Chapter 1: Development of New Selective and Highly Sensitive Nutrient Media for Clavibacter Michiganensis Subsp

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 1: Development of New Selective and Highly Sensitive Nutrient Media for Clavibacter Michiganensis Subsp Elimination of Clavibacter michiganensis subsp. michiganensis from tomato cultures and seeds by highly sensitive detection methods and effective seed treatments Dissertation to obtain the PhD degree at the Faculty of Agricultural Sciences, Georg-August-University Göttingen, Germany by Radwan M. Ftayeh born in Deir Al-Bakht Daraa, Syria Göttingen 2009 D7 1. Name of referee: Prof. Dr. Andreas von Tiedemann 2. Name of co-referee: Prof. Dr. Kerstin Wydra 3. Name of co-referee: Prof. Dr. Petr Karlovsky Date of disputation: January 29, 2010 Contents Contents General Introduction ………………………………………………………………….… 1 Disease history …………………………………………………………………..... 1 Tomato production in Germany …………………………………………………... 3 Symptoms ….…………………………………………………………………..…. 4 Disease epidemiolog …………………………………………………………........ 6 Seed health certification ………………………………………………………….. 7 International requirements ………………………………………………………... 8 Objectives ………………………………………………………………………… 9 Outcomes …………………………………………………………………………. 9 References ……………………………………………………………………….. 11 Chapter 1: Development of new selective and highly sensitive nutrient media for Clavibacter michiganensis subsp. michiganensis and other subspecies ……………... 15 Summary ……………………………………………………………………………….. 15 Conclusions …………………………………………………………………………….. 16 Introduction ……………………………………………………………………………. 17 Materials and Methods ………………………………………………………………... 19 Bacterial species and strains …………………………………………………….. 19 Antibiotic-resistant mutant of Cmm ……………………………………………... 20 Media and growth conditions …………………………………………………… 20 Selection of the basic medium for Cmm ………………………………………… 22 Screening of antibiotics …………………………………………………………. 22 Susceptibility of accompanying bacteria towards antibiotics …………………… 23 Adjusting the optimum concentrations of inhibitors ……………………………. 23 Determining the plating efficiency (recovery rate) of Cmm strains on semiselective media …………………...........................…………………………….………….. 24 Evaluation of selectivity and detection sensitivity of semiselective media ……... 24 Results …………………………………………………………………………………... 26 Selecting a new basic medium for Cmm ……………………………………….... 26 Screening of different antibiotics ………………………………………………... 27 Susceptibility of accompanying bacterial species and strains towards antibiotics ……………………………………………………………………...... 29 i Contents Recipes of the new selective media BCT and BCT-2 …………………………… 30 Effect of boric acid………………………………………………………………. 32 Plating efficiency (recovery rate) of Cmm on the published and the new selective media …………...................................…………………………………………... 35 Selectivity of the new media BCT and BCT-2 ………………………………….. 39 Detection sensitivity of the new media for latent infection by Cmm …………… 42 Selectivity for other pathovars/species of coryneform bacteria ………………… 45 Modifications of the new media BCT and BCT-2 ………………………………. 47 Effect of the buffering system and other fungicides …………………………….. 50 Effect of the pH value on Cmm growth …………………………………………. 52 Effect of fruit juice ………………………………………………………………. 53 Selection of a fungicide …………………………...…………………………….. 53 Discussion …………………………………………………...………………………..… 55 References ……………………………………..………………………………………... 60 Chapter 2: Establishment of a Bio-PCR assay for a sensitive detection of Clavibacter michiganensis subsp. michiganensis in seed and plant material ……………………. 65 Summary ……………………………………………………………………………….. 65 Introduction ……………………………………………………………………….…… 67 Materials and Methods ………………………………………………………………... 