Engaging Chromatin: PRC2 Structure Meets Function

Total Page:16

File Type:pdf, Size:1020Kb

Engaging Chromatin: PRC2 Structure Meets Function www.nature.com/bjc REVIEW ARTICLE Engaging chromatin: PRC2 structure meets function Paul Chammas1, Ivano Mocavini1 and Luciano Di Croce1,2,3 Polycomb repressive complex 2 (PRC2) is a key epigenetic multiprotein complex involved in the regulation of gene expression in metazoans. PRC2 is formed by a tetrameric core that endows the complex with histone methyltransferase activity, allowing it to mono-, di- and tri-methylate histone H3 on lysine 27 (H3K27me1/2/3); H3K27me3 is a hallmark of facultative heterochromatin. The core complex of PRC2 is bound by several associated factors that are responsible for modulating its targeting specificity and enzymatic activity. Depletion and/or mutation of the subunits of this complex can result in severe developmental defects, or even lethality. Furthermore, mutations of these proteins in somatic cells can be drivers of tumorigenesis, by altering the transcriptional regulation of key tumour suppressors or oncogenes. In this review, we present the latest results from structural studies that have characterised PRC2 composition and function. We compare this information with data and literature for both gain-of function and loss-of-function missense mutations in cancers to provide an overview of the impact of these mutations on PRC2 activity. British Journal of Cancer (2020) 122:315–328; https://doi.org/10.1038/s41416-019-0615-2 BACKGROUND and embryonic ectoderm development (EED) (Table 1). These Transcriptional diversity is one of the hallmarks of cellular three proteins form the minimal core that confers histone identity. It is largely regulated at the level of chromatin, where methyltransferase (HMT) activity. A fourth factor, retinoblastoma- different protein complexes act as initiators, enhancers and/or binding protein (RBBP)4/7 (also known as RBAP48/46), has a repressors of transcription. Among these complexes, are slightly lower stoichiometry and is dispensable for the enzymatic epigenetic modifiers, which are able to catalyse post- activity of the complex.22,23 Although there is very little diversity translational modifications (PTMs)—such as methylation, acet- in PRC2 core components, a large number of facultative subunits ylation, phosphorylation or ubiquitination—of histone proteins. have been shown to bind PRC2 in a sub-stoichiometric and cell- These modifications can influence gene expression by modulat- type specific manner,24–26 adding both to the complexity of ing chromatin accessibility, its interaction with other proteins recruitment of this complex to chromatin and to additional and its three-dimensional organisation. The Polycomb group possibilities of regulation of its enzymatic activity.27 Studies (PcG) proteins form histone-modifying complexes whose activity carried out over the past 5 years have shown that many of these is associated with transcriptional silencing of facultative hetero- facultative subunits bind in a mutually exclusive manner, giving chromatin.1–4 Two catalytically distinct complexes can be rise to two versions of the PRC2 complex. The first variant distinguished: the Polycomb repressive complex (PRC) 1, and (PRC2.1) comprises one of three Polycomb-like (PCL) proteins PRC2. PRC1 catalyses the mono-ubiquitination of lysine 119 on (PCL1/2/3, also named PHF1, MTF2 and PHF19, respectively) histone H2A (H2AK119ub),5,6 whereas PRC2 catalyses the mono-, as well as Elongin BC and Polycomb repressive complex di- and tri-methylation of lysine 27 on the histone H3 tail 2-associated protein (EPOP) or PRC2-associated LCOR isoform 1 (H3K27me1/2/3).7 In mice and humans, PRC2 is essential for (PALI1/2), while the other variant (PRC2.2) comprises Jumonji proper embryonic stem cell (ESC) fate specification, as it and AT-rich interaction domain 2 (JARID2) and adipocyte regulates the expression of key developmental genes.8–10 