A STUDY of the COMPOSITION and FUNCTION of TELOMERIC CHROMATIN in Drosophila Melanogaster

Total Page:16

File Type:pdf, Size:1020Kb

A STUDY of the COMPOSITION and FUNCTION of TELOMERIC CHROMATIN in Drosophila Melanogaster A STUDY OF THE COMPOSITION AND FUNCTION OF TELOMERIC CHROMATIN IN Drosophila melanogaster. by James Gregory Brian Doheny B.A., Simon Fraser University, 1987 B. Sc. The University of British Columbia, 1990 M. Sc. The University of British Columbia, 1996 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate Studies (Zoology) THE UNIVERSITY OF BRITISH COLUMBIA January 2008 © James Gregory Brian Doheny, 2008 ABSTRACT The telomeres of most organisms are characterized by a protein-capping complex that protects chromosome ends, a series of repetitive subtelomeric sequences known as Telomere-Associated Sequences (TAS), and a behavioral phenomenon known as Telomere Position Effect (TPE). TPE is a phenomenon whereby normally active genes become repressed and silenced if relocated near to telomeres, and is thought to be a property of the proteins that constitute telomeric heterochromatin. Genetic dissection was used to exploit this phenomenon in order to identify components of telomeric heterochromatin in Drosophila melanogaster. Using genetic dissection, followed by a chromatin analysis technique known as Chromatin ImmunoPrecipitation (ChIP) I was able to identify three proteins, HDAC1, SU(VAR)3-9, and HP1c, as integral components of telomeric heterochromatin in Drosophila. HDAC1 and SU(VAR)3-9 are both believed to be involved in the gene-silencing process, and thus, their presence at telomeres could explain the phenomenon of TPE. Furthermore, I found that these proteins were specifically associated with the TAS region on the centromere-proximal side of the HeT- A transposable elements that maintain telomere length in Drosophila. As a result of this, I proposed a model, which I call the ‘pairing-sliding model of telomere length control in Drosophila,’ which proposes that temporary incorrect pairing of Drosophila telomeres results in the deacetylation and subsequent methylation of the nucleosomes associated with the HeT-A and TART elements by TAS-associated HDAC1 and SU(VAR)3-9, resulting in these elements being transcriptionally silent. Thus, I propose that the TAS region, and the HDAC1 and SU(VAR)3-9 associated with it play a role in the negative regulation of telomere length in Drosophila. ii TABLE OF CONTENTS ABSTRACT…………………………………………..……………………………………ii TABLE OF CONTENTS…………………………..………………………………...……iii LIST OF TABLES…………………………….…………………………………………..vi LIST OF FIGURES………………………………….………………………..………….vii LIST OF ABBREVIATIONS……………………….……………………………………..x ACKNOWLEDGEMENTS……………………….…………………………………..….xii DEDICATION……………………………………….………………………………..…xiii CO-AUTHORSHIP STATEMENT……………..………..………………………..…….xiv CHAPTER ONE........................................................................................................................................... 1 INTRODUCTORY CHAPTER .................................................................................................................. 1 PUTTING THE STUDY OF THE TELOMERES OF DROSOPHILA MELANOGASTER INTO AN APPROPRIATE CONTEXT....................................................................................................................... 1 I Linear chromosomes and telomere maintenance................................................................................. 2 II Characteristic features of yeast telomeres. ......................................................................................... 4 III Characteristic features of mammalian telomeres. ............................................................................. 8 IV Current knowledge about Drosophila telomeres............................................................................. 11 IVA Telomere length maintenance in Drosophila. ....................................................................... 12 IVB Evidence for t-loop formation at Drosophila telomeres as part of a telomere repair mechanism.......................................................................................................................................... 14 IVC Genetic mutations that influence telomere length maintenance. ......................................... 15 IVD The Drosophila telomere capping complex........................................................................... 19 IVE TPE in Drosophila.................................................................................................................. 20 V Overview of thesis and objectives.................................................................................................... 25 VI REFERENCES ............................................................................................................................... 27 CHAPTER TWO........................................................................................................................................ 33 A GENETIC SCREEN TO FIND MUTATIONS THAT SUPPRESS TELOMERE POSITION EFFECT IN DROSOPHILA. .................................................................................................................... 33 I INTRODUCTION............................................................................................................................. 34 II MATERIALS AND METHODS...................................................................................................... 39 IIA Assay used to test suppression of TPE.................................................................................... 39 IIB Assay used to test suppression of PEV.................................................................................... 44 IIC Generation of w- stocks for testing.......................................................................................... 