Multiscale Patterns of Habitat and Space Use by the Pacarana Dinomys Branickii: Factors Limiting Its Distribution and Abundance
Total Page:16
File Type:pdf, Size:1020Kb
Load more
										Recommended publications
									
								- 
												  Impactos De La Carretera Sobre La Fauna Silvestre, Tramo Huancabamba – Tunqui En La Carretera Oxapampa - Pozuzo Del Parque Nacional Yanachaga Chemillén (Pasco)”UNIVERSIDAD NACIONAL AGRARIA LA MOLINA ESCUELA DE POSGRADO MAESTRÍA EN CONSERVACIÓN DE RECURSOS FORESTALES “IMPACTOS DE LA CARRETERA SOBRE LA FAUNA SILVESTRE, TRAMO HUANCABAMBA – TUNQUI EN LA CARRETERA OXAPAMPA - POZUZO DEL PARQUE NACIONAL YANACHAGA CHEMILLÉN (PASCO)” Presentada por: PAOLA JOHANNA GODOY MARTINEZ TESIS PARA OPTAR EL GRADO DE MAGISTER SCIENTIAE EN CONSERVACIÓN DE RECURSOS FORESTALES Lima – Perú 2017 UNIVERSIDAD NACIONAL AGRARIA LA MOLINA ESCUELA DE POSTGRADO ESPECIALIDAD EN CONSERVACION DE RECURSOS FORESTALES “IMPACTOS DE LA CARRETERA SOBRE LA FAUNA SILVESTRE, TRAMO HUANCABAMBA – TUNQUI EN LA CARRETERA OXAPAMPA - POZUZO DEL PARQUE NACIONAL YANACHAGA CHEMILLÉN (PASCO)” TESIS PARA OPTAR EL GRADO DE MAGISTER SCIENTIAE PAOLA JOHANNA GODOY MARTINEZ Sustentada y aprobada ante el siguiente jurado: Mg. Sc. Jorge Chávez Salas Mg. Sc. Pedro Vásquez Ruesta PRESIDENTE PATROCINADOR Ph. D. Gilberto Domínguez Torrejón Mg. Sc. María de Los Angeles La Torre MIEMBRO MIEMBRO LIMA – PERÚ Dedicatoria En memoria a mi madre Paula Reynalda Martínez Condezo. A mi padre Toribio Godoy Belleza, por su apoyo incondicional. A mis hermanos, por su motivación e insistencia. A mi pequeño hijo Santiago, por su inmenso cariño. Agradecimiento Agradezco al Jardín Botánico de Missouri (Center for Conservation and Sustainable Development), en especial a Rocío Rojas, por el financiamiento del presente proyecto. A Judith Figueroa y Marcelo Stucchi, por el constante apoyo de supervisión y asesoramiento de este proyecto. A Gilberto Alván y Genaro Yarupaitán, por otorgarme la autorización de investigación dentro del Parque Nacional Yanachaga Chemillén (Oxapampa, Pasco). A Antonio Peña, César Rojas y Dennyse Nieves por la colecta de los especímenes botánicos. A Rodolfo Vásquez, Abel Monteagudo y Gina Castillo por la identificación de las especies botánicas.
- 
												  Marketplace Plants Used in Ceremonial Cleansing Among Andean Qechuans of EcuadorView metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Marshall University Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 2007 Marketplace plants used in ceremonial cleansing among Andean Qechuans of Ecuador Sushma Shrestha Follow this and additional works at: https://mds.marshall.edu/etd Part of the Folklore Commons, Indigenous Studies Commons, and the Social and Cultural Anthropology Commons Recommended Citation Shrestha, Sushma, "Marketplace plants used in ceremonial cleansing among Andean Qechuans of Ecuador" (2007). Theses, Dissertations and Capstones. 1275. https://mds.marshall.edu/etd/1275 This Thesis is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected], [email protected]. Marketplace plants used in ceremonial cleansing among Andean Qechuans of Ecuador Thesis submitted to The Graduate School of Marshall University In partial fulfilment of the Requirements for the degree of Master of Science in Biological Sciences by Sushma Shrestha Dr. Dan K. Evans, Ph.D., Chairperson Dr. Charles Somerville, Ph.D. Dr. Tom Pauley, Ph.D. Marshall University 2007 ii TO MY FAMILY and INDIGINOUS PEOPLE AROUND THE WORLD iii ACKNOWLEDGEMENT I am grateful to Dr. Evans for further igniting my interest in plant and indigenous people. I appreciate all your help in Ecuador and here during the research and beyond with both academic and financial support for the work. You are a wonderful professor, advisor and a travel companion.
