Regulation of the ATR Pathway in the Replication Stress Response By

Total Page:16

File Type:pdf, Size:1020Kb

Regulation of the ATR Pathway in the Replication Stress Response By Regulation of the ATR Pathway in the Replication Stress Response By Jessica Whitney Luzwick Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Biochemistry August, 2016 Nashville, Tennessee Approved By David Cortez, Ph.D. Scott Hiebert, Ph.D. William Tansey, Ph.D. Jennifer Pietenpol, Ph.D. Stephen Fesik, Ph.D. To my husband and All those I have met along the way ACKNOWLEDGEMENTS This thesis is an accumulation of six years of struggle, accomplishments, disappointments, many highs and many lows. Every person I have meet along the way played some role in helping me complete this journey. I would like to thank my mentor, David Cortez for his guidance and wisdom through the years, for setting high standards, and for teaching me what it is to be a scientist. I would like to thank my committee members, Scott Hiebert, Jennifer Pietenpol, Bill Tansey, Steve Fesik, and Ellen Fanning for their advice and for sticking it out with me all these years. I am also appreciative of the funding I received from the Environmental Toxicology training grant. Throughout graduate school I had the benefit of working with awesome people every day. Even when the science was rough, the days long and stressful, I knew the people surrounding me would provide a reason to smile. The graduate students who came before me, Carol Bansbach, Edward Nam, Bianca Sirbu, and Jami Couch served as excellent mentors and role models. Carol and Eddie helped me to get started in the lab and set the bar high for being a graduate student in the Cortez lab. Bianca was a constant source of positivity and encouragement and Jami, the wise sage, was always so calm and confident. Gloria always keeps the lab stocked with both needed lab supplies and chocolate and who is constantly keeping things organized. Nancy became the CRISPR guru and made all the CRISPR cell lines and mutant ATR cell lines in this thesis. Clint, Gina, and Akosua all joined the lab around the same time I did. Clint was a constant source of enthusiasm that even though this experiment did not work, surely the next one would. Gina, the most experienced of the four of us, provided valuable wisdom iii and friendship. Akosua was my partner in crime as we navigated classes, quals, and committee meetings together. Huzefa, Kami, Lisa, and Kareem all joined the lab within the following couple years. Kareem convinced me to do the whole genome screen with him and while this resulted in a lot of struggle, I greatly benefited from his scientific guidance and friendship. Huzefa and Kami taught us all about India and very unfortunately, introduced the lab to going to Indian food for lunch. Kami and Lisa quickly became my friends and lab companions. We have had many adventures to concerts, movies, and other places creating many great memories from these years in Nashville. We have had a lot of laughs. Thomas was the latest graduate student to join the lab and fit right into our group. Maybe one day the lab will finally go canoeing. Finally, I would like to thank all the friends I have met in Nashville. My fellow IGPers with whom I started graduate school, Amanda Myer Johnson, Kate Mittendorf, and Liz Ferrick Kiddie. Liz and I interviewed at Vanderbilt the same weekend and was my first friend in Nashville. Amanda can always be counted on to have a smile on her face and to be enthusiastic about life. Kate, we have endured a lot together through these years and I will always treasure our friendship and being able to be truly me around you, no matter how sarcastic or blunt. There were many other friendships throughout the years and each provided a source of great memories. The friendships you have during graduate school are one of the greatest sources of encouragement and strength and without which, I would not have made it through this marathon of obtaining a Ph.D. I would like to thank my husband Tom. Who met me during my first year of graduate school and decided for whatever reason to stick it out with me. He never complained about the long hours, my moodiness, or silences when I would physically come iv home but mentally would still be back in lab. He became my rock and source of calm. I would like to thank my family for being understanding when I was not always pleasant or present and my sisters for having all the babies. During graduate school my four nieces and nephew were all born. Watching them grow provided perspective that whatever challenge I was currently facing was not all that big in the grand scheme of life and that human life, development from a single fertilized egg to a walking, talking 5-year-old with opinions, is truly a miracle. v TABLE OF CONTENTS Page DEDICATION .................................................................................................................... ii ACKNOWLEDGEMENTS ............................................................................................... iii LIST OF TABLES ...............................................................................................................x LIST OF FIGURES ........................................................................................................... xi LIST OF ABBREVIATIONS .......................................................................................... xiv CHAPTER I. INTRODUCTION .........................................................................................................1 The Cell Cycle and Checkpoints....................................................................................2 DNA Replication ...........................................................................................................4 Origin Licensing ......................................................................................................5 Origin Firing ............................................................................................................7 Regulation of Origins ...............................................................................................7 Regulation Fork Elongation .....................................................................................8 ATR and the Replication Stress Response.....................................................................8 Activation of ATR: RPA coated ssDNA gaps .........................................................9 Activation of ATR: ATR/ATRIP Complex ...........................................................11 Activation of ATR: 9-1-1 recruitment of TOPBP1 ...............................................12 Additional Components of the ATR Activation Pathway .....................................13 Alternative Mechanisms of ATR Activation .........................................................14 S-phase Checkpoint ...............................................................................................17 G2/M Checkpoint...................................................................................................21 Regulation of PIKK Kinases ........................................................................................23 Domain Architecture ..............................................................................................23 Regulation by Localization ....................................................................................26 Regulation by Protein Activators ...........................................................................28 Regulation by Post-translational Modifications.....................................................29 Targeting the DDR in Cancer ......................................................................................31 Oncogene Induced Replication Stress ...................................................................31 Inhibition of the DDR ............................................................................................32 ATR Inhibitors .......................................................................................................33 II. MATERIALS AND METHODS .................................................................................36 vi Site-directed Mutagenesis ............................................................................................36 Cell Lysate for Western Blot .......................................................................................38 Cell Lines .....................................................................................................................38 Transfection .................................................................................................................39 Reagents .......................................................................................................................40 ATR Kinase Assay .......................................................................................................40 Chromatin Fractionation ..............................................................................................42 Chromatin Fractionation: Alternative Method.............................................................43 DNA Fiber Labeling ....................................................................................................43 Flow Cytometry ...........................................................................................................45 Immunofluorescence ....................................................................................................46 Genetic Complementation of ATR Flox/-
Recommended publications
  • Activated Peripheral-Blood-Derived Mononuclear Cells
    Transcription factor expression in lipopolysaccharide- activated peripheral-blood-derived mononuclear cells Jared C. Roach*†, Kelly D. Smith*‡, Katie L. Strobe*, Stephanie M. Nissen*, Christian D. Haudenschild§, Daixing Zhou§, Thomas J. Vasicek¶, G. A. Heldʈ, Gustavo A. Stolovitzkyʈ, Leroy E. Hood*†, and Alan Aderem* *Institute for Systems Biology, 1441 North 34th Street, Seattle, WA 98103; ‡Department of Pathology, University of Washington, Seattle, WA 98195; §Illumina, 25861 Industrial Boulevard, Hayward, CA 94545; ¶Medtronic, 710 Medtronic Parkway, Minneapolis, MN 55432; and ʈIBM Computational Biology Center, P.O. Box 218, Yorktown Heights, NY 10598 Contributed by Leroy E. Hood, August 21, 2007 (sent for review January 7, 2007) Transcription factors play a key role in integrating and modulating system. In this model system, we activated peripheral-blood-derived biological information. In this study, we comprehensively measured mononuclear cells, which can be loosely termed ‘‘macrophages,’’ the changing abundances of mRNAs over a time course of activation with lipopolysaccharide (LPS). We focused on the precise mea- of human peripheral-blood-derived mononuclear cells (‘‘macro- surement of mRNA concentrations. There is currently no high- phages’’) with lipopolysaccharide. Global and dynamic analysis of throughput technology that can precisely and sensitively measure all transcription factors in response to a physiological stimulus has yet to mRNAs in a system, although such technologies are likely to be be achieved in a human system, and our efforts significantly available in the near future. To demonstrate the potential utility of advanced this goal. We used multiple global high-throughput tech- such technologies, and to motivate their development and encour- nologies for measuring mRNA levels, including massively parallel age their use, we produced data from a combination of two distinct signature sequencing and GeneChip microarrays.