44 IID Crosses used to score suppression of TPE and PEV included an internal wild-type standard. 45 IIE Eye pigment assays.................................................................................................................. 46 IIF Fly crosses............................................................................................................................... 49 IIG Protein homology searches. .................................................................................................... 50 IIH Lethal complementation analysis. .......................................................................................... 50 III RESULTS ....................................................................................................................................... 53 IIIA Suppression of TPE by previously identified Su(var) mutations.......................................... 59 IIIB Previously identified Su(TPE) mutations.............................................................................. 67 IIIC A candidate gene screening approach to finding additional Su(TPE) loci.......................... 70 IV DISCUSSION................................................................................................................................. 93 iii IVA TPE as a separate phenomenon from PEV........................................................................... 93 IVB Summary and analysis of TPE-suppressing loci................................................................... 94 V REFERENCES .............................................................................................................................. 105 CHAPTER THREE.................................................................................................................................. 110 AN EXAMINATION OF THE CHROMATIN COMPOSITION OF THE DROSOPHILA 2L TELOMERE............................................................................................................................................. 110 I INTRODUCTION........................................................................................................................... 111 II MATERIALS AND METHODS ................................................................................................... 116 IIA Generation of 39C-X/Su(var)3-9GFP and 39C-5/Su(var)3-9GFP flies. ............................. 116 IIB ChIP Assays........................................................................................................................... 118 IIC Quantitative PCR (qPCR) of Reporter Gene, Actin 42A, and various regions of the 2L telomere. ........................................................................................................................................... 120 III RESULTS ..................................................................................................................................... 126 IIIA The HDAC1, SU(VAR)3-9, and HP1c proteins are present and enriched at the reporter gene when it is located in the telomere............................................................................................ 126 IIIB HDAC1, SU(VAR)3-9, HP1c are present at the native 2L telomere, but are preferentially associated with the TAS region........................................................................................................ 134 IIIC Distribution of histone modifications at the telomeric reporter gene................................. 143 IIID Distribution of histone modifications across the native Drosophila 2L telomere.............. 147 IV DISCUSSION............................................................................................................................... 154 IVA TPE and the chromatin composition of TAS regions. .......................................................
Recommended publications
  • ORC3 (1D6): Sc-23888
    SANTA CRUZ BIOTECHNOLOGY, INC. ORC3 (1D6): sc-23888 BACKGROUND STORAGE The initiation of DNA replication is a multi-step process that depends on the Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of formation of pre-replication complexes, which trigger initiation. Among the shipment. Non-hazardous. No MSDS required. proteins required for establishing these complexes are the origin recognition complex (ORC) proteins. ORC proteins bind specifically to origins of replication DATA where they serve as scaffold for the assembly of additional initiation factors. A B Human ORC subunits 1-6 are expressed in the nucleus of proliferating cells AB C DE and tissues, such as the testis. ORC1 and ORC2 are both expressed at equiv- 113 K – 89 K – alent concentrations throughout the cell cycle; however, only ORC2 remains < ORC3 stably bound to chromatin. ORC4 and ORC6 are also expressed constantly throughout the cell cycle. ORC2, ORC3, ORC4 and ORC5 form a core complex 49 K – upon which ORC6 and ORC1 assemble. The formation of this core complex suggests that ORC proteins play a crucial role in the G1-S transition in mam- malian cells. ORC3 (1D6): sc-23888. Western blot analysis of ORC3 ORC3 (1D6): sc-23888. Immunoperoxidase staining of expression in HeLa (A), Raji (B), Jurkat (C), WI-38 (D) formalin fixed, paraffin-embedded human ovary tissue CHROMOSOMAL LOCATION and A-549 (E) whole cell lysates. showing nuclear localization (A,B). Genetic locus: ORC3L (human) mapping to 6q15. SELECT PRODUCT CITATIONS SOURCE 1. Braden, W.A., et al. 2006. Distinct action of the retinoblastoma pathway ORC3 (1D6) is a rat monoclonal antibody raised against partially purified on the DNA replication machinery defines specific roles for cyclin-depen- His-tagged bacterially expressed fusion protein corresponding to human ORC3.