69 Bacterial cultures and growth conditions ……………………………………….. 69 DNA extraction ………………………………………………………………….. 69 Primer design ……………………………………………………………………. 72 Designing new primers based on the publication of Bach et al. (2003) ………… 72 Designing new primers based on the publication of Luo et. al. (2008) …………. 72 Amplification conditions …................................….........……………………….. 73 - The new primers “B-rev-CM/B-fw-PCM” and “L-fw-CM/L-rev-PCM”; and the primer set tomA-F/tomA-R (Kleitman et al., 2008) …………………………. 73 - The primers CMM-5/CMM-6 (Dreier et al., 1995); CM3/CM4 (Sousa-Santos et al., 1997); and PSA-4/PSA-R (Pastrik and Rainey, 1999) …………...……. 73 Direct PCR ………………………………………………………………………. 75 Inhibitor tests ……………………………………………………………………. 75 Bio-PCR …………………………………………………………………………. 76 Results ………………………………………………………………………………...… 78 Specificity ……………………………………………………………………..… 78 ii Contents Efficiency of the new primers for amplification of different Cmm strains ……… 85 Direct PCR ………………………………………………...…………………….. 85 Inhibitor tests ……………………………………………………………………. 86 Bio-PCR …………………………………………………………………………. 88 Discussion ………………………………………………………………………………. 94 References ……………………………………………………………………………... 101 Chapter 3: Efficacy of different disinfection methods for eradication of Clavibacter michiganensis subsp. michiganensis from tomato seed …………………………….. 107 Summary …………………………………………………………………………….... 107 Introduction …………………………………………………………...……………… 109 Materials and Methods ……………………………………………………...………... 111 Antibiotic-resistant Cmm mutant ………………………………………………. 111 Bacterial inocula and testing of different inoculation methods with Cmm …….. 111 Screening of different chemical and physical seed treatment methods .…......… 113 Seed lots, seed infection and storage conditions ……………………………….. 113 Evaluation of seed germination capacity ………………………………………. 114 Evaluation of seed infection ………………………………………………….... 115 Seed treatments ……………………………………………………………….... 116 Chemical and hot water treatments …………………………………………….. 116 Seed fermentation ……………………………………………………………… 117 Seed extraction with hydrochloric acid ………………………………………... 117 Seed treatments with hot air ……………………………………………………. 118 Statistical analysis ……………………………………………………………… 118 Results …………………………………………………………………………………. 119 Screening of different inoculation methods with Cmm ………………………... 119 Effect of seed treatments towards Cmm bacteria ………………………………. 123 Successful eradication of Cmm from infested seeds by chemical or hot water treatments .................................................................…………………………… 123 Effect of seed fermentation …………………………………………………….. 125 Seed extraction with hydrochloric acid ………………………………………... 125 Effect of hot air treatments …………………………………………………….. 126 Effect of seed treatments on saprophytic bacteria ……………………………... 126 Effect of treatments on seed germination capacity ……………………………...127 Seed germination capacity at two and eight months after treatments ………..... 128 iii Contents Discussion ……………………………………………………………………………... 131 References ……………………………………………………………………………... 135 Chapter 4: Occurrence of Clavibacter michiganensis subsp. michiganensis, the causal agent of bacterial canker of tomato, in Syria ……….……………………………..... 139 Summary ………………………………………………………………………….…... 139 Introduction …………………………………………………………………………... 140 Materials and Methods ………………………………………………………………. 141 Surveys and sample collection …………………………………………………. 141 Isolation and identification …………………………………………………….. 141 Pathogenicity …………………………………………………………………... 142 PCR identification ……………………………………………………………... 143 Results …………………………………………………………………………………. 144 Disease incidence ………………………………………………………………. 144 Isolate identification ………………………………………………………….... 144 Pathogenicity …………………………………………………………………... 145 PCR identification ……………………………………………………………... 