Role of Stromal Caveolin-1 (CAV1) Levels in Breast Cancer Angiogenesis

Total Page:16

File Type:pdf, Size:1020Kb

Role of Stromal Caveolin-1 (CAV1) Levels in Breast Cancer Angiogenesis Universidad Autónoma de Madrid Programa de Doctorado en Biociencias Moleculares Role of stromal Caveolin-1 (CAV1) levels in breast cancer angiogenesis Alberto Díez Sánchez Madrid, 2018 0 1 Departamento de Bioquímica Facultad de Medicina Universidad Autónoma de Madrid Role of stromal Caveolin-1 (CAV1) levels in breast cancer angiogenesis Doctorando: Alberto Díez Sánchez, Licenciado en Biotecnología Director: Miguel Ángel del Pozo Barriuso, MD, PhD. Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid, 2018 1 2 CERTIFICADO DEL DIRECTOR DE TESIS El doctor Miguel Ángel del Pozo Barriuso CERTIFICA que el doctorando Alberto Díez Sánchez ha desarrollado y concluido su trabajo de tesis doctoral “Role of stromal Caveolin-1 (CAV1) levels in breast cancer angiogenesis” bajo su supervisión, en el Centro Nacional de Investigaciones Cardiovasculares (CNIC). Y para que así conste lo firma en Madrid, a 10 de Julio de 2018, Fdo. Dr. Miguel Ángel del Pozo Barriuso Centro Nacional de Investigaciones Cardiovasculares (CNIC) 3 4 ACKNOWLEDGMENTS It is said that scientific knowledge is built on top of the shoulder of giants, in more practical terms, I consider all these people below my personal giants. First ones I encountered, were my parents and grandparents, everything I have achieved has been done on top of their previous efforts, to them I dedicate my most sincere gratitude for teaching this once lazy kid the value of effort. Next, I have to thank all those high-school teachers and university professors that during my education have been able to spark in me the sense of amazement derived from understanding how nature works. Special acknowledgments to my high school biology teacher Charo Díaz, who was able to amazingly convey and share her enthusiasm for her teachings, you are guilty of my choice for biological sciences. While instigating this interest was crucial in my career, a very different scenario was maintaining and nurturing it. Here I would like to thank all those good mentors I have come across during my short lab years: Luis Ángel Fernández (CNB), Marilyn G. Farquhar (UCSD), Mehul Shah (UCSD), Geir Bjørkøy (NTNU)... In this regard, I am especially grateful to my thesis director, Miguel Ángel del Pozo (CNIC), for giving me enough freedom to seek my own questions, make my own mistakes and having the patience of, afterward, dealing with them. On a day to day basis, I am grateful for the people that I have been sharing my bench floor with (both in Spain and in Norway); talking about, most usually, the disappointment of failing experiments and, less commonly, the excitement for a major breakthrough has made my passage through these thesis years much easier and funnier than anticipated. Finishing this period with a good feeling is because of you. In terms of heavy-lifting work, I am grateful for having Mauro, Inés, and Miguel by my side. All the work presented here today would not have been possible without your key contributions. I do not forget my collaborators, in image analysis (Xenia, Daniel, and Laura), high-content screening (Irene and Mariano) and bioinformatics analysis, your abilities do not cease to amaze me. On a personal level, I feel blessed with my lifelong neighborhood friends, not only because of the countless hours of fun that have made easier dealing with lab stress, but also for their continuous support. Without deserving it, they have been calling me “doctor” even before starting my degree. This one is for you. 5 Last but not least, a very special thanks to Mara, my life partner, who has been lately dealing with my stress-related mood swings using an infinite amount of patience and unconditional love. You have made this possible and I cannot wait to have more of yourself for the years to come. This doctoral thesis was made possible with the funding of Obra Social “la Caixa” 6 SUMMARY Tumors have been described as “wounds that never heal”; and non-tumoral surrounding cell populations involved in angiogenesis and response to injury, such as endothelial cells, immune cells and fibroblasts are actively engaged to support the aberrant growth and remodeling of the tumor mass, which conversely determine tumor architecture and behavior. These cells, along with extracellular matrix (ECM) components, define the tumor microenvironment or tumor stroma. While breast cancer progression was conceived for a long time to be largely dependent on aberrant mutations in tumor cells, stromal Cancer-Associated Fibroblasts (CAFs) have been demonstrated to modulate breast cancer growth, invasion, metastasis and therapeutic resistance. Caveolin-1 (CAV1), a prominent