    [Show full text]
  • The Joy of Balancers
    REVIEW The joy of balancers 1,2 3 4,5 Danny E. MillerID *, Kevin R. Cook , R. Scott HawleyID * 1 Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington, United States of America, 2 Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, Washington and Seattle Children's Hospital, Seattle, Washington, United States of America, 3 Department of Biology, Indiana University, Bloomington, Indiana, United States of America, 4 Stowers Institute for Medical Research, Kansas City, Missouri, United States of America, 5 Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America * [email protected] (DEM); [email protected] (RSH) Abstract Balancer chromosomes are multiply inverted and rearranged chromosomes that are widely used in Drosophila genetics. First described nearly 100 years ago, balancers are used extensively in stock maintenance and complex crosses. Recently, the complete molecular a1111111111 structures of several commonly used balancers were determined by whole-genome a1111111111 sequencing. This revealed a surprising amount of variation among balancers derived from a a1111111111 a1111111111 common progenitor, identified genes directly affected by inversion breakpoints, and cata- a1111111111 loged mutations shared by balancers. These studies emphasized that it is important to choose the optimal balancer, because different inversions suppress meiotic recombination in different chromosomal regions. In this review, we provide a brief history of balancers in Drosophila, discuss how they are used today, and provide examples of unexpected recom- bination events involving balancers that can lead to stock breakdown. OPEN ACCESS Citation: Miller DE, Cook KR, Hawley RS (2019) The joy of balancers.
    [Show full text]
  • Systemic Analysis of the DNA Replication Regulators Origin Recognition Complex in Lung Adenocarcinomas Identifes Prognostic and Expression Signifcance
    Systemic Analysis of the DNA Replication Regulators Origin Recognition Complex in Lung Adenocarcinomas Identies Prognostic and Expression Signicance Juan Chen University of South China Juan Zou University of South China Juan Zeng University of South China Tian Zeng University of South China Qi-hao Hu University of South China Jun-hui Bai University of South China Min Tang University of South China Yu-kun Li ( [email protected] ) University of South China https://orcid.org/0000-0002-8517-9075 Primary research Keywords: lung adenocarcinomas, ORC complex, public databases, prognostic value, comprehensive bioinformatics Posted Date: May 11th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-487176/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/24 Abstract Background: Origin recognition complex (ORC) 1, ORC2, ORC3, ORC4, ORC5 and ORC6, form a replication- initiator complex to mediate DNA replication, which play a key role in carcinogenesis, while their role in lung adenocarcinomas (LUAD) remains poorly understood. Methods: We conrmed the transcriptional and post-transcriptional levels, DNA alteration, DNA methylation, miRNA network, protein structure, PPI network, functional enrichment, immune inltration and prognostic value of ORCs in LUAD based on Oncomine, GEPIA, HPA, cBioportal, TCGA, GeneMANIA, Metascape, KM-plot, GENT2, and TIMER database. Results: ORC mRNA and protein were both enhanced obviously based on Oncomine, Ualcan, GEPIA, TCGA and HPA database. Furthermore, ORC1 and ORC6 have signicant prognostic values for LUAD patients based on GEPIA database. Protein structure, PPI network, functional enrichment and immune inltration analysis indicated that ORC complex cooperatively accelerate the LUAD development by promoting DNA replication, cellular senescence and metabolic process.
    [Show full text]
  • Additional Miscellaneous Information About Drosophila
    Supplemental handout Background on flies Spring, 2013 --------------------------------------------- Miscellaneous useful information about Drosophila A diploid Drosopihila melanogaster fruit fly has two sex chromosomes (XX in the female and XY in the male) and three pairs of autosomes, designated chromosomes 2, 3 and 4; the X is designated chromosome 1. Chromosome 4 is very small. The X is telocentric, meaning that the centromere is at one end. Centromeric heterochromatin is not amplified in polytene nuclei, and all polytene chromosomes are attached to the chromocenter (unamplified heterochromatin), so that a good squash of a polytene nucleus shows five arms extending from a central point. These arms are the euchromatic portions of X, 2L, 2R, 3L and 3R. The pattern of bands is reproducible, and Calvin Bridges devised a nomenclature for them in the 1930's. Each major chromosome arm is divided into 20 numbered sections (X = 1-20, 2L = 21-40, 2R = 41-60, 3L = 61-80, 3R = 81-100 and 4 = 101-102). Each numbered unit is divided into six lettered regions, A-F, and each letter into some number of bands, depending on what Bridges saw. The correlation of these polytene maps and cloned DNA can be accomplished by in situ hybridization, and polytene maps can be correlated with genetic maps based on recombination by testing for complementation between mutant alleles and cytologically visible deletions. A summary of such correlated information is available on Flybase and links available through Flybase. Genes are given a full name, like speck, and a symbol, like sp. In general, gene symbols are capitalized if the original allele was dominant.