enhancer-binding protein 2 (AEBP2),26,28–30 in addition to the Indeed, depletion of PRC2 subunits leads to severe develop- core components. mental defects with early embryonic or perinatal lethality.10–17 Along with the interest in characterising the functional role of Mutations and/or dysregulation of PcG genes are found in accessory factors in regulating PRC2 activity, effort has also been several cancer types, especially haematological ones,18,19 as put into trying to gain structural insights into the complexity of well as in rare genetic diseases associated with overgrowth, such PRC2 and its subtypes. In this review, we discuss the latest findings as Weaver syndrome.20 These alterations can affect PRC2 regarding the PRC2 structure, focusing on the aspects that define recruitment and enzymatic activity, leading to changes in the the formation of different complex subtypes, its chromatin expression of tumour suppressors or oncogenes. targeting and its enzymatic activity. Finally, building on all the The PRC2 core comprises three stoichiometric factors: enhan- current structural knowledge, we highlight the potential effect of cer of Zeste (EZH)1 or EZH2, which has a SET domain and is the PRC2 mutations on complex integrity and activity, and the role of catalytic subunit of the complex;7,21 suppressor of Zeste (SUZ) 12; mutations of PRC2 components in cancer. 1Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain; 2Universitat Pompeu Fabra (UPF), Barcelona, Spain and 3ICREA, Pg Lluis Companys 23, Barcelona 08010, Spain Correspondence: Luciano Di Croce ([email protected]) These authors contributed equally: Paul Chammas, Ivano Mocavini. Received: 14 June 2019 Accepted: 24 September 2019 Published online: 11 November 2019 © The Author(s), under exclusive licence to Cancer Research UK 2019 Engaging chromatin: PRC2 structure meets function P Chammas et al. 316 Table 1. Domain composition of PRC2 subunits Table 1 continued Protein Name Acronym Protein Name Acronym PHF19/PCL3 Tudor domain Tudor SUZ12 Zn finger binding domain ZnB PHD Domain PHD1 WD-domain binding 1 WDB1 PHD Domain PHD2 C2 domain C2 Extended Homology domain EH Zn Finger Zn Chromo domain Chromo WD-domain binding 2 WDB2 EPOP ELOBC binding box BC box VRN2-EMF2-FIS2-Su(z)12 box VEFS C-terminal region CTR EZH2 SANT1L-binding domain SBD AEBP2 Zn finger Zn1 EED-binding domain EBD Zn finger Zn2 β-addition motif BAM Zn finger Zn3 SET activation loop SAL Lysine/Arginine-rich domain KR stimulation-responsive motif SRM C2 binding domain C2B Swi3, Ada2, N-CoR and TFIIIB DNA- SANT1 binding domain 1 like H3K4 displacement domain H3K4D Motif connecting SANT1 and SANT2 MCSS JARID2 Transrepression domain TR SANT2-like SANT2 Ezh1/2-binding domain CXC domain CXC Nucleosome interaction domain Su(var)3-9, E(z) and Trx domain SET Jumonji N-term JmjN Post-SET Post-SET AT-rich interaction domain ARID EED WD-repeat region WD1 Jumonji C-term JmjC WD2 Zinc finger ZF 1234567890();,: WD3 WD4 WD5 STRUCTURAL BASIS FOR PRC2 COMPLEX FORMATION AND WD6 FUNCTION The association of the trimeric core (EZH2, SUZ12 and EED) with WD7 RBBP4 results in a stable, four-lobed structure (Fig. 1)27,28 that PALI1 Nuclear receptor binding box NR comes together to mediate HMT activity. CTBP binding motifs (x2) CTBP G9A interaction region The catalytic lobe Pali interaction with PRC2 domain PIP The C-terminal region of EZH2, comprising the CXC domain (a cysteine-rich region) and the SET domain, forms the catalytic RBBP4 WD-repeat region WD1 lobe, in which the HMT activity of PRC2 resides (Fig. 1e). The WD2 active site presents two pockets in the SET domain: the first one WD3 is a highly hydrophobic channel (Y641, F667, F724, Y726 and WD4 Y728), which accommodates the long aliphatic chain of the WD5 lysine substrate (Fig. 1c). The end of this channel is connected to a second pocket, in which the cofactor S-adenosyl methionine WD6 (SAM) is positioned in an orientation that brings its methyl WD7 group