    [Show full text]
  • Functional Roles of Bromodomain Proteins in Cancer
    cancers Review Functional Roles of Bromodomain Proteins in Cancer Samuel P. Boyson 1,2, Cong Gao 3, Kathleen Quinn 2,3, Joseph Boyd 3, Hana Paculova 3 , Seth Frietze 3,4,* and Karen C. Glass 1,2,4,* 1 Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA; [email protected] 2 Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; [email protected] 3 Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; [email protected] (C.G.); [email protected] (J.B.); [email protected] (H.P.) 4 University of Vermont Cancer Center, Burlington, VT 05405, USA * Correspondence: [email protected] (S.F.); [email protected] (K.C.G.) Simple Summary: This review provides an in depth analysis of the role of bromodomain-containing proteins in cancer development. As readers of acetylated lysine on nucleosomal histones, bromod- omain proteins are poised to activate gene expression, and often promote cancer progression. We examined changes in gene expression patterns that are observed in bromodomain-containing proteins and associated with specific cancer types. We also mapped the protein–protein interaction network for the human bromodomain-containing proteins, discuss the cellular roles of these epigenetic regu- lators as part of nine different functional groups, and identify bromodomain-specific mechanisms in cancer development. Lastly, we summarize emerging strategies to target bromodomain proteins in cancer therapy, including those that may be essential for overcoming resistance. Overall, this review provides a timely discussion of the different mechanisms of bromodomain-containing pro- Citation: Boyson, S.P.; Gao, C.; teins in cancer, and an updated assessment of their utility as a therapeutic target for a variety of Quinn, K.; Boyd, J.; Paculova, H.; cancer subtypes.
    [Show full text]
  • Responses of Bats to White-Nose Syndrome and Implications for Conservation
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 2020 Responses of Bats to White-Nose Syndrome and Implications for Conservation Meghan Stark University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Stark, Meghan, "Responses of Bats to White-Nose Syndrome and Implications for Conservation" (2020). Doctoral Dissertations. 2518. https://scholars.unh.edu/dissertation/2518 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. RESPONSES OF BATS TO WHITE-NOSE SYNDROME AND IMPLICATIONS FOR CONSERVATION BY MEGHAN A. STARK B.S., University of Alabama at Birmingham, 2013 DISSERTATION Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy In Genetics May 2020 i This dissertation was examined and approved in partial fulfillment of the requirements for the degree of Ph.D. in Genetics by: Dissertation Director, Matthew MacManes, Assoc. Prof. UNH MCBS Jeffrey T. Foster, Associate Professor, NAU PMI W. Kelley Thomas, Professor, UNH MCBS Rebecca Rowe, Associate Professor, UNH NREN Thomas Lee, Associate Professor Emeritus, UNH NREN On April 6, 2020 Approval signatures are on file with the University of New Hampshire Graduate School. ii DEDICATION I dedicate this work to all of the strong women in my life: Myra Michele Ange Heather Michelle Coons Kaitlyn Danielle Cagle Brindlee Michelle Coons Patricia Gail Miller Sarah Jean Lane “Here’s to strong women.
    [Show full text]
  • An Order Estimation Based Approach to Identify Response Genes
    AN ORDER ESTIMATION BASED APPROACH TO IDENTIFY RESPONSE GENES FOR MICRO ARRAY TIME COURSE DATA A Thesis Presented to The Faculty of Graduate Studies of The University of Guelph by ZHIHENG LU In partial fulfilment of requirements for the degree of Doctor of Philosophy September, 2008 © Zhiheng Lu, 2008 Library and Bibliotheque et 1*1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-47605-5 Our file Notre reference ISBN: 978-0-494-47605-5 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library permettant a la Bibliotheque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par Plntemet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans loan, distribute and sell theses le monde, a des fins commerciales ou autres, worldwide, for commercial or non­ sur support microforme, papier, electronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in et des droits moraux qui protege cette these. this thesis. Neither the thesis Ni la these ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent etre imprimes ou autrement may be printed or otherwise reproduits sans son autorisation.