- 
												  Links Between Biodiversity Conservation, Livelihoods and Food Security: the Sustainable Use of Wild Species for MeatLinks between Biodiversity Conservation, L IUCN Species Survival Commission The IUCN Species Survival Commission The Species Survival Commission (SSC) is one of six volunteer commissions of IUCN – The World Conservation Union, a union of sovereign states, government agencies and non- governmental organisations. IUCN has three basic conservation objectives: to secure the conservation of nature, and especially of biological diversity, as an essential foundation for the Links between Biodiversity future; to ensure that where the earth’s natural resources are used this is done in a wise, equitable and sustainable way; and to guide the development of human communities towards ways of life that are both of good quality and in enduring harmony with other components of the Conservation, Livelihoods biosphere. Avolunteer network comprised of some 7,000 scientists, field researchers, government officials and Food Security and conservation leaders from nearly every country of the world, the SSC membership is an unmatched source of information about biological diversity and its conservation. As such, SSC members provide technical and scientific counsel for conservation projects throughout the world and serve as resources to governments, international conventions and conservation The sustainable use of organisations. wild species for meat SSC Occasional Papers cover a broad range of subjects including conservation of groups of species in a particular geographical region, wildlife trade issues, and proceedings of workshops. IUCN/SSC also publishes an Action Plan series that assesses the conservation status of species and their habitats, and specifies conservation priorities. The series is one of ivelihoods and F Sue Mainka and Mandar Trivedi the world’s most authoritative sources of species conservation information available to natural Editors resource managers, conservationists and government officials around the world.
- 
												  Characterization of 11 Juglandaceae Gen O Types Based on MorphologyBREEDING, CULTIVARS, ROOTSTOCKS, & GERMPLASM RESOURCES HORTSCIENCE 38(6):1178–1183. 2003. genetic similarity of the component elements, can be of practical advantage. Our long term goal is to develop superior rootstocks for Jug- Characterization of 11 Juglandaceae lans trees for timber production. The fi rst step towards that goal was to infer phy lo ge net ic Gen o types Based on Morphology, relatedness between our accessions based on morphology, cpDNA, and RAPD analysis cpDNA, and RAPD presented in this study. 1 G. Orel Materials and Methods Centre for Horticulture and Plant Sciences, University of Western Sydney, Hawkesbury Campus, Locked Bag 1797, South Penrith DC, NSW 1797, Accessions used (Table 1).Juglans nigra L. and J. olanchana Standl. et L.O. Williams are Australia from temperate and subtropical North Amer i ca, National Herbarium of New South Wales, Royal Botanic Gardens Sydney, Mrs respectively, and J. neotropica Diels. and J. australis Griseb. from tropical and temperate Macquarie·s Road, Sydney NSW 2000, Aus tra lia South America. Juglans nigra is a well-identi- A.D. Marchant fi ed cultivated species, while the other three are new germplasm accessions. Juglans regia National Herbarium of New South Wales, Royal Botanic Gardens Sydney, Mrs is of Eurasian origin; J. sigillata Dode and an Macquarie·s Road, Sydney NSW 2000, Aus tra lia undescribed species (“J. sp.”) from China, and J. ailantifolia Carr. from Japan. Engelhardia J.A. McLeod and G.D. Richards spicata Leschenault ex Blume is from Royal Centre for Horticulture and Plant Sciences, University of Western Sydney, Botanic Gardens, Sydney, of Viet nam ese prov- Hawkesbury Campus, Locked Bag 1797, South Penrith DC, NSW 1797, enance.