organizer of plasma membrane properties and function, exhibits extensive ties with many events defining tumor onset and progression. Although previous studies have shown CAV1 expression levels in CAFs to influence breast cancer growth and metastasis, the underlying driving mechanisms remain incompletely characterized. In this regard, ECM modification and metabolic reprogramming have been proposed as key aspects of a stromal CAV1-dependent role in tumor biology. This thesis research report aims to contribute to our understanding as to how CAV1 expression in stromal CAFs impact tumor angiogenesis, and thus tumor hypoxia, cancer aggressiveness and metastasis. The present work showcases evidence supporting a positive reciprocal feedback relationship between stromal CAV1 downregulation and endoplasmic reticulum (ER) stress, which can drive exacerbated proangiogenic signaling, causative of the generation of an aberrant and dysfunctional tumor vasculature. This report proposes defective angiogenesis and consequent hypoxia as major driving causes for increased aggressiveness of breast cancer in low stromal CAV1 tumors. 7 RESUMEN Los tumores podrían describirse como heridas que nunca terminan de curarse. En respuesta a esta agresión, se puede observar el reclutamiento de células del sistema inmune, de fibroblastos que intentan cerrar la lesión y de células endoteliales implicadas en la formación de nuevos vasos sanguíneos y linfáticos. Estas células, en conjunto con la matriz extracelular (ECM, Extracellular Matrix, por sus siglas en inglés) que las rodea, conforman lo que se conoce como microambiente o estroma tumoral. Durante décadas, la progresión y el comportamiento del cáncer de mama se concebían como procesos dependientes de las mutaciones que acaecían en las células tumorales. Sin embargo, recientemente varios estudios han demostrado que el microambiente tumoral en general, y los fibroblastos estromales asociados al tumor (CAFs, Cancer-Associated Fibroblasts, por sus siglas en inglés) en particular, son capaces de modular el crecimiento tumoral, la capacidad invasiva y el proceso metastático del cáncer de mama, así como la resistencia a determinadas terapias. Aunque estudios previos han demostrado que los niveles de la proteína Caveolina-1 (CAV1) que presentan los fibroblastos estromales (CAFs) tienen una influencia sobre la capacidad metastática y de crecimiento del cáncer de mama, el mecanismo responsable de esta habilidad moduladora está por resolver. Procesos como la modificación ejercida por estos CAFs sobre la ECM y su potencial para reprogramar el metabolismo tumoral se han postulado como piezas de este rompecabezas. Este trabajo describe como una bajada en la expresión de CAV1 en CAFs estromales orquestra la formación de una vasculatura tumoral disfuncional y aberrante que resulta en un incremento de la hipoxia, la agresividad y la capacidad metastática de estos tumores con bajos niveles de CAV1 estromal. Además, establece un círculo vicioso de retroalimentación positiva entre la menor expresión de CAV1 y la inducción de estrés reticular, que en última instancia es responsable de la activación de una señalización proangiogénica exacerbada que deriva en la formación de la vasculatura aberrante arriba mencionada. 8 INDEX ACKNOWLEDGMENTS ....................................................................................................... 5 SUMMARY ............................................................................................................................ 7 RESUMEN ............................................................................................................................ 8 NON-STANDARD ABBREVIATIONS AND ACRONYMS ....................................................13 1A. INTRODUCTION ...........................................................................................................19 1.1 Breast Cancer: an overview .....................................................................................20 1.1.1 Breast Anatomy and Physiology ...........................................................................20 1.1.2 Classification of Breast Cancers ...........................................................................21 1.1.3 Triple Negative Breast Cancer (TNBC) .................................................................24 1.2 Tumor Microenvironment (TME) / Tumor Stroma ...................................................25 1.2.1 Immune Suppression and Tumor-Associated Macrophages (TAMs) ....................26 1.2.2 Cancer-Associated Fibroblasts (CAFs) .................................................................27 1.3 Tumor Angiogenesis ................................................................................................30 1.3.1 Alternative Modes of Tumor Vascularization .........................................................32 1.3.2 Microenvironmental Regulation of Tumor