    [Show full text]
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • To Study Mutant P53 Gain of Function, Various Tumor-Derived P53 Mutants
    Differential effects of mutant TAp63γ on transactivation of p53 and/or p63 responsive genes and their effects on global gene expression. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By Shama K Khokhar M.Sc., Bilaspur University, 2004 B.Sc., Bhopal University, 2002 2007 1 COPYRIGHT SHAMA K KHOKHAR 2007 2 WRIGHT STATE UNIVERSITY SCHOOL OF GRADUATE STUDIES Date of Defense: 12-03-07 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY SHAMA KHAN KHOKHAR ENTITLED Differential effects of mutant TAp63γ on transactivation of p53 and/or p63 responsive genes and their effects on global gene expression BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science Madhavi P. Kadakia, Ph.D. Thesis Director Daniel Organisciak , Ph.D. Department Chair Committee on Final Examination Madhavi P. Kadakia, Ph.D. Steven J. Berberich, Ph.D. Michael Leffak, Ph.D. Joseph F. Thomas, Jr., Ph.D. Dean, School of Graduate Studies 3 Abstract Khokhar, Shama K. M.S., Department of Biochemistry and Molecular Biology, Wright State University, 2007 Differential effect of TAp63γ mutants on transactivation of p53 and/or p63 responsive genes and their effects on global gene expression. p63, a member of the p53 gene family, known to play a role in development, has more recently also been implicated in cancer progression. Mice lacking p63 exhibit severe developmental defects such as limb truncations, abnormal skin, and absence of hair follicles, teeth, and mammary glands. Germline missense mutations of p63 have been shown to be responsible for several human developmental syndromes including SHFM, EEC and ADULT syndromes and are associated with anomalies in the development of organs of epithelial origin.
    [Show full text]
  • Learning from Cadherin Structures and Sequences: Affinity Determinants and Protein Architecture
    Learning from cadherin structures and sequences: affinity determinants and protein architecture Klára Fels ıvályi Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 © 2014 Klara Felsovalyi All rights reserved ABSTRACT Learning from cadherin structures and sequences: affinity determinants and protein architecture Klara Felsovalyi Cadherins are a family of cell-surface proteins mediating adhesion that are important in development and maintenance of tissues. The family is defined by the repeating cadherin domain (EC) in their extracellular region, but they are diverse in terms of protein size, architecture and cellular function. The best-understood subfamily is the type I classical cadherins, which are found in vertebrates and have five EC domains. Among the five different type I classical cadherins, the binding interactions are highly specific in their homo- and heterophilic binding affinities, though their sequences are very similar. As previously shown, E- and N-cadherins, two prototypic members of the subfamily, differ in their homophilic K D by about an order of magnitude, while their heterophilic affinity is intermediate. To examine the source of the binding affinity differences among type I cadherins, we used crystal structures, analytical ultracentrifugation (AUC), surface plasmon resonance (SPR), and electron paramagnetic resonance (EPR) studies. Phylogenetic analysis and binding affinity behavior show that the type I cadherins can be further divided into two subgroups, with E- and N-cadherin representing each. In addition to the affinity differences in their wild-type binding through the strand-swapped interface, a second interface also shows an affinity difference between E- and N-cadherin.
    [Show full text]
  • Human DNA2 Possesses a Cryptic DNA Unwinding Activity That
    RESEARCH ARTICLE Human DNA2 possesses a cryptic DNA unwinding activity that functionally integrates with BLM or WRN helicases Cosimo Pinto1, Kristina Kasaciunaite2, Ralf Seidel2, Petr Cejka1* 1Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland; 2Institute of Experimental Physics I, University of Leipzig, Leipzig, Germany Abstract Human DNA2 (hDNA2) contains both a helicase and a nuclease domain within the same polypeptide. The nuclease of hDNA2 is involved in a variety of DNA metabolic processes. Little is known about the role of the hDNA2 helicase. Using bulk and single-molecule approaches, we show that hDNA2 is a processive helicase capable of unwinding kilobases of dsDNA in length. The nuclease activity prevents the engagement of the helicase by competing for the same substrate, hence prominent DNA unwinding by hDNA2 alone can only be observed using the nuclease-deficient variant. We show that the helicase of hDNA2 functionally integrates with BLM or WRN helicases to promote dsDNA degradation by forming a heterodimeric molecular machine. This collectively suggests that the hDNA2 motor promotes the enzyme’s capacity to degrade dsDNA in conjunction with BLM or WRN and thus promote the repair of broken DNA. DOI: 10.7554/eLife.18574.001 Introduction DNA replication, repair and recombination require the function of multiple DNA helicases and nucle- ases (Tsutakawa et al., 2014; Wu and Hickson, 2006). The DNA replication ATP-dependent heli- *For correspondence: cejka@ case/nuclease 2 (DNA2) is an enzyme that contains both helicase and nuclease domains within the imcr.uzh.ch same polypeptide (Bae et al., 1998), and has important functions in a variety of DNA metabolic pro- Competing interests: The cesses.