in close proximity to the ε-amino group of the lysine. RBBP7 WD-repeat region WD1 Residues that lie at the interface of these two pockets (e.g. Y641, WD2 A677 and A687) are crucial for catalysis, and their mutation fi WD3 results in changes in af nity for the substrate that are associated with gain-of-function phenotypes (as discussed below). The WD4 assembly of the trimeric core is essential for HMT activity: in WD5 isolation, EZH2 adopts an autoinhibited conformation, with the WD6 post-SET domain (the region C-terminal to the SET domain) WD7 folded upwards into the lysine-binding cleft, blocking the 31–33 PHF1/PCL1 Tudor domain Tudor substrate from engaging the active site. This mechanism, which seems to be conserved in the H3K9 methyltransferase PHD Domain PHD1 Suv39h2,34 might provide a ‘safety catch’ against spurious PHD Domain PHD2 histone methylation. Extended Homology domain EH Chromo domain Chromo The regulatory lobe MTF2/PCL2 Tudor domain Tudor The catalytic lobe is in close contact with the regulatory lobe, which is formed by the association of EED with the N-terminal PHD Domain PHD1 domain of EZH2 (Fig. 1d). The long α-helix of the EED-binding PHD Domain PHD2 domain (EBD) and the β-addition motif (BAM) of EZH2 wrap Extended Homology domain EH around the bottom (or closed end) and side, respectively, of the 35,36 Chromo domain Chromo WD-repeat seven-bladed β-propeller of EED. This conforma- tion is necessary to maintain EED in a stable position while leaving Engaging chromatin: PRC2 structure meets function P Chammas et al. 317 Middle lobe a EZH2EZH2 b c H3 SETSET K27 Y728 SANT2 F667 L616 F686 Y726 SUZ12 MCSS F724 VEFS Y641 M110 A687 EZH2EZH2 F665 F566 SETSET W624 A677 SAM VEFS P618 EZH2EZH2 R685 SALSAL V107 P108 180° Regulatory lobe Catalytic lobe d EZH2 e SANT1 SBD EED CXC EBD SRM 90° SET BAM SUZ12 RBBP4 Docking lobe f SUZ12 g h JARID2 Zn/ZnB TR L87 E91 E84 ZnB R164 L161 F86 WDB2 F160 Zn R98 F157 F90 T159 JARID2 L158 TR F432 W452 SUZ12 Zn/ZnB P451 Y430 D156 C2 WDB1 E155 R445 Fig.
Recommended publications
  • Plant SET Domain-Containing Proteins: Structure, Function and Regulation
    Biochimica et Biophysica Acta 1769 (2007) 316–329 www.elsevier.com/locate/bbaexp Review Plant SET domain-containing proteins: Structure, function and regulation Danny W-K Ng, Tao Wang, Mahesh B. Chandrasekharan 1, Rodolfo Aramayo, ⁎ Sunee Kertbundit 2, Timothy C. Hall Institute of Developmental and Molecular Biology and Department of Biology, Texas A&M University, College Station, TX 77843-3155, USA Received 27 October 2006; received in revised form 3 April 2007; accepted 4 April 2007 Available online 12 April 2007 Abstract Modification of the histone proteins that form the core around which chromosomal DNA is looped has profound epigenetic effects on the accessibility of the associated DNA for transcription, replication and repair. The SET domain is now recognized as generally having methyltransferase activity targeted to specific lysine residues of histone H3 or H4. There is considerable sequence conservation within the SET domain and within its flanking regions. Previous reviews have shown that SET proteins from Arabidopsis and maize fall into five classes according to their sequence and domain architectures. These classes generally reflect specificity for a particular substrate. SET proteins from rice were found to fall into similar groupings, strengthening the merit of the approach taken. Two additional classes, VI and VII, were established that include proteins with truncated/ interrupted SET domains. Diverse mechanisms are involved in shaping the function and regulation of SET proteins. These include protein–protein interactions through both intra- and inter-molecular associations that are important in plant developmental processes, such as flowering time control and embryogenesis. Alternative splicing that can result in the generation of two to several different transcript isoforms is now known to be widespread.