Recommended publications
  • PARSANA-DISSERTATION-2020.Pdf
    DECIPHERING TRANSCRIPTIONAL PATTERNS OF GENE REGULATION: A COMPUTATIONAL APPROACH by Princy Parsana A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland July, 2020 © 2020 Princy Parsana All rights reserved Abstract With rapid advancements in sequencing technology, we now have the ability to sequence the entire human genome, and to quantify expression of tens of thousands of genes from hundreds of individuals. This provides an extraordinary opportunity to learn phenotype relevant genomic patterns that can improve our understanding of molecular and cellular processes underlying a trait. The high dimensional nature of genomic data presents a range of computational and statistical challenges. This dissertation presents a compilation of projects that were driven by the motivation to efficiently capture gene regulatory patterns in the human transcriptome, while addressing statistical and computational challenges that accompany this data. We attempt to address two major difficulties in this domain: a) artifacts and noise in transcriptomic data, andb) limited statistical power. First, we present our work on investigating the effect of artifactual variation in gene expression data and its impact on trans-eQTL discovery. Here we performed an in-depth analysis of diverse pre-recorded covariates and latent confounders to understand their contribution to heterogeneity in gene expression measurements. Next, we discovered 673 trans-eQTLs across 16 human tissues using v6 data from the Genotype Tissue Expression (GTEx) project. Finally, we characterized two trait-associated trans-eQTLs; one in Skeletal Muscle and another in Thyroid. Second, we present a principal component based residualization method to correct gene expression measurements prior to reconstruction of co-expression networks.
    [Show full text]
  • Abl Family Tyrosine Kinases Govern Igg Extravasation in the Skin in a Murine Pemphigus Model
    ARTICLE https://doi.org/10.1038/s41467-019-12232-3 OPEN Abl family tyrosine kinases govern IgG extravasation in the skin in a murine pemphigus model Sachiko Ono1, Gyohei Egawa1, Takashi Nomura1, Akihiko Kitoh1, Teruki Dainichi 1, Atsushi Otsuka1, Saeko Nakajima1, Masayuki Amagai2, Fumi Matsumoto3, Mami Yamamoto 3, Yoshiaki Kubota4, Toshiyuki Takai5, Tetsuya Honda1 & Kenji Kabashima 1,6 1234567890():,; The pathway of homeostatic IgG extravasation is not fully understood, in spite of its importance for the maintenance of host immunity, the management of autoantibody- mediated disorders, and the use of antibody-based biologics. Here we show in a murine model of pemphigus, a prototypic cutaneous autoantibody-mediated disorder, that blood- circulating IgG extravasates into the skin in a time- and dose-dependent manner under homeostatic conditions. This IgG extravasation is unaffected by depletion of Fcγ receptors, but is largely attenuated by specific ablation of dynamin-dependent endocytic vesicle for- mation in blood endothelial cells (BECs). Among dynamin-dependent endocytic vesicles, IgG co-localizes well with caveolae in cultured BECs. An Abl family tyrosine kinase inhibitor imatinib, which reduces caveolae-mediated endocytosis, impairs IgG extravasation in the skin and attenuates the murine pemphigus manifestations. Our study highlights the kinetics of IgG extravasation in vivo, which might be a clue to understand the pathological mechanism of autoantibody-mediated autoimmune disorders. 1 Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan. 2 Department of Dermatology, Keio University Graduate School of Medicine, Tokyo, Japan. 3 Research Unit/Immunology & Inflammation, Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan. 4 Department of Anatomy, Keio University School of Medicine, Tokyo, Japan.
    [Show full text]
  • Global-Scale Analysis of the Dynamic Transcriptional Adaptations Within Skeletal Muscle During Hypertrophic Growth
    University of Kentucky UKnowledge Theses and Dissertations--Physiology Physiology 2015 GLOBAL-SCALE ANALYSIS OF THE DYNAMIC TRANSCRIPTIONAL ADAPTATIONS WITHIN SKELETAL MUSCLE DURING HYPERTROPHIC GROWTH Tyler Kirby University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Kirby, Tyler, "GLOBAL-SCALE ANALYSIS OF THE DYNAMIC TRANSCRIPTIONAL ADAPTATIONS WITHIN SKELETAL MUSCLE DURING HYPERTROPHIC GROWTH" (2015). Theses and Dissertations--Physiology. 22. https://uknowledge.uky.edu/physiology_etds/22 This Doctoral Dissertation is brought to you for free and open access by the Physiology at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Physiology by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless an embargo applies.