- 
												  A New Species of Amyris (Rutaceae) from Southern EcuadorSee discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/281889661 p> A new species of Amyris (Rutaceae) from southern Ecuador </p Article in Phytotaxa · July 2015 DOI: 10.11646/phytotaxa.220.1.11 CITATIONS READS 0 18 1 author: Walter Palacios Universidad Tecnica del Norte, Ibarra, Ecuador 71 PUBLICATIONS 2,424 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Markedly divergent estimates of amazon forest carbon density from ground plots and satellites View project Forest‐Cover Change from Labor‐ and Capital‐Intensive Commercial Logging in the Southern Chocó Rainforests* View project All content following this page was uploaded by Walter Palacios on 18 April 2016. The user has requested enhancement of the downloaded file. Phytotaxa 220 (1): 098–100 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Correspondence ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.220.1.11 A new species of Amyris (Rutaceae) from southern Ecuador WALTER A. PALACIOS Research associate at the Herbario Nacional del Ecuador (QCNE), Río Coca e Isla Fernandina, Quito-Ecuador, [email protected] Abstract A new species, Amyris karlitae, from southern Ecuador is described, illustrated and contrasted with closely related species. It is characterized by the following combination of characters: glabrous unifoliolate leaves with lamina elliptic, ovate-lan- ceolate or oblong-elliptic, 6–11 cm long, 4–6 cm wide, with apex acuminate or emarginate; secondary veins in 10–13 pairs, more or less convergent, inconspicuous, branched towards the margin; stamens 8, 4 short alternating with 4 longer.
- 
												  Matses Indian Rainforest Habitat Classification and Mammalian Diversity in Amazonian PeruJournal of Ethnobiology 20(1): 1-36 Summer 2000 MATSES INDIAN RAINFOREST HABITAT CLASSIFICATION AND MAMMALIAN DIVERSITY IN AMAZONIAN PERU DAVID W. FLECK! Department ofEveilltioll, Ecology, alld Organismal Biology Tile Ohio State University Columbus, Ohio 43210-1293 JOHN D. HARDER Oepartmeut ofEvolution, Ecology, and Organismnl Biology Tile Ohio State University Columbus, Ohio 43210-1293 ABSTRACT.- The Matses Indians of northeastern Peru recognize 47 named rainforest habitat types within the G61vez River drainage basin. By combining named vegetative and geomorphological habitat designations, the Matses can distinguish 178 rainforest habitat types. The biological basis of their habitat classification system was evaluated by documenting vegetative ch<lracteristics and mammalian species composition by plot sampling, trapping, and hunting in habitats near the Matses village of Nuevo San Juan. Highly significant (p<:O.OOI) differences in measured vegetation structure parameters were found among 16 sampled Matses-recognized habitat types. Homogeneity of the distribution of palm species (n=20) over the 16 sampled habitat types was rejected. Captures of small mammals in 10 Matses-rc<:ognized habitats revealed a non-random distribution in species of marsupials (n=6) and small rodents (n=13). Mammal sighlings and signs recorded while hunting with the Matses suggest that some species of mammals have a sufficiently strong preference for certain habitat types so as to make hunting more efficient by concentrating search effort for these species in specific habitat types. Differences in vegetation structure, palm species composition, and occurrence of small mammals demonstrate the ecological relevance of Matses-rccognized habitat types. Key words: Amazonia, habitat classification, mammals, Matses, rainforest. RESUMEN.- Los nalivos Matslis del nordeste del Peru reconacen 47 tipos de habitats de bosque lluvioso dentro de la cuenca del rio Galvez.
- 
												  Gross Anatomy and Vascularization of the Brain of Pacarana (Dinomys Branickii)Acta Scientiae Veterinariae, 2018. 46: 1598. RESEARCH ARTICLE ISSN 1679-9216 Pub. 1598 Gross Anatomy and Vascularization of the Brain of Pacarana (Dinomys branickii) Letícia Menezes Freitas1, Kleber Fernando Pereira2, Fabiano Rodrigues de Melo1, Leandro Silveira3, Odeony Paulo dos Santos1, Dayane Kelly Sabec Pereira4, Fabiana Cristina Silveira Alves de Melo5, Anah Tereza de Almeida Jácomo3 & Fabiano Campos Lima1 ABSTRACT Background: The pacarana lives in South America and has herbivorous and nocturnal habits. It is a rare species with scarce data concerning its morphology and adding more data is important in establishing its vulnerability. The aim was to describe its macroscopic brain anatomy, as well as the brain vascularization. Materials, Methods & Results: Two specimens were available for this study, that were donated post-mortem. The animals were injected with latex and fixed with 10% formaldehyde. Upon exposure and removal of the brain its main features were described. The rhinal fissure is single and the lateral sulcus arises from its caudal part. There are two sagittal sulci, an extensive medial sulcus and a short lateral sulcus. The piriform lobe is vermiform and the rostral part is smaller. The caudal colliculus is larger than the rostral colliculus and they are separated by a sulcus. The cerebellum has oval shape and the flocculus lobe is not conspicuous. The cerebral arterial circle was analyzed and described. The brain is supplied by the vertebrobasilar system only. The cerebral arterial circle is formed by the terminal branch of the basilar artery, the caudal communicating artery, the rostral cerebral artery and the rostral communicating artery. The caudal and middle cerebellar arteries are branches of the basilar artery.