    [Show full text]
  • O-Glcnacylation Regulates the Stability and Enzymatic Activity of the Histone Methyltransferase EZH2
    O-GlcNAcylation regulates the stability and enzymatic activity of the histone methyltransferase EZH2 Pei-Wen Loa, Jiun-Jie Shieb, Chein-Hung Chena, Chung-Yi Wua, Tsui-Ling Hsua, and Chi-Huey Wonga,1 aGenomics Research Center, Academia Sinica, Taipei 115, Taiwan; and bInstitute of Chemistry, Academia Sinica, Taipei 115, Taiwan Contributed by Chi-Huey Wong, May 16, 2018 (sent for review February 1, 2018; reviewed by Michael D. Burkart, Benjamin G. Davis, and Gerald W. Hart) Protein O-glycosylation by attachment of β-N-acetylglucosamine maintenance and differentiation in embryonic stem cells (14, 15). (GlcNAc) to the Ser or Thr residue is a major posttranslational It was suggested that O-GlcNAcylation might play an important glycosylation event and is often associated with protein folding, role in the regulation of PRC1-mediated gene expression, and stability, and activity. The methylation of histone H3 at Lys-27 along this line the O-GlcNAcylation of EZH2 at S76 in the PRC2 catalyzed by the methyltransferase EZH2 was known to suppress complex was reported to stablize EZH2 in our previous study (16). gene expression and cancer development, and we previously The PRC2 complex is composed of Enhancer of zeste 2 (EZH2), reported that the O-GlcNAcylation of EZH2 at S76 stabilized Suppressor of Zeste 12 (Suz12), Extraembryonic endoderm (EED), EZH2 and facilitated the formation of H3K27me3 to inhibit tumor AE binding protein 2 (AEBP2), and retinoblastoma binding protein suppression. In this study, we employed a fluorescence-based method 4/7 (RBBP4/7) (17, 18). Within the PRC2 complex, EZH2 catalyzes the di- and trimethylation of histone H3 at lysine 27 (K27) to form of sugar labeling combined with mass spectrometry to investigate H3K27me2/3 to regulate embryonic and cancer development EZH2 glycosylation and identified five O-GlcNAcylation sites.
    [Show full text]
  • The Mutational Landscape of Myeloid Leukaemia in Down Syndrome
    cancers Review The Mutational Landscape of Myeloid Leukaemia in Down Syndrome Carini Picardi Morais de Castro 1, Maria Cadefau 1,2 and Sergi Cuartero 1,2,* 1 Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, 08916 Badalona, Spain; [email protected] (C.P.M.d.C); [email protected] (M.C.) 2 Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, 08916 Badalona, Spain * Correspondence: [email protected] Simple Summary: Leukaemia occurs when specific mutations promote aberrant transcriptional and proliferation programs, which drive uncontrolled cell division and inhibit the cell’s capacity to differentiate. In this review, we summarize the most frequent genetic lesions found in myeloid leukaemia of Down syndrome, a rare paediatric leukaemia specific to individuals with trisomy 21. The evolution of this disease follows a well-defined sequence of events and represents a unique model to understand how the ordered acquisition of mutations drives malignancy. Abstract: Children with Down syndrome (DS) are particularly prone to haematopoietic disorders. Paediatric myeloid malignancies in DS occur at an unusually high frequency and generally follow a well-defined stepwise clinical evolution. First, the acquisition of mutations in the GATA1 transcription factor gives rise to a transient myeloproliferative disorder (TMD) in DS newborns. While this condition spontaneously resolves in most cases, some clones can acquire additional mutations, which trigger myeloid leukaemia of Down syndrome (ML-DS). These secondary mutations are predominantly found in chromatin and epigenetic regulators—such as cohesin, CTCF or EZH2—and Citation: de Castro, C.P.M.; Cadefau, in signalling mediators of the JAK/STAT and RAS pathways.