    [Show full text]
  • The Purification and Identification of Interactors to Elucidate Novel Connections in the HEK 293 Cell Line
    The Purification and Identification of Interactors to Elucidate Novel Connections in the HEK 293 Cell Line Brett Hawley Biochemistry, Microbiology and Immunology Faculty of Medicine University of Ottawa © Brett Hawley, Ottawa, Canada, 2012 ABSTRACT The field of proteomics studies the structure and function of proteins in a large scale and high throughput manner. My work in the field of proteomics focuses on identifying interactions between proteins and discovering novel interactions. The identification of these interactions provides new information on metabolic and disease pathways and the working proteome of a cell. Cells are lysed and purified using antibody based affinity purification followed by digestion and identification using an HPLC coupled to a mass spectrometer. In my studies, I looked at the interaction networks of several AD related genes (Apolipoprotein E, Clusterin variant 1 and 2, Low-density lipoprotein receptor, Phosphatidylinositol binding clathrin assembly protein, Alpha- synuclein and Platelet-activating factor receptor) and an endosomal recycling pathway involved in cholesterol metabolism (Eps15 homology domain 1,2 and 4, Proprotein convertase subtilisin/kexin type 9 and Low-density lipoprotein receptor). Several novel and existing interactors were identified and these interactions were validated using co-immunopurification, which could be the basis for future research. ii ACKNOWLEDGEMENTS I would like to take this opportunity to thank my supervisor, Dr. Daniel Figeys, for his support and guidance throughout my studies in his lab. It was a great experience to work in his lab and I am very thankful I was given the chance to learn and work under him. I would also like to thank the members of my lab for all their assistance in learning new techniques and equipment in the lab.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • An Endocytosis Pathway Initiated Through Neuropilin-1 and Regulated by Nutrient Availability
    ARTICLE Received 18 Apr 2014 | Accepted 2 Aug 2014 | Published 3 Oct 2014 DOI: 10.1038/ncomms5904 An endocytosis pathway initiated through neuropilin-1 and regulated by nutrient availability Hong-Bo Pang1, Gary B. Braun1,2, Tomas Friman1,2, Pedro Aza-Blanc1, Manuel E. Ruidiaz1, Kazuki N. Sugahara1,3, Tambet Teesalu1,4 & Erkki Ruoslahti1,2 Neuropilins (NRPs) are trans-membrane receptors involved in axon guidance and vascular development. Many growth factors and other signalling molecules bind to NRPs through a carboxy (C)-terminal, basic sequence motif (C-end Rule or CendR motif). Peptides with this motif (CendR peptides) are taken up into cells by endocytosis. Tumour-homing CendR peptides penetrate through tumour tissue and have shown utility in enhancing drug delivery into tumours. Here we show, using RNAi screening and subsequent validation studies, that NRP1-mediated endocytosis of CendR peptides is distinct from known endocytic pathways. Ultrastructurally, CendR endocytosis resembles macropinocytosis, but is mechanistically different. We also show that nutrient-sensing networks such as mTOR signalling regulate CendR endocytosis and subsequent intercellular transport of CendR cargo, both of which are stimulated by nutrient depletion. As CendR is a bulk transport pathway, our results suggest a role for it in nutrient transport; CendR-enhanced drug delivery then makes use of this natural pathway. 1 Cancer Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA. 2 Center for Nanomedicine, Department of Cell, Molecular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California 93106-9610, USA. 3 Department of Surgery, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA.