145 Discussion ……………………………………………………………………………... 147 References ……………………………………………………………………………... 149 General Discussion …………………………………………………………………… 151 General Summary ……………………………………………………………………. 154 Related publications ………………………………………………………………….. 158 Refereed journals ………………………………………………………………. 158 Presentations at national and international conferences ……………………….. 158 Conferences and workshops attended ………………………………………….. 159 Abbreviations …………………………………………………………………………. 160 Acknowledgements ………………………………………………………………….... 162 Eidesstattliche Erklärung ……………………………………………………………. 164 Curriculum vitae ……………………………………………………………………... 165 iv General Introduction General Introduction Disease history Bacterial canker of tomato, caused by the bacterium Clavibacter michiganensis subsp. michiganensis (Smith. 1910) Davis et al. 1984 is a serious and destructive disease worldwide. The disease was at first described by Smith who found it in 1909 in Grand Rapids, Michigan (Strider, 1969), after which the pathogen spread into nearly all main tomato production areas world-wide. Recently, the incidence of bacterial canker of tomato increased in Europe and was newly reported in several countries worldwide causing considerable losses. Therfore, a new distribution map of the pathogen (Figure 1) was issued (CABI/EPPO, 2009). The bacterium is considered as a quarantine organism in the European Union and many other countries (Council Directive 2000/29/EC; OEPP/EPPO, 1982). In Germany, the pathogen is known since 1929 (Kotte, 1930; Stapp, 1958), and caused serious losses in 1978, especially in greenhouses (Griesbach, person. commun.). Recently, the disease was transmitted in 1998 into the peninsula Reichenau in South Germany in Baden- Württemberg (Schmidt, 2006, person. commun.) and newly in 2002 into “Knoblauchsland” near Nürnberg in Bavaria (Maeritz, 2006, personal commun.), also in 2006 into North-Rhine- Westphalia (Matthäus-Staack and Eickeln, 2006, personal commun.) and very recently again into new locations of Baden-Württemberg in 2009 (Moltmann, 2009, personal commun.). Recently, the disease also occurred in neighbouring countries of Germany, such as Austria (Weber and Fuchs, 2007, personal observation and commun.), Switzerland (Wasserfallen,
Recommended publications
  • Corynebacterium Sp.|NML98-0116
    1 Limnochorda_pilosa~GCF_001544015.1@NZ_AP014924=Bacteria-Firmicutes-Limnochordia-Limnochordales-Limnochordaceae-Limnochorda-Limnochorda_pilosa 0,9635 Ammonifex_degensii|KC4~GCF_000024605.1@NC_013385=Bacteria-Firmicutes-Clostridia-Thermoanaerobacterales-Thermoanaerobacteraceae-Ammonifex-Ammonifex_degensii 0,985 Symbiobacterium_thermophilum|IAM14863~GCF_000009905.1@NC_006177=Bacteria-Firmicutes-Clostridia-Clostridiales-Symbiobacteriaceae-Symbiobacterium-Symbiobacterium_thermophilum Varibaculum_timonense~GCF_900169515.1@NZ_LT827020=Bacteria-Actinobacteria-Actinobacteria-Actinomycetales-Actinomycetaceae-Varibaculum-Varibaculum_timonense 1 Rubrobacter_aplysinae~GCF_001029505.1@NZ_LEKH01000003=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_aplysinae 0,975 Rubrobacter_xylanophilus|DSM9941~GCF_000014185.1@NC_008148=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_xylanophilus 1 Rubrobacter_radiotolerans~GCF_000661895.1@NZ_CP007514=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_radiotolerans Actinobacteria_bacterium_rbg_16_64_13~GCA_001768675.1@MELN01000053=Bacteria-Actinobacteria-unknown_class-unknown_order-unknown_family-unknown_genus-Actinobacteria_bacterium_rbg_16_64_13 1 Actinobacteria_bacterium_13_2_20cm_68_14~GCA_001914705.1@MNDB01000040=Bacteria-Actinobacteria-unknown_class-unknown_order-unknown_family-unknown_genus-Actinobacteria_bacterium_13_2_20cm_68_14 1 0,9803 Thermoleophilum_album~GCF_900108055.1@NZ_FNWJ01000001=Bacteria-Actinobacteria-Thermoleophilia-Thermoleophilales-Thermoleophilaceae-Thermoleophilum-Thermoleophilum_album