    [Show full text]
  • Transcription-Replication Collisions—A Series of Unfortunate Events
    biomolecules Review Transcription-Replication Collisions—A Series of Unfortunate Events Commodore St Germain 1,2,*, Hongchang Zhao 2 and Jacqueline H. Barlow 2,* 1 School of Mathematics and Science, Solano Community College, 4000 Suisun Valley Road, Fairfield, CA 94534, USA 2 Department of Microbiology and Molecular Genetics, University of California Davis, One Shields Avenue, Davis, CA 95616, USA; [email protected] * Correspondence: [email protected] (C.S.G.); [email protected] (J.H.B.) Abstract: Transcription-replication interactions occur when DNA replication encounters genomic regions undergoing transcription. Both replication and transcription are essential for life and use the same DNA template making conflicts unavoidable. R-loops, DNA supercoiling, DNA secondary structure, and chromatin-binding proteins are all potential obstacles for processive replication or transcription and pose an even more potent threat to genome integrity when these processes co-occur. It is critical to maintaining high fidelity and processivity of transcription and replication while navigating through a complex chromatin environment, highlighting the importance of defining cellular pathways regulating transcription-replication interaction formation, evasion, and resolution. Here we discuss how transcription influences replication fork stability, and the safeguards that have evolved to navigate transcription-replication interactions and maintain genome integrity in mammalian cells. Keywords: DNA replication; transcription; R-loops; replication stress Citation: St Germain, C.; Zhao, H.; Barlow, J.H. Transcription-Replication Collisions—A Series of Unfortunate Events. Biomolecules 2021, 11, 1249. 1. Introduction https://doi.org/10.3390/ From bacteria to humans, transcription has been identified as a source of genome biom11081249 instability, initially observed as spontaneous recombination referred to as transcription- associated recombination (TAR) [1].
    [Show full text]
  • Valproic Acid Reversed Pathologic Endothelial Cell Gene Expression Profile Associated with Ischemia– Reperfusion Injury in a Swine Hemorrhagic Shock Model
    From the Peripheral Vascular Surgery Society Valproic acid reversed pathologic endothelial cell gene expression profile associated with ischemia– reperfusion injury in a swine hemorrhagic shock model Marlin Wayne Causey, MD,a Shashikumar Salgar, PhD,b Niten Singh, MD,a Matthew Martin, MD,a and Jonathan D. Stallings, PhD,b Tacoma, Wash Background: Vascular endothelial cells serve as the first line of defense for end organs after ischemia and reperfusion injuries. The full etiology of this dysfunction is poorly understood, and valproic acid (VPA) has proven to be beneficial after traumatic injury. The purpose of this study was to determine the mechanism of action through which VPA exerts its beneficial effects. Methods: Sixteen Yorkshire swine underwent a standardized protocol for an ischemia–reperfusion injury through received (6 ؍ hemorrhage and a supraceliac cross-clamp with ensuing 6-hour resuscitation. The experimental swine (n Aortic .(5 ؍ and injury-control models (n (5 ؍ VPA at cross-clamp application and were compared with sham (n endothelium was harvested, and microarray analysis was performed along with a functional clustering analysis with gene transcript validation using relative quantitative polymerase chain reaction. Results: Clinical comparison of experimental swine matched for sex, weight, and length demonstrated that VPA significantly decreased resuscitative requirements, with improved hemodynamics and physiologic laboratory measure- ments. Six transcript profiles from the VPA treatment were compared with the 1536 gene transcripts (529 up and 1007 down) from sham and injury-control swine. Microarray analysis and a Database for Annotation, Visualization and Integrated Discovery functional pathway analysis approach identified biologic processes associated with pathologic vascular endothelial function, specifically through functional cluster pathways involving apoptosis/cell death and angiogenesis/vascular development, with five specific genes (THBS1, TNFRSF12A, ANGPTL4, RHOB, and RTN4) identified as members of both functional clusters.