- 
												  Analysis of Phylogenetic Relationships in the Walnut Family Based on Internal Transcribed Spacer Sequences and Secondary Structures(ITS2)Analysis of Phylogenetic Relationships in The Walnut Family Based on Internal Transcribed Spacer Sequences and Secondary Structures(ITS2) Zhongzhong Guo Tarim University Qiang Jin Tarim University Zhenkun Zhao Tarim University Wenjun Yu Tarim University Gen Li Tarim University Yunjiang Cheng Tarim University Cuiyun Wu Tarim University rui Zhang ( [email protected] ) Tarim University https://orcid.org/0000-0002-4360-5179 Research Article Keywords: Base sequence, Evolution, Juglandaceae, Ribosomal spacer, Secondary structure Posted Date: May 13th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-501634/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/23 Abstract This study aims to investigate the phylogenetic relationships within the Juglandaceae family based on the Internal Transcribed Spacer's primary sequence and secondary structures (ITS2). Comparative analysis of 51 Juglandaceae species was performed across most of the dened seven genera. The results showed that the ITS2 secondary structure's folding pattern was highly conserved and congruent with the eukaryote model. Firstly, Neighbor-joining (N.J.) analysis recognized two subfamilies: Platycaryoideae and Engelhardioideae. The Platycaryoideae included the Platycaryeae (Platycarya+ (Carya+ Annamocarya)) and Juglandeae (Juglans-(Cyclocarya + Pterocarya)). The Engelhardioideae composed the (Engelhardia+Oreomunnea+Alfaroa)). The Rhoiptelea genus was generally regarded as an outgroup when inferring the phylogeny of Juglandaceae. However, it is clustered into the Juglandaceae family and showed a close relationship with the Platycaryoideae subfamily. Secondly, the folded 3-helices and 4-helices secondary structure of ITS2 were founded in the Juglandaceae family. Therefore, these ITS2 structures could be used as formal evidence to analyze Juglandaceae's phylogeny relationship.
- 
												  Juglans Neotropica, Cedro GrandeThe IUCN Red List of Threatened Species™ ISSN 2307-8235 (online) IUCN 2008: T32078A9672729 Juglans neotropica, Cedro Grande Assessment by: Americas Regional Workshop (Conservation & Sustainable Management of Trees, Costa Rica, November 1996) View on www.iucnredlist.org Citation: Americas Regional Workshop (Conservation & Sustainable Management of Trees, Costa Rica, November 1996). 1998. Juglans neotropica. The IUCN Red List of Threatened Species 1998: e.T32078A9672729. http://dx.doi.org/10.2305/IUCN.UK.1998.RLTS.T32078A9672729.en Copyright: © 2015 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale, reposting or other commercial purposes is prohibited without prior written permission from the copyright holder. For further details see Terms of Use. The IUCN Red List of Threatened Species™ is produced and managed by the IUCN Global Species Programme, the IUCN Species Survival Commission (SSC) and The IUCN Red List Partnership. The IUCN Red List Partners are: BirdLife International; Botanic Gardens Conservation International; Conservation International; Microsoft; NatureServe; Royal Botanic Gardens, Kew; Sapienza University of Rome; Texas A&M University; Wildscreen; and Zoological Society of London. If you see any errors or have any questions or suggestions on what is shown in this document,
- 
												  Juglans Neotropica DielsJuglans neotropica Diels V.M. NIETO and J. RODRIGUEZ Corporacion Nacional de Investigacion of Forestal Santafé de Bogotá, Colombia JUGLANDACEAE (WALNUT FAMILY) Jugans andina Triana & Cortés, Juglans colombiensis Dode, Juglans honorei Dode Cedro negro, cedro nogal, nogal, nogal bogotano Juglans neotropica is a slow-growing tree 25 m in height and 40 is removed manually. Seeds average 50 to 200 per kg. They are o J cm d.b.h. The trunk has a bark with grooves. The crown is stored at 4 to 6 C. oval with light green foliage. The compound leaves are 40 cm The recommended pregermination treatment consists of long, grouped at the end of branches, and alternate with a ser- scarifying the seeds with sandpaper or placing them in moist rated border. The species grows in soils of loose texture, sand for 4 months at 2 to 6 oC. Purity percentage is 100 per- muddy, loose-sandy (loose soils), with a neutral to slightly acid cent. Germination percentage is 40 to 80 percent. Germina- pH. It does not tolerate low pH or calcareous soils and needs tion is hypogeous. Untreated seeds germinate in 1 to 3 months. deep and fertile soils. It has low growth in poor, shallow, and The seeds can be planted directly in bags. If a germina- flooded soils. Juglans neotropica develops well at an altitude of tor is used, the planted seeds must be 1 cm apart; the tip must 1600 to 2500 m, with an average temperature that ranges be planted deeply, and covered with 2 to 3 cm of soil and sand.