    [Show full text]
  • High-Quality Draft Genome Sequence of Curtobacterium Sp. Strain Ferrero
    PROKARYOTES crossm High-Quality Draft Genome Sequence of Curtobacterium sp. Strain Ferrero Ebrahim Osdaghi,a,b Natalia Forero Serna,a* Stephanie Bolot,c,d Marion Fischer-Le Saux,e Marie-Agnès Jacques,e Perrine Portier,e,f Sébastien Carrère,c,d Ralf Koebnika Downloaded from IRD, Cirad, Université de Montpellier, IPME, Montpellier, Francea; Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz, Iranb; INRA, Laboratoire des Interactions Plantes Micro-Organismes (LIPM), UMR 441, Castanet-Tolosan, Francec; CNRS, Laboratoire des Interactions Plantes Micro-Organismes (LIPM), UMR 2594, Castanet-Tolosan, Franced; INRA, Institut de Recherche en Horticulture et Semences (IRHS), UMR 1345 SFR 4207 QUASAV, Beaucouzé, Francee; CIRM-CFBP, French Collection for Plant-Associated Bacteria, INRA, IRHS, Angers, Francef ABSTRACT Here, we present the high-quality draft genome sequence of Curto- bacterium sp. strain Ferrero, an actinobacterium belonging to a novel species iso- Received 3 November 2017 Accepted 6 http://mra.asm.org/ November 2017 Published 30 November lated as an environmental contaminant in a bacterial cell culture. The assembled 2017 genome of 3,694,888 bp in 49 contigs has a GϩC content of 71.6% and contains Citation Osdaghi E, Forero Serna N, Bolot S, 3,516 predicted genes. Fischer-Le Saux M, Jacques M-A, Portier P, Carrère S, Koebnik R. 2017. High-quality draft genome sequence of Curtobacterium sp. strain Ferrero. Genome Announc 5:e01378-17. he genus Curtobacterium comprises Gram-positive aerobic corynebacteria (family https://doi.org/10.1128/genomeA.01378-17. TMicrobacteriaceae, order Actinomycetales), including at least 11 well-defined species Copyright © 2017 Osdaghi et al.
    [Show full text]
  • Adaptive Differentiation and Rapid Evolution of a Soil Bacterium Along a Climate Gradient
    Adaptive differentiation and rapid evolution of a soil bacterium along a climate gradient Alexander B. Chasea,b,1, Claudia Weihea, and Jennifer B. H. Martinya aDepartment of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697; and bCenter for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, CA 92093 Edited by James M. Tiedje, Michigan State University, East Lansing, MI, and approved March 30, 2021 (received for review January 29, 2021) Microbial community responses to environmental change are largely shifts are due to adaptive differentiation among taxa as a result associated with ecological processes; however, the potential for of past evolutionary divergence. Concurrently, the same selective microbes to rapidly evolve and adapt remains relatively unexplored forces can also shift the abundance of conspecific strains and in natural environments. To assess how ecological and evolutionary alter the allele frequencies of preexisting genetic variation, which processes simultaneously alter the genetic diversity of a microbiome, at this genetic scale is defined as an evolutionary process (14). we conducted two concurrent experiments in the leaf litter layer of Finally, evolution through de novo mutation can provide a new soil over 18 mo across a climate gradient in Southern California. In the source of genetic variation that may allow for further adaptation first experiment, we reciprocally transplanted microbial communities to environmental change. from five sites to test whether ecological shifts in ecotypes of the In this study, we aimed to capture this continuum of ecological abundant bacterium, Curtobacterium, corresponded to past adaptive and evolutionary processes that together produce the response differentiation.