    [Show full text]
  • Automethylation of PRC2 Promotes H3K27 Methylation and Is Impaired in H3K27M Pediatric Glioma
    Downloaded from genesdev.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Automethylation of PRC2 promotes H3K27 methylation and is impaired in H3K27M pediatric glioma Chul-Hwan Lee,1,2,7 Jia-Ray Yu,1,2,7 Jeffrey Granat,1,2,7 Ricardo Saldaña-Meyer,1,2 Joshua Andrade,3 Gary LeRoy,1,2 Ying Jin,4 Peder Lund,5 James M. Stafford,1,2,6 Benjamin A. Garcia,5 Beatrix Ueberheide,3 and Danny Reinberg1,2 1Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA; 2Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA; 3Proteomics Laboratory, New York University School of Medicine, New York, New York 10016, USA; 4Shared Bioinformatics Core, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA; 5Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA The histone methyltransferase activity of PRC2 is central to the formation of H3K27me3-decorated facultative heterochromatin and gene silencing. In addition, PRC2 has been shown to automethylate its core subunits, EZH1/ EZH2 and SUZ12. Here, we identify the lysine residues at which EZH1/EZH2 are automethylated with EZH2-K510 and EZH2-K514 being the major such sites in vivo. Automethylated EZH2/PRC2 exhibits a higher level of histone methyltransferase activity and is required for attaining proper cellular levels of H3K27me3. While occurring inde- pendently of PRC2 recruitment to chromatin, automethylation promotes PRC2 accessibility to the histone H3 tail. Intriguingly, EZH2 automethylation is significantly reduced in diffuse intrinsic pontine glioma (DIPG) cells that carry a lysine-to-methionine substitution in histone H3 (H3K27M), but not in cells that carry either EZH2 or EED mutants that abrogate PRC2 allosteric activation, indicating that H3K27M impairs the intrinsic activity of PRC2.
    [Show full text]
  • PALI1 Facilitates DNA and Nucleosome Binding by PRC2 and Triggers an Allosteric Activation of Catalysis
    ARTICLE https://doi.org/10.1038/s41467-021-24866-3 OPEN PALI1 facilitates DNA and nucleosome binding by PRC2 and triggers an allosteric activation of catalysis Qi Zhang1,3, Samuel C. Agius1,3, Sarena F. Flanigan1, Michael Uckelmann1, Vitalina Levina1, Brady M. Owen1 & ✉ Chen Davidovich 1,2 1234567890():,; The polycomb repressive complex 2 (PRC2) is a histone methyltransferase that maintains cell identities. JARID2 is the only accessory subunit of PRC2 that known to trigger an allosteric activation of methyltransferase. Yet, this mechanism cannot be generalised to all PRC2 variants as, in vertebrates, JARID2 is mutually exclusive with most of the accessory subunits of PRC2. Here we provide functional and structural evidence that the vertebrate- specific PRC2 accessory subunit PALI1 emerged through a convergent evolution to mimic JARID2 at the molecular level. Mechanistically, PRC2 methylates PALI1 K1241, which then binds to the PRC2-regulatory subunit EED to allosterically activate PRC2. PALI1 K1241 is methylated in mouse and human cell lines and is essential for PALI1-induced allosteric activation of PRC2. High-resolution crystal structures revealed that PALI1 mimics the reg- ulatory interactions formed between JARID2 and EED. Independently, PALI1 also facilitates DNA and nucleosome binding by PRC2. In acute myelogenous leukemia cells, overexpression of PALI1 leads to cell differentiation, with the phenotype altered by a separation-of-function PALI1 mutation, defective in allosteric activation and active in DNA binding. Collectively, we show that PALI1 facilitates catalysis and substrate binding by PRC2 and provide evidence that subunit-induced allosteric activation is a general property of holo-PRC2 complexes. 1 Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia.