    [Show full text]
  • Chromosome Integrity in Saccharomyces Cerevisiae: the Interplay of DNA Replication Initiation Factors, Elongation Factors, and Origins
    Downloaded from genesdev.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Chromosome integrity in Saccharomyces cerevisiae: the interplay of DNA replication initiation factors, elongation factors, and origins Dongli Huang1,2 and Douglas Koshland1,3 1Howard Hughes Medical Institute, Carnegie Institution of Washington, Department of Embryology, Baltimore, Maryland 21210, USA; 2Johns Hopkins University, Department of Biology, Baltimore, Maryland 21218, USA The integrity of chromosomes during cell division is ensured by both trans-acting factors and cis-acting chromosomal sites. Failure of either these chromosome integrity determinants (CIDs) can cause chromosomes to be broken and subsequently misrepaired to form gross chromosomal rearrangements (GCRs). We developed a simple and rapid assay for GCRs, exploiting yeast artificial chromosomes (YACs) in Saccharomyces cerevisiae. We used this assay to screen a genome-wide pool of mutants for elevated rates of GCR. The analyses of these mutants define new CIDs (Orc3p, Orc5p, and Ycs4p) and new pathways required for chromosome integrity in DNA replication elongation (Dpb11p), DNA replication initiation (Orc3p and Orc5p), and mitotic condensation (Ycs4p). We show that the chromosome integrity function of Orc5p is associated with its ATP-binding motif and is distinct from its function in controlling the efficiency of initiation of DNA replication. Finally, we used our YAC assay to assess the interplay of trans and cis factors in chromosome integrity. Increasing the number of origins on a YAC suppresses GCR formation in our dpb11 mutant but enhances it in our orc mutants. This result provides potential insights into the counterbalancing selective pressures necessary for the evolution of origin density on chromosomes.
    [Show full text]
  • Genome-Wide Analysis of the Core DNA Replication Machinery in the Higher Plants Arabidopsis and Rice1[W][OA]
    Genome Analysis Genome-Wide Analysis of the Core DNA Replication Machinery in the Higher Plants Arabidopsis and Rice1[W][OA] Randall W. Shultz2, Vinaya M. Tatineni, Linda Hanley-Bowdoin*, and William F. Thompson Department of Plant Biology (R.W.S., W.F.T.), Department of Statistical Genetics and Bioinformatics (V.M.T.), and Department of Molecular and Structural Biochemistry (L.H.-B.), North Carolina State University, Raleigh, North Carolina 27695 Core DNA replication proteins mediate the initiation, elongation, and Okazaki fragment maturation functions of DNA replication. Although this process is generally conserved in eukaryotes, important differences in the molecular architecture of the DNA replication machine and the function of individual subunits have been reported in various model systems. We have combined genome-wide bioinformatic analyses of Arabidopsis (Arabidopsis thaliana)andrice(Oryza sativa)with published experimental data to provide a comprehensive view of the core DNA replication machinery in plants. Many components identified in this analysis have not been studied previously in plant systems, including the GINS (go ichi ni san) complex (PSF1, PSF2, PSF3, and SLD5), MCM8, MCM9, MCM10, NOC3, POLA2, POLA3, POLA4, POLD3, POLD4, and RNASEH2. Our results indicate that the core DNA replication machinery from plants is more similar to vertebrates than single-celled yeasts (Saccharomyces cerevisiae), suggesting that animal models may be more relevant to plant systems. However, we also uncovered some important differences between plants and vertebrate machinery. For example, we did not identify geminin or RNASEH1 genes in plants. Our analyses also indicate that plants may be unique among eukaryotes in that they have multiple copies of numerous core DNA replication genes.