    [Show full text]
  • Supplement of Screening of Cloud Microorganisms Isolated at the Puy De Dôme (France) Station for the Production of Biosurfactants
    Supplement of Atmos. Chem. Phys., 16, 12347–12358, 2016 http://www.atmos-chem-phys.net/16/12347/2016/ doi:10.5194/acp-16-12347-2016-supplement © Author(s) 2016. CC Attribution 3.0 License. Supplement of Screening of cloud microorganisms isolated at the Puy de Dôme (France) station for the production of biosurfactants Pascal Renard et al. Correspondence to: Anne-Marie Delort ([email protected]) The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence. Table S1. Strains are isolated during 39 cloud events (from 2004 to 2014) gathered in four categories according to the physicochemical characteristics of the cloud waters (Blue: marine, purple: highly marine, green: continental and black: polluted) as described by Deguillaume et al. (2014). Cloud Nb of Ions (µM) Composition Date pH 2- - - + + 2+ + 2+ Event strains SO 4 NO 3 Cl Acetate Formate Oxalate Succinate Malonate Na NH 4 Mg K Ca 21 Marine 2 2004-01 5.6 NA NA NA NA NA NA NA NA NA NA NA NA NA 23 Polluted 2 2004-02 3.1 NA NA NA NA NA NA NA NA NA NA NA NA NA 29 Marine 1 2004-07 5.5 NA NA NA NA NA NA NA NA NA NA NA NA NA 30 Marine 3 2004-09 7.6 3.8 6.5 12.0 6.0 6.0 0.5 0.1 0.16 19.4 54.9 4.9 4.1 12.0 32 Continental 1 2004-12 5.5 72.1 95.8 31.5 0.0 0.3 0.3 0.1 0.17 74.4 132.4 7.6 9.0 73.7 42 Continental 25 2007-12 4.7 39.7 198.4 20.2 10.2 5.8 2.9 0.6 0.58 19.1 148.2 3.5 11.9 58.0 43 Highly marine 25 2008-01 5.9 9.4 21.4 81.4 11.4 6.7 1.2 0.2 0.28 315.7 35.9 11.8 13.7 26.0 44 Continental 14 2008-02 5.2 24.6 65.9 17.2 26.8 18.0 1.3 0.5 0.39
    [Show full text]
  • Soil Ecotypes Along a Climate Gradient
    Emergence of Soil Bacterial Ecotypes Along a Climate Gradient Alexander B. Chase1#, Zulema Gomez-Lunar2, Alberto E. Lopez1, Junhui Li2, Steven D. Allison1,2, Adam C. Martiny1,2, and Jennifer B.H. Martiny1 1Department of Ecology and Evolutionary Biology, University of California, Irvine, California 2Department of Earth System Sciences, University of California, Irvine, California #Address correspondence to: Alexander B. Chase, [email protected] 3300 Biological Sciences III Department of Ecology and Evolutionary Biology University of California Irvine, CA 92697 Running Title: Soil ecotypes along a climate gradient Article Accepted Thi s article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/1462-2920.14405 This article is protected by copyright. All rights reserved. Originality-Significance Statement Microbial community analyses typically rely on delineating operational taxonomic units; however, a great deal of genomic and phenotypic diversity occurs within these taxonomic groupings. Previous work in closely-related marine bacteria demonstrates that fine-scale genetic variation is linked to variation in ecological niches. In this study, we present similar evidence for soil bacteria. We find that an abundant and widespread soil taxon encompasses distinct ecological populations, or ecotypes, as defined by their phenotypic traits. We further validated that differences in these soil ecotypes correspond to variation in their distribution across a regional climate gradient. Thus, there exists genomic and phenotypic diversity within this soil taxon that contributes to niche differentiation.
    [Show full text]
  • Coffee Microbiota and Its Potential Use in Sustainable Crop Management. a Review Duong Benoit, Marraccini Pierre, Jean Luc Maeght, Philippe Vaast, Robin Duponnois
    Coffee Microbiota and Its Potential Use in Sustainable Crop Management. A Review Duong Benoit, Marraccini Pierre, Jean Luc Maeght, Philippe Vaast, Robin Duponnois To cite this version: Duong Benoit, Marraccini Pierre, Jean Luc Maeght, Philippe Vaast, Robin Duponnois. Coffee Mi- crobiota and Its Potential Use in Sustainable Crop Management. A Review. Frontiers in Sustainable Food Systems, Frontiers Media, 2020, 4, 10.3389/fsufs.2020.607935. hal-03045648 HAL Id: hal-03045648 https://hal.inrae.fr/hal-03045648 Submitted on 8 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License REVIEW published: 03 December 2020 doi: 10.3389/fsufs.2020.607935 Coffee Microbiota and Its Potential Use in Sustainable Crop Management. A Review Benoit Duong 1,2, Pierre Marraccini 2,3, Jean-Luc Maeght 4,5, Philippe Vaast 6, Michel Lebrun 1,2 and Robin Duponnois 1* 1 LSTM, Univ. Montpellier, IRD, CIRAD, INRAE, SupAgro, Montpellier, France, 2 LMI RICE-2, Univ. Montpellier, IRD, CIRAD, AGI, USTH, Hanoi, Vietnam, 3 IPME, Univ. Montpellier, CIRAD, IRD, Montpellier, France, 4 AMAP, Univ. Montpellier, IRD, CIRAD, INRAE, CNRS, Montpellier, France, 5 Sorbonne Université, UPEC, CNRS, IRD, INRA, Institut d’Écologie et des Sciences de l’Environnement, IESS, Bondy, France, 6 Eco&Sols, Univ.