    [Show full text]
  • The Mir-199–Dynamin Regulatory Axis Controls Receptor-Mediated Endocytosis Juan F
    © 2015. Published by The Company of Biologists Ltd | Journal of Cell Science (2015) 128, 3197-3209 doi:10.1242/jcs.165233 RESEARCH ARTICLE The miR-199–dynamin regulatory axis controls receptor-mediated endocytosis Juan F. Aranda1,2, Alberto Canfrán-Duque1,2, Leigh Goedeke1,2, Yajaira Suárez1,2 and Carlos Fernández-Hernando1,2,* ABSTRACT mechanism for the selective uptake of essential nutrients such as Small non-coding RNAs (microRNAs) are important regulators of low-density lipoprotein (LDL), through the LDL receptor (LDLR) gene expression that modulate many physiological processes; (Brown and Goldstein, 1986), or iron, through transferrin receptor however, their role in regulating intracellular transport remains (TfR) (Harding et al., 1983). Thus, factors that affect RME have a largely unknown. Intriguingly, we found that the dynamin (DNM) direct effect on these receptors, and, in the case of LDLR, to regulate genes, a GTPase family of proteins responsible for endocytosis in intracellular cholesterol levels. In both the LDLR and TfR eukaryotic cells, encode the conserved miR-199a and miR-199b internalization processes, clathrin plays a key role during the family of miRNAs within their intronic sequences. Here, we formation of coated vesicles (Moore et al., 1987). Once vesicles are demonstrate that miR-199a and miR-199b regulate endocytic internalized, their passage through a broad endosomal compartment transport by controlling the expression of important mediators of system is required; first they are rapidly transported into early endocytosis such as clathrin heavy chain (CLTC), Rab5A, low- endosomes, where Rab5A is a key regulator (Nielsen et al., 1999), density lipoprotein receptor (LDLR) and caveolin-1 (Cav-1).
    [Show full text]
  • Mechanisms of Synaptic Plasticity Mediated by Clathrin Adaptor-Protein Complexes 1 and 2 in Mice
    Mechanisms of synaptic plasticity mediated by Clathrin Adaptor-protein complexes 1 and 2 in mice Dissertation for the award of the degree “Doctor rerum naturalium” at the Georg-August-University Göttingen within the doctoral program “Molecular Biology of Cells” of the Georg-August University School of Science (GAUSS) Submitted by Ratnakar Mishra Born in Birpur, Bihar, India Göttingen, Germany 2019 1 Members of the Thesis Committee Prof. Dr. Peter Schu Institute for Cellular Biochemistry, (Supervisor and first referee) University Medical Center Göttingen, Germany Dr. Hans Dieter Schmitt Neurobiology, Max Planck Institute (Second referee) for Biophysical Chemistry, Göttingen, Germany Prof. Dr. med. Thomas A. Bayer Division of Molecular Psychiatry, University Medical Center, Göttingen, Germany Additional Members of the Examination Board Prof. Dr. Silvio O. Rizzoli Department of Neuro-and Sensory Physiology, University Medical Center Göttingen, Germany Dr. Roland Dosch Institute of Developmental Biochemistry, University Medical Center Göttingen, Germany Prof. Dr. med. Martin Oppermann Institute of Cellular and Molecular Immunology, University Medical Center, Göttingen, Germany Date of oral examination: 14th may 2019 2 Table of Contents List of abbreviations ................................................................................. 5 Abstract ................................................................................................... 7 Chapter 1: Introduction ............................................................................
    [Show full text]
  • Effects of Early Social Deprivation on Epigenetic
    RESEARCH ARTICLE Effects of early social deprivation on epigenetic statuses and adaptive behavior of young children: A study based on a cohort of institutionalized infants and toddlers 1,2,3 1 2,3 Oxana Yu. NaumovaID *, Sergey Yu. Rychkov , Sergey A. KornilovID , Veronika 4,5,6 2 2 2 V. OdintsovaID , Varvara O. Anikina , Maria Yu. SolodunovaID , Irina A. ArintcinaID , 2 2 2,3 1 Marina A. Zhukova , Irina V. OvchinnikovaID , Olga V. BurenkovaID , Olga V. Zhukova , a1111111111 Rifkat J. Muhamedrahimov2, Elena L. Grigorenko2,3,7* a1111111111 a1111111111 1 Human Genetics Laboratory, Vavilov Institute of General Genetics RAS, Moscow, Russian Federation, 2 Department of Psychology, Saint-Petersburg State University, Saint Petersburg, Russian Federation, a1111111111 3 Department