    [Show full text]
  • Human Origin Recognition Complex Is Essential for HP1 Binding to Chromatin and Heterochromatin Organization
    Human origin recognition complex is essential for HP1 binding to chromatin and heterochromatin organization Supriya G. Prasantha,b,1, Zhen Shenb, Kannanganattu V. Prasanthb, and Bruce Stillmana,1 aCold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724; and bDepartment of Cell and Developmental Biology, University of Illinois, Urbana- Champaign, IL 61801 Contributed by Bruce Stillman, July 9, 2010 (sent for review April 10, 2010) The origin recognition complex (ORC) is a DNA replication initiator (15, 22, 23), cytokinesis in human cells and Drosophila (24, 25), protein also known to be involved in diverse cellular functions regulation of dendrite development in postmitotic neurons (26), including gene silencing, sister chromatid cohesion, telomere bi- and neural transmission and synaptic function in Drosophila (27) ology, heterochromatin localization, centromere and centrosome (see reviews in refs. 28, 29). activity, and cytokinesis. We show that, in human cells, multiple ORC The human Orc2 subunit is associated with heterochromatin in subunits associate with hetereochromatin protein 1 (HP1) α-and a cell cycle-dependent manner, being present only at the cen- HP1β-containing heterochromatic foci. Fluorescent bleaching studies tromeres during late G2 and mitosis (15, 30). Furthermore, Orc2 indicate that multiple subcomplexes of ORC exist at heterochroma- biochemically interacts indirectly with the heterochromatin protein tin, with Orc1 stably associating with heterochromatin in G1 phase, 1 (HP1) in mammalian, Drosophila,andXenopus cells (14, 15, 31, whereas other ORC subunits have transient interactions throughout 32). Depletion of Orc2 or Orc3 in HeLa cells results in a mitotic the cell-division cycle. Both Orc1 and Orc3 directly bind to HP1α,and arrest with abnormally condensed chromosomes, lack of chromo- two domains of Orc3, a coiled-coil domain and a mod-interacting some alignment at the metaphase plate, and spindle defects (15).
    [Show full text]
  • Determination of the Chromosomal Position of Three Mutations Using Recombination Mapping in Drosophila Melanogaster Zane Bryant Coleman University of Mississippi
    University of Mississippi eGrove Honors College (Sally McDonnell Barksdale Honors Theses Honors College) 2018 Determination of the Chromosomal Position of Three Mutations Using Recombination Mapping in Drosophila Melanogaster Zane Bryant Coleman University of Mississippi. Sally McDonnell Barksdale Honors College Follow this and additional works at: https://egrove.olemiss.edu/hon_thesis Part of the Biology Commons Recommended Citation Coleman, Zane Bryant, "Determination of the Chromosomal Position of Three Mutations Using Recombination Mapping in Drosophila Melanogaster" (2018). Honors Theses. 978. https://egrove.olemiss.edu/hon_thesis/978 This Undergraduate Thesis is brought to you for free and open access by the Honors College (Sally McDonnell Barksdale Honors College) at eGrove. It has been accepted for inclusion in Honors Theses by an authorized administrator of eGrove. For more information, please contact [email protected]. DETERMINATION OF THE CHROMOSOMAL POSITION OF THREE MUTATIONS USING RECOMBINATION MAPPING IN DROSOPHILA MELANOGASTER by Zane Bryant Coleman A thesis submitted to the faculty of The University of Mississippi in partial fulfillment of the requirements of the Sally McDonnell Barksdale Honors College. Oxford May 2018 Approved by ____________________________________ Advisor: Dr. Bradley Jones ____________________________________ Reader: Dr. Joshua Bloomekatz ____________________________________ Reader: Dr. Colin Jackson Ó 2018 Zane Bryant Coleman ALL RIGHTS RESERVED ii ACKNOWLEDGEMENTS I would like to thank Dr. Jones for allowing me to work in his lab, mentoring me throughout my college career, and helping me during the research process. Through patience and understanding, Dr. Jones has molded me into a scientist capable of overcoming obstacles. I would also like to thank Drs. Bloomekatz and Jackson for participating as readers.
