laborat017, J. A. Duke, Plant T~~onomy Laboratory, J. H. Elgin, Jr., Field Crops Laboratory, and H. 1. Hyland, Gennplasm Resources Laboratory, ARS, Beltsville, Md.; D. Isely, Department of Botany and Plant Pathology, Iowa State University, Ames; W. K. Keh~', Department of Agronomy, University of Nebraska, Lincoln; R. P. f'.hJrphy, Department of Plant Breeding and Biometry, Cornell Univel.'::-ity, Ithaca, N.Y.; E. E. Terrell, Plai1t Taxonomy Laboratory, and G. A. White, Germplasm Resources Laboratory, ARS, Beltsville, r.ld.; and J. J. Wurdack, Botany Department, Smithsonian Institution, Washington, D.C. Regina O. Hughes, Smithsonian Institution, prepared the illustrations.
    [Show full text]