    [Show full text]
  • Polycomb Repressor Complex 2 Function in Breast Cancer (Review)
    INTERNATIONAL JOURNAL OF ONCOLOGY 57: 1085-1094, 2020 Polycomb repressor complex 2 function in breast cancer (Review) COURTNEY J. MARTIN and ROGER A. MOOREHEAD Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G2W1, Canada Received July 10, 2020; Accepted September 7, 2020 DOI: 10.3892/ijo.2020.5122 Abstract. Epigenetic modifications are important contributors 1. Introduction to the regulation of genes within the chromatin. The poly- comb repressive complex 2 (PRC2) is a multi‑subunit protein Epigenetic modifications, including DNA methylation complex that is involved in silencing gene expression through and histone modifications, play an important role in gene the trimethylation of lysine 27 at histone 3 (H3K27me3). The regulation. The dysregulation of these modifications can dysregulation of this modification has been associated with result in pathogenicity, including tumorigenicity. Research tumorigenicity through the increased repression of tumour has indicated an important influence of the trimethylation suppressor genes via condensing DNA to reduce access to the modification at lysine 27 on histone H3 (H3K27me3) within transcription start site (TSS) within tumor suppressor gene chromatin. This methylation is involved in the repression promoters. In the present review, the core proteins of PRC2, as of multiple genes within the genome by condensing DNA well as key accessory proteins, will be described. In addition, to reduce access to the transcription start site (TSS) within mechanisms controlling the recruitment of the PRC2 complex gene promoter sequences (1). The recruitment of H1.2, an H1 to H3K27 will be outlined. Finally, literature identifying the histone subtype, by the H3K27me3 modification has been a role of PRC2 in breast cancer proliferation, apoptosis and suggested as a mechanism for mediating this compaction (1).
    [Show full text]
  • DYRK1A Protein Kinase Promotes Quiescence and Senescence Through DREAM Complex Assembly
    Downloaded from genesdev.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press DYRK1A protein kinase promotes quiescence and senescence through DREAM complex assembly Larisa Litovchick,1,2 Laurence A. Florens,3 Selene K. Swanson,3 Michael P. Washburn,3,4 and James A. DeCaprio1,2,5,6 1Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; 2Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA; 3Stowers Institute for Biomedical Research, Kansas City, Missouri 64110, USA; 4Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA; 5Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA In the absence of growth signals, cells exit the cell cycle and enter into G0 or quiescence. Alternatively, cells enter senescence in response to inappropriate growth signals such as oncogene expression. The molecular mechanisms required for cell cycle exit into quiescence or senescence are poorly understood. The DREAM (DP, RB [retinoblastoma] , E2F, and MuvB) complex represses cell cycle-dependent genes during quiescence. DREAM contains p130, E2F4, DP1, and a stable core complex of five MuvB-like proteins: LIN9, LIN37, LIN52, LIN54, and RBBP4. In mammalian cells, the MuvB core dissociates from p130 upon entry into the cell cycle and binds to BMYB during S phase to activate the transcription of genes expressed late in the cell cycle. We used mass spectroscopic analysis to identify phosphorylation sites that regulate the switch of the MuvB core from BMYB to DREAM. Here we report that DYRK1A can specifically phosphorylate LIN52 on serine residue 28, and that this phosphorylation is required for DREAM assembly.