    [Show full text]
  • Curtobacterium Flaccumfaciens Pv. Flaccumfaciens Not Detected No
    European and Mediterranean Plant Protection Organization PM 7/102 (1) Organisation Europe´enne et Me´diterrane´enne pour la Protection des Plantes Diagnostics Diagnostic Curtobacterium flaccumfaciens pv. flaccumfaciens Specific scope Specific approval and amendment This standard describes a diagnostic protocol for Curtobacterium Approved in 2011-09. flaccumfaciens pv. flaccumfaciens.1 of pathogenicity. A flow diagram describing the procedure is Introduction giveninFig.1. Curtobacterium flaccumfaciens pv. flaccumfaciens is the causal agent of the bacterial wilt disease of Phaseolus spp. and is a sys- Identity temic bacterium. The disease was first discovered in the United States (South Dakota) in the 1920s on Phaseolus vulgaris and sub- Name: Curtobacterium flaccumfaciens pv. flaccumfaciens sequently recorded in Australia, Canada, Mexico, South America (Hedges) Collins & Jones. and Tunisia. It has a restricted distributioninRomaniaandRussia. Synonyms:ex-Corynebacterium flaccumfaciens subsp. flaccum- Although it has been recorded in Belgium, Bulgaria, Greece, Hun- faciens (Hedges) Dowson. gary, Poland, Turkey and Ukraine, it has not established and is Taxonomic position: Actinobacteria, Actinomycetales, now considered absent from these countries. It has recently been Microbacteriaceae, Curtobacterium. reported in few fields in South-Eastern Spain (Gonza´lez et al., Notes on taxonomy and nomenclature: In addition to Curto- 2005). Apart from this record, there are few recent records of bacterium flaccumfaciens pv. flaccumfaciens and according to C. flaccumfaciens pv. flaccumfaciens in the EPPO region. the most recent classification (Collins & Jones, 1984; Young No effective chemical methods are known against this disease; et al., 1996, 2004), the species C. flaccumfaciens includes the as C. flaccumfaciens pv. flaccumfaciens is a seed-borne bacte- following pathovars: betae (Cfb), oortii (Cfo), poinsettiae (Cfp) rium, current control methods are based mainly on the use of and ilicis (Cfi).
    [Show full text]
  • Curriculum Vitae
    Faculty of Sciences Department of Biochemistry and Microbiology Laboratory of Microbiology Diagnostics for quarantine plant pathogenic Clavibacter and relatives: molecular characterization, identification and epidemiological studies Joanna Załuga Promoter: Prof. Dr. Paul De Vos Co-promoter: Prof. Dr. Martine Maes Dissertation submitted in fulfillment of the requirements for the degree of Doctor (Ph.D.) in Sciences, Biotechnology Joanna Załuga – Diagnostics for quarantine plant pathogenic Clavibacter and relatives: molecular characterization, identification and epidemiological studies Copyright ©2013 Joanna Załuga ISBN-number: No part of this thesis protected by its copyright notice may be reproduced or utilized in any form, or by any means, electronic or mechanical, including photocopying, recording or by any information storage or retrieval system without written permission of the author and promoters. Printed by University Press | www.universitypress.be Ph.D. thesis, Faculty of Sciences, Ghent University, Ghent, Belgium. This Ph.D. work was financially supported by a QBOL (Quarantine Barcoding Of Life) project KBBE- 2008-1-4-01 nr 226482 funded under the Seventh Framework Program (FP 7) of the European Union. Publicly defended in Ghent, Belgium, October 11th, 2013 ii Examination Committee Prof. Dr. Savvas Savvides (Chairman) L-Probe: Laboratory for protein Biochemistry and Biomolecular Engineering Faculty of Sciences, Ghent University, Belgium Prof. Dr. Paul De Vos (Promoter) LM-UGent: Laboratory of Microbiology, Faculty of Science, Ghent University, Belgium BCCM-LMG Bacteria Collection, Ghent, Belgium Prof. Dr. Martine Maes (Co-promoter) Plant Sciences Unit – Crop Protection Institute for Agricultural and Fisheries Research (ILVO), Merelbeke, Belgium Dr. Peter Bonants Plant Research International (PRI) Business Unit Biointeractions & Plant Health, Wageningen, The Netherlands Ir.