    [Show full text]
  • Polymerase Δ Deficiency Causes Syndromic Immunodeficiency with Replicative Stress
    Polymerase δ deficiency causes syndromic immunodeficiency with replicative stress Cecilia Domínguez Conde, … , Mirjam van der Burg, Kaan Boztug J Clin Invest. 2019. https://doi.org/10.1172/JCI128903. Research Article Genetics Immunology Graphical abstract Find the latest version: https://jci.me/128903/pdf The Journal of Clinical Investigation RESEARCH ARTICLE Polymerase δ deficiency causes syndromic immunodeficiency with replicative stress Cecilia Domínguez Conde,1,2 Özlem Yüce Petronczki,1,2,3 Safa Baris,4,5 Katharina L. Willmann,1,2 Enrico Girardi,2 Elisabeth Salzer,1,2,3,6 Stefan Weitzer,7 Rico Chandra Ardy,1,2,3 Ana Krolo,1,2,3 Hanna Ijspeert,8 Ayca Kiykim,4,5 Elif Karakoc-Aydiner,4,5 Elisabeth Förster-Waldl,9 Leo Kager,6 Winfried F. Pickl,10 Giulio Superti-Furga,2,11 Javier Martínez,7 Joanna I. Loizou,2 Ahmet Ozen,4,5 Mirjam van der Burg,8 and Kaan Boztug1,2,3,6 1Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, 2CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, and 3St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria. 4Pediatric Allergy and Immunology, Marmara University, Faculty of Medicine, Istanbul, Turkey. 5Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Marmara University, Istanbul, Turkey. 6St. Anna Children’s Hospital, Department of Pediatrics and Adolescent Medicine, Vienna, Austria. 7Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria. 8Department of Pediatrics, Laboratory for Immunology, Leiden University Medical Centre, Leiden, Netherlands. 9Department of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, 10Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, and 11Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
    [Show full text]
  • Biallelic GINS2 Variant P.(Arg114leu) Causes Meier-Gorlin Syndrome With
    Genotype- phenotype correlations J Med Genet: first published as 10.1136/jmedgenet-2020-107572 on 5 August 2021. Downloaded from Short report Biallelic GINS2 variant p.(Arg114Leu) causes Meier- Gorlin syndrome with craniosynostosis Maria J Nabais Sá ,1,2 Kerry A Miller,3 Mary McQuaid,4 Nils Koelling,3 Andrew O M Wilkie ,3 Hugo Wurtele,4 Arjan P M de Brouwer,1 Jorge Oliveira 5,6 ► Additional supplemental ABSTRACT complex (Cdc45/MCM2–7/GINS) is a DNA heli- material is published online Introduction Replication of the nuclear genome is an case that separates the two strands of the DNA only. To view, please visit essential step for cell division. Pathogenic variants in double helix at replication origins, subsequently the journal online (http:// dx. 8 doi. org/ 10. 1136/ jmedgenet- genes coding for highly conserved components of the enabling their replication. 2020- 107572). DNA replication machinery cause Meier- Gorlin syndrome The genotype of individuals with MGORS (MGORS). requires at least one allele of genes encoding essen- For numbered affiliations see Objective Identification of novel genes associated with tial DNA replication factors allowing for some end of article. MGORS. residual activity (hypomorphic variant).2–6 Further- more, less severe phenotypes are often associated Correspondence to Methods Exome sequencing was performed to Dr Maria J Nabais Sá, investigate the genotype of an individual presenting with with two hypomorphic variants, while more severe Department of Human Genetics prenatal and postnatal growth restriction, a craniofacial phenotypes result from a combination of a hypo- (route 836), Radboud University gestalt of MGORS and coronal craniosynostosis. The morphic and a loss- of- function variant.1 Never- Medical Center, P.O.
    [Show full text]