    [Show full text]
  • Genetic Variants in A
    Neurobiology of Aging 35 (2014) 2881.e7e2881.e10 Contents lists available at ScienceDirect Neurobiology of Aging journal homepage: www.elsevier.com/locate/neuaging Brief communication Genetic variants in a ‘cAMP element binding protein’ (CREB)-dependent histone acetylation pathway influence memory performance in cognitively healthy elderly individuals Sandra Barral a,b, Christiane Reitz a,b, Scott A. Small a,b, Richard Mayeux a,b,* a Department of Neurology, Columbia University Medical Center, New York, NY, USA b Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA article info abstract Article history: The molecular pathways underlying age-related memory changes remain unclear. There is a substantial Received 5 March 2014 genetic contribution to memory performance through life span. A recent study has implicated RbAp48, Received in revised form 17 June 2014 which mediates its effect on age-related memory decline by interacting with cyclic adenosine mono- Accepted 24 June 2014 phosphate responsive element binding protein (CREB)1 binding protein and influencing this histone Available online 28 June 2014 acetylation pathway. To validate these findings, we tested whether genetic variants in RbAp48, CREB1, and CREBBP are associated with memory performance in 3 independent data sets consisting of 2674 Keywords: cognitively healthy elderly individuals. Genetic variant rs2526690 in the CREBBP gene was significantly Histone metabolism ¼ Â À4 Meta-analysis associated with episodic memory performance (pmeta 3.7 10 ) in a multivariate model adjusted for Episodic memory performance age, sex, and apolipoprotein E status. Identifying genetic variants that modulate mechanisms of cognitive aging will allow identifying valid targets for therapeutic intervention.
    [Show full text]
  • EED Orchestration of Heart Maturation Through Interaction with Hdacs Is H3k27me3-Independent
    EED orchestration of heart maturation through interaction with HDACs is H3K27me3-independent The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Ai, S., Y. Peng, C. Li, F. Gu, X. Yu, Y. Yue, Q. Ma, et al. 2017. “EED orchestration of heart maturation through interaction with HDACs is H3K27me3-independent.” eLife 6 (1): e24570. doi:10.7554/ eLife.24570. http://dx.doi.org/10.7554/eLife.24570. Published Version doi:10.7554/eLife.24570 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:32630546 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA RESEARCH ARTICLE EED orchestration of heart maturation through interaction with HDACs is H3K27me3-independent Shanshan Ai1†, Yong Peng1†, Chen Li1, Fei Gu2, Xianhong Yu1, Yanzhu Yue1, Qing Ma2, Jinghai Chen2, Zhiqiang Lin2, Pingzhu Zhou2, Huafeng Xie3,7, Terence W Prendiville2§, Wen Zheng1, Yuli Liu1, Stuart H Orkin3,4,7,5, Da-Zhi Wang2,4, Jia Yu6, William T Pu2,4*‡, Aibin He1*‡ 1Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China; 2Department of Cardiology, Boston Children’s Hospital, Boston, United States; 3Division of Hematology/Oncology, Boston Children’s Hospital, Boston, United States;
    [Show full text]
  • Retinoblastoma Binding Protein 4 Maintains Cycling Neural Stem Cells and Prevents DNA Damage and Tp53-Dependent Apoptosis in Rb1 Mutant Neural Progenitors Laura E
    Genetics, Development and Cell Biology Genetics, Development and Cell Biology Publications 9-25-2018 Retinoblastoma binding protein 4 maintains cycling neural stem cells and prevents DNA damage and Tp53-dependent apoptosis in rb1 mutant neural progenitors Laura E. Schultz-Rogers Iowa State University Maira P. Almeida Iowa State University, [email protected] Wesley a. Wierson Iowa State University Marcel Kool Hopp Children’s Cancer Center at the NCT (KiTZ) MFoallourwa MthicsGr andail additional works at: https://lib.dr.iastate.edu/gdcb_las_pubs IowaP Satrate of U ntheiversitCya,nc mmcgrer Baiiol@ilogasyt aCteommon.edu s, and the Genetics and Genomics Commons The ompc lete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ gdcb_las_pubs/208. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Genetics, Development and Cell Biology at Iowa State University Digital Repository. It has been accepted for inclusion in Genetics, Development and Cell Biology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Retinoblastoma binding protein 4 maintains cycling neural stem cells and prevents DNA damage and Tp53-dependent apoptosis in rb1 mutant neural progenitors Abstract Retinoblastoma-binding protein 4 (Rbbp4) is a WDR adaptor protein for multiple chromatin remodelers implicated in human oncogenesis. Here we show Rbbp4 is overexpressed in zebrafish rb1-embryonal brain tumors and is upregulated across the spectrum of human embryonal and glial brain cancers. We demonstrate in vivo Rbbp4 is essential for zebrafish neurogenesis and has distinct roles in neural stem and progenitor cells.