    [Show full text]
  • PM 7/99 (1): Clavibacter Michiganensis Subsp. Insidiosus
    European and Mediterranean Plant Protection Organization PM 7/99 (1) Organisation Europe´enne et Me´diterrane´enne pour la Protection des Plantes Diagnostics Diagnostic Clavibacter michiganensis subsp. insidiosus Specific scope Specific approval and amendment This standard describes a diagnostic protocol for Clavibacter Approved as an EPPO Standard in 2010–09. michiganensis subsp. insidiosus.1 distribution and biology can be found in the EPPO data sheet on Introduction C. michiganensis subsp. insidiosus (EPPO ⁄ CABI, 1997). Clavibacter michiganensis subsp. insidiosus is a widespread seed- This diagnostic procedure for C. michiganensis subsp. insidio- transmitted disease of Medicago sativa (lucerne, alfalfa). It has sus (Figs 1 and 2) describes extraction from plant or seeds, been reported as an important bacterial disease of Medicago sati- presumptive diagnosis with a rapid test, isolation of presumptive va, causing reduction of vigour and growth of the crop, and con- bacterial colonies, identification of presumptive isolates and, siderably decreasing yield. The pathogen has been reported in where relevant, determination of pathogenicity. most important lucerne-producing areas in the USA and Canada in the 20th Century. Although previously reported in the EPPO Identity region (in Italy, Lithuania, Romania, Russia and the United King- dom), findings were sporadic and there have been no reports since Name: Clavibacter michiganensis subsp. insidiosus (McCulloch) the 1980s. Further details on the geographic distribution are Davis et al. presented in the EPPO distribution map (see http://www.eppo.org). Synonyms: Corynebacterium insidiosum (McCulloch) Jensen., Medicago sativa is the most important host but Lotus corni- Corynebacterium michiganense pv. insidiosum (McCulloch) Dye culatus, Medicago falcate (yellow flowered lucerne), Medicago &Kemp,Aplanobacter insidiosum, Corynebacterium michigan- spp., Melilotus alba (sweet clover), Onobrychis viciifolia (sain- ense subsp.
    [Show full text]
  • Microbial Diversity of Psychrotolerant Bacteria Isolated from Wild Flora Of
    microorganisms Article Microbial Diversity of Psychrotolerant Bacteria Isolated from Wild Flora of Andes Mountains and Patagonia of Chile towards the Selection of Plant Growth-Promoting Bacterial Consortia to Alleviate Cold Stress in Plants Paulina Vega-Celedón 1,2,*, Guillermo Bravo 1,2, Alexis Velásquez 1,2 , Fernanda P. Cid 3,4, Miryam Valenzuela 1,2, Ingrid Ramírez 2, Ingrid-Nicole Vasconez 1,2, Inaudis Álvarez 1,2, Milko A. Jorquera 3,4 and Michael Seeger 1,2,* 1 Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; [email protected] (G.B.); [email protected] (A.V.); [email protected] (M.V.); [email protected] (I.-N.V.); [email protected] (I.Á.) 2 Center of Biotechnology “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile; [email protected] 3 Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Avenida Francisco Salazar 1145, Temuco 4811230, Chile; [email protected] (F.P.C.); [email protected] (M.A.J.) Citation: Vega-Celedón, P.; Bravo, G.; 4 Center of Plant-Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Velásquez, A.; Cid, F.P.; Valenzuela, Bioresource Nucleus (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar 1145, M.; Ramírez, I.; Vasconez, I.-N.; Temuco 4811230, Chile Álvarez, I.; Jorquera, M.A.; Seeger, M. * Correspondence: [email protected] (P.V.-C.); [email protected] (M.S.); Microbial Diversity of Tel.: +56-322654685 (P.V.-C.) Psychrotolerant Bacteria Isolated from Wild Flora of Andes Mountains Abstract: Cold stress decreases the growth and productivity of agricultural crops.