- 
												  Vertebrate Community Changes Across a 3200M Amazon-To- Andes Gradient: Composition, Structure, and Occupancy by Daniel A. LoughVERTEBRATE COMMUNITY CHANGES ACROSS A 3200M AMAZON-TO- ANDES GRADIENT: COMPOSITION, STRUCTURE, AND OCCUPANCY BY DANIEL A. LOUGH A Thesis Submitted to the Graduate Faculty of WAKE FOREST UNIVERSITY GRADUATE SCHOOL OF ARTS AND SCIENCES in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Biology December, 2017 Winston Salem, North Carolina Approved By: Miles R. Silman, Ph.D., Advisor William E. Conner, Ph.D., Chair Todd M. Anderson, Ph.D. ii ACKNOWLEDGEMENTS From the start, I would like to thank my advisor, Dr. Miles Silman, for his insightful guidance and constant enthusiasm throughout this process. I’d also like to thank the members of my committee, Dr. William Conner and Dr. Michael Anderson, for lending their time and perspective to this project. I’ve also benefited from the guidance and support of the entire Silman Lab: William Farfan Rios, Cassie Freund, Rachel Hillyer, Jorge Cabellero Espejo, Max Messinger, and Jared Beaver. I am indebted to Dr. Russell Van Horn, Dr. Nicholas Pilfold, and Dr. Mathias Tobler at San Diego Zoo Global’s Institute for Conservation Research for their logistical and methodological support throughout this project. I owe a great deal of gratitude to Leydi Vanessa Aucacusi Choque, Ricardo Vivanco, and Fredy Martin Guizado for their assistance in the field and their many hours of hard work. I would like to thank my undergraduate researchers that assisted me in classifying the thousands of camera trap photos: Rebecca Wiebki, Kimiko Morris, Zachary Taylor, Kyla Mathon, Kristin Lanier, Nicholas Mouser, and Kiley Price. I would also like to thank SERNANP-Manu and the staff at Manu National park, for permitting this project.
- 
												  Animals of the Cloud Forest: Isotopic Variation of Archaeological Faunal Remains from Kuelap, PeruUniversity of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2018 Animals of the Cloud Forest: Isotopic Variation of Archaeological Faunal Remains from Kuelap, Peru Samantha Michell University of Central Florida Part of the Anthropology Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Michell, Samantha, "Animals of the Cloud Forest: Isotopic Variation of Archaeological Faunal Remains from Kuelap, Peru" (2018). Electronic Theses and Dissertations, 2004-2019. 5942. https://stars.library.ucf.edu/etd/5942 ANIMALS OF THE CLOUD FOREST: ISOTOPIC VARIATION OF ARCHAEOLOGICAL FAUNAL REMAINS FROM KUELAP, PERU by SAMANTHA MARIE MICHELL B.S. Idaho State University, 2014 A thesis submitted in partial fulfillment of the requirements for the degree of Master of Arts in the Department of Anthropology in the College of Sciences at the University of Central Florida Orlando, Florida Summer Term 2018 © 2018 Samantha Michell ii ABSTRACT Stable isotopic analyses of faunal remains are used as a proxy for reconstructing the ancient Chachapoya dietary environment of the northeastern highlands in Peru. Archaeologists have excavated animal remains from refuse piles at the monumental center of Kuelap (AD 900-1535). This archaeological site is located at 3000 meters above sea level (m.a.s.l.), where C3 plants dominate the region.