of Psychology, University of Houston, Houston, Texas, United States of America, a1111111111 4 Department of Biological Psychology, VU University, Amsterdam, Netherlands, 5 National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russian Federation, 6 Federal Research Institute for Health Organization and Informatics, Moscow, Russia, 7 Baylor College of Medicine, Houston, Texas, United States of America * [email protected] (EG); [email protected] (OYN) OPEN ACCESS Citation: Naumova OY., Rychkov SY., Kornilov SA, Odintsova VV, Anikina VO, Solodunova MY., et al. (2019) Effects of early social deprivation on Abstract epigenetic statuses and adaptive behavior of young Early social deprivation (i.e., an insufficiency or lack of parental care) has been identified as children: A study based on a cohort of institutionalized infants and toddlers. PLoS ONE 14 a significant adverse early experience that may affect multiple facets of child development (3): e0214285.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • SYT11 Polyclonal Antibody
    PRODUCT DATA SHEET Bioworld Technology,Inc. SYT11 polyclonal antibody Catalog: BS71117 Host: Rabbit Reactivity: Human,Mouse,Rat BackGround: This gene is a member of the synaptotagmin gene family and encodes a protein similar to other family members that are known calcium sensors and mediate calci- um-dependent regulation of membrane trafficking in synaptic transmission. The encoded protein is also a sub- strate for ubiquitin-E3-ligase parkin. The gene has previ- ously been referred to as synaptotagmin XII but has been Western blot analysis of extract of various cells, using SYT11 antibody. renamed synaptotagmin XI to be consistent with mouse and rat official nomenclature. Product: Rabbit IgG, 1mg/ml in PBS with 0.02% sodium azide, 50% glycerol, pH7.2 Molecular Weight: ~ 48 kDa Immunohistochemistry of paraffin-embedded human stomach using Swiss-Prot: SYT11 antibody at dilution of 1:100 (x40 lens). Q9BT88 Purification&Purity: The antibody was affinity-purified from rabbit antiserum by affinity-chromatography using epitope-specific im- munogen and the purity is > 95% (by SDS-PAGE). Applications: WB 1:500 - 1:2000 IHC/IF 1:50 - 1:200 Immunohistochemistry of paraffin-embedded human liver injury using Storage&Stability: SYT11 antibody at dilution of 1:100 (x40 lens). Store at 4°C short term. Aliquot and store at -20°C long Note: term. Avoid freeze-thaw cycles. For research use only, not for use in diagnostic procedure. Specificity: SYT11 polyclonal antibody detects endogenous levels of SYT11 protein. DATA: Bioworld Technology, Inc. Bioworld technology, co. Ltd. Add: 1660 South Highway 100, Suite 500 St. Louis Park, Add: No 9, weidi road Qixia District Nanjing, 210046, MN 55416,USA.
    [Show full text]
  • Novel Associations of BST1 and LAMP3 with Rapid Eye Movement Sleep Behavior
    Published Ahead of Print on January 4, 2021 as 10.1212/WNL.0000000000011464 Neurology Publish Ahead of Print DOI: 10.1212/WNL.0000000000011464 Novel Associations of BST1 and LAMP3 with Rapid Eye Movement Sleep Behavior Disorder The Article Processing Charge was funded by NIHR UK This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (CC BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes. Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. Kheireddin Mufti, MSc1,2, Eric Yu, MSc1,2, BSc, Uladzislau Rudakou, MSc1,2, Lynne Krohn, MSc1,2, Jennifer A. Ruskey, MSc2,3, Farnaz Asayesh, MSc2,3, Sandra B. Laurent, BTS2,3, Dan Spiegelman, MSc2,3, Isabelle Arnulf, MD, PhD4, Michele T.M. Hu, MBBS, PhD5,6, Jacques Y. Montplaisir, MD, PhD7,8, Jean-François Gagnon, PhD7,9, Alex Desautels, MD, PhD7,10, Yves Dauvilliers, MD, PhD11, Gian Luigi Gigli, MD12,13, Mariarosaria Valente, MD12,14, Francesco Janes, MD, PhD12, Andrea Bernardini, MD12, Birgit Högl, MD15, Ambra Stefani, MD15, Evi Holzknecht, MD15, Karel Sonka, MD, PhD16, David Kemlink, MD, PhD16, Wolfgang Oertel, MD17, Annette Janzen, MD17, Giuseppe Plazzi, MD18,19, Elena Antelmi, MD, PhD20, Michela Figorilli, MD, PhD21, Monica Puligheddu, MD, PhD21, Brit Mollenhauer, MD22,23, Claudia Trenkwalder, MD22.23, Friederike Sixel-Döring, MD17,22, Valérie Cochen De Cock, MD, PhD24,25 Christelle Charley Monaca, MD,PhD26, Anna Heidbreder, MD27, Luigi Ferini-Strambi, MD28, Femke Dijkstra, MD29,30,31, Mineke Viaene, MD, PhD29,30, Beatriz Abril, MD32, Bradley F.
    [Show full text]