    [Show full text]
  • Rathayibacter Caricis Sp. Nov. and Rathayibacter Festucae Sp. Nov., Isolated from the Phyllosphere of Carex Sp. and the Leaf
    International Journal of Systematic and Evolutionary Microbiology (2002), 52, 1917–1923 DOI: 10.1099/ijs.0.02164-0 Rathayibacter caricis sp. nov. and Rathayibacter NOTE festucae sp. nov., isolated from the phyllosphere of Carex sp. and the leaf gall induced by the nematode Anguina graminis on Festuca rubra L., respectively 1 VKM, All-Russian Lubov V. Dorofeeva,1 Lyudmila I. Evtushenko,1,2 Valentina I. Krausova,1 Collection of 1,2 3 4 Microorganisms, G. K. Alexander V. Karpov, Sergey A. Subbotin and James M. Tiedje Skryabin Institute of Biochemistry and Physiology of Author for correspondence: Lyudmila I. Evtushenko. Tel: j7 095 925 7448. Fax: j7 095 956 3370. Microorganisms, Russian e-mail: evtushenko!ibpm.serpukhov.su Academy of Sciences, Pushchino, Moscow Region 142290, Russia Two novel species, Rathayibacter caricis sp. nov. (type strain VKM Ac-1799T l 2 Pushchino State University, UCM Ac-618T) and Rathayibacter festucae sp. nov. (type strain VKM Ac-1390T l Pushchino, Moscow Region UCM Ac-619T), are proposed for two coryneform actinomycetes found in the 142290, Russia phyllosphere of Carex sp. and in the leaf gall induced by the plant-parasitic 3 Institute of Parasitology, nematode Anguina graminis on Festuca rubra L., respectively. The strains of Russian Academy of Sciences, Leninskii the novel species are typical of the genus Rathayibacter in their prospect, 33, Moscow chemotaxonomic characteristics and fall into the Rathayibacter 16S rDNA 117071, Russia phylogenetic cluster. They belong to two separate genomic species and differ 4 Center for Microbial markedly from current validly described species of Rathayibacter at the Ecology, Michigan State phenotypic level.
    [Show full text]
  • Bioactive Actinobacteria Associated with Two South African Medicinal Plants, Aloe Ferox and Sutherlandia Frutescens
    Bioactive actinobacteria associated with two South African medicinal plants, Aloe ferox and Sutherlandia frutescens Maria Catharina King A thesis submitted in partial fulfilment of the requirements for the degree of Doctor Philosophiae in the Department of Biotechnology, University of the Western Cape. Supervisor: Dr Bronwyn Kirby-McCullough August 2021 http://etd.uwc.ac.za/ Keywords Actinobacteria Antibacterial Bioactive compounds Bioactive gene clusters Fynbos Genetic potential Genome mining Medicinal plants Unique environments Whole genome sequencing ii http://etd.uwc.ac.za/ Abstract Bioactive actinobacteria associated with two South African medicinal plants, Aloe ferox and Sutherlandia frutescens MC King PhD Thesis, Department of Biotechnology, University of the Western Cape Actinobacteria, a Gram-positive phylum of bacteria found in both terrestrial and aquatic environments, are well-known producers of antibiotics and other bioactive compounds. The isolation of actinobacteria from unique environments has resulted in the discovery of new antibiotic compounds that can be used by the pharmaceutical industry. In this study, the fynbos biome was identified as one of these unique habitats due to its rich plant diversity that hosts over 8500 different plant species, including many medicinal plants. In this study two medicinal plants from the fynbos biome were identified as unique environments for the discovery of bioactive actinobacteria, Aloe ferox (Cape aloe) and Sutherlandia frutescens (cancer bush). Actinobacteria from the genera Streptomyces, Micromonaspora, Amycolatopsis and Alloactinosynnema were isolated from these two medicinal plants and tested for antibiotic activity. Actinobacterial isolates from soil (248; 188), roots (0; 7), seeds (0; 10) and leaves (0; 6), from A. ferox and S. frutescens, respectively, were tested for activity against a range of Gram-negative and Gram-positive human pathogenic bacteria.
    [Show full text]