    [Show full text]
  • Targeting the MTF2-MDM2 Axis Sensitizes Refractory Acute Myeloid Leukemia to Chemotherapy
    Author Manuscript Published OnlineFirst on August 16, 2018; DOI: 10.1158/2159-8290.CD-17-0841 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Targeting the MTF2-MDM2 Axis Sensitizes Refractory Acute Myeloid Leukemia to Chemotherapy Harinad B. Maganti1,2,3†, Hani Jrade1,2,4†, Christopher Cafariello1,2,4, Janet L. Manias Rothberg1,2,4, Christopher J. Porter5, Julien Yockell-Lelièvre1,2, Hannah L. Battaion1,2,4, Safwat T. Khan1, Joel P. Howard1, Yuefeng Li1,2,4, Adrian T. Grzybowski6, Elham Sabri9, Alexander J. Ruthenburg6, F. Jeffrey Dilworth1,2,4, Theodore J. Perkins1,3,5, Mitchell Sabloff7,8, Caryn Y. Ito1,4* & William L. Stanford1,2,3,4* 1The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada K1H 8L6; 2Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada; 3Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada; 4Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; 5Ottawa Bioinformatics Core Facility, The Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada K1H 8L6 6Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, USA 60637 7Division of Hematology, Department of Medicine, University of Ottawa, Ottawa, Canada 8Ottawa Hospital Research Institute, Ottawa, ON, Canada Canada K1H 8L6 9Clinical Epidemiology Methods Centre, Ottawa Hospital Research Institute, Ottawa, ON, Canada K1H 8L6 †These authors contributed equally to this work. *Correspondence to: Caryn Ito, [email protected]; William L. Stanford, [email protected] Ottawa Hospital, 501 Smyth Rd, Box 511 Ottawa, ON K1H 8L6 CANADA 613-737-8899 ext.
    [Show full text]
  • EED Orchestration of Heart Maturation Through Interaction With
    1 2 3 4 5 6 7 8 9 EED orchestration of heart maturation through interaction with HDACs is H3K27me3- 10 independent 11 12 Shanshan Ai1*, Yong Peng1*, Chen Li1, Fei Gu2, Xianhong Yu1, Yanzhu Yue1, Qing Ma2, 13 Jinghai Chen2, Zhiqiang Lin2, Pingzhu Zhou2, Huafeng Xie3, Terence W. Prendiville2,†, Wen 14 Zheng1, Yuli Liu1, Stuart H. Orkin3,4,5, Da-Zhi Wang2,4, Jia Yu6 15 William T. Pu2,4,7§ & Aibin He1,7§ 16 17 18 19 20 21 1Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, 22 Beijing 100871, China 23 2Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 24 02115, USA 25 3Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric 26 Oncology, Dana-Farber Cancer Institute, 27 4Harvard Stem Cell Institute, Harvard University, 1350 Massachusetts Avenue, Suite 727W, 28 Cambridge, MA 02138, USA. 29 5Howard Hughes Medical Institute, Boston, MA 02115, USA. 30 6Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical 31 Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical 32 Sciences, Peking Union Medical College, Beijing 100005, China. 33 7Co-senior author 34 35 *Contributed equally to this work. 36 †Present address: Department of Paediatric Cardiology, Our Lady's Children's Hospital 37 Crumlin, Dublin 12, Ireland. 38 39 40 41 §Correspondence: Aibin He ([email protected]) or William T. Pu 42 ([email protected]) 43 44 45 46 - 1 - 47 ABSTRACT 48 In proliferating cells, where most Polycomb repressive complex 2 (PRC2) studies have 49 been performed, gene repression is associated with PRC2 trimethylation of H3K27 50 (H3K27me3).
    [Show full text]