    [Show full text]
  • Engineering New Balancer Chromosomes in C. Elegans Via
    www.nature.com/scientificreports OPEN Engineering new balancer chromosomes in C. elegans via CRISPR/Cas9 Received: 19 May 2016 Satoru Iwata1, Sawako Yoshina1, Yuji Suehiro1, Sayaka Hori1 & Shohei Mitani1,2 Accepted: 02 September 2016 Balancer chromosomes are convenient tools used to maintain lethal mutations in heterozygotes. We Published: 21 September 2016 established a method for engineering new balancers in C. elegans by using the CRISPR/Cas9 system in a non-homologous end-joining mutant. Our studies will make it easier for researchers to maintain lethal mutations and should provide a path for the development of a system that generates rearrangements at specific sites of interest to model and analyse the mechanisms of action of genes. Genetic balancers (including inversions, translocations and crossover-suppressors) are essential tools to maintain lethal or sterile mutations in heterozygotes. Recombination is suppressed within these chromosomal rearrange- ments. However, despite efforts to isolate genetic balancers since 19781–5, approximately 15% (map units) of the C. elegans genome has not been covered6 (Supplementary Fig. 1). Because the chromosomal rearrangements gen- erated by gamma-ray and X-ray mutagenesis are random, it is difficult to modify specific chromosomal regions. Here, we used the CRISPR/Cas9 genome editing system to solve this problem. The CRISPR/Cas9 system has enabled genomic engineering of specific DNA sequences and has been successfully applied to the generation of gene knock-outs and knock-ins in humans, rats, mice, zebrafish, flies and nematodes7. Recently, the CRISPR/ Cas9 system has been shown to induce inversions and translocations in human cell lines and mouse somatic cells8–10.
    [Show full text]
  • Identification and Characterization of Breakpoints and Mutations on Drosophila Melanogaster Balancer Chromosomes
    G3: Genes|Genomes|Genetics Early Online, published on September 24, 2020 as doi:10.1534/g3.120.401559 1 Identification and characterization of breakpoints and mutations on Drosophila 2 melanogaster balancer chromosomes 3 Danny E. Miller*, Lily Kahsai†, Kasun Buddika†, Michael J. Dixon†, Bernard Y. Kim‡, Brian R. 4 Calvi†, Nicholas S. Sokol†, R. Scott Hawley§** and Kevin R. Cook† 5 *Department of Pediatrics, Division of Genetic Medicine, University of Washington, and Seattle 6 Children's Hospital, Seattle, WA, 98105 7 †Department of Biology, Indiana University, Bloomington, IN 47405 8 ‡Department of Biology, Stanford University, Stanford, CA 94305 9 §Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 10 Kansas City, KS 66160 11 **Stowers Institute for Medical Research, Kansas City, MO 64110 12 ORCIDs: 0000-0001-6096-8601 (D.E.M.), 0000-0003-3429-445X (L.K.), 0000-0002-9872-4765 13 (K.B.), 0000-0003-0208-0641 (M.J.D.), 0000-0002-5025-1292 (B.Y.K.), 0000-0001-5304-0047 14 (B.R.C.), 0000-0002-2768-4102 (N.S.S.), 0000-0002-6478-0494 (R.S.H.), 0000-0001-9260- 15 364X (K.R.C.) 1 © The Author(s) 2020. Published by the Genetics Society of America. 16 Running title: Balancer breakpoints and phenotypes 17 18 Keywords: balancer chromosomes, chromosomal inversions, p53, Ankyrin 2, 19 Fucosyltransferase A 20 21 Corresponding author: Kevin R. Cook, Department of Biology, Indiana University, 1001 E. 22 Third St., Bloomington, IN 47405, 812-856-1213, [email protected] 23 2 24 ABSTRACT 25 Balancers are rearranged chromosomes used in Drosophila melanogaster to maintain 26 deleterious mutations in stable populations, preserve sets of linked genetic elements and 27 construct complex experimental stocks.
    [Show full text]
  • A Free-Living Protist That Lacks Canonical Eukaryotic DNA Replication and Segregation Systems
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.14.435266; this version posted March 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 A free-living protist that lacks canonical eukaryotic DNA replication and segregation systems 2 Dayana E. Salas-Leiva1, Eelco C. Tromer2,3, Bruce A. Curtis1, Jon Jerlström-Hultqvist1, Martin 3 Kolisko4, Zhenzhen Yi5, Joan S. Salas-Leiva6, Lucie Gallot-Lavallée1, Geert J. P. L. Kops3, John M. 4 Archibald1, Alastair G. B. Simpson7 and Andrew J. Roger1* 5 1Centre for Comparative Genomics and Evolutionary Bioinformatics (CGEB), Department of 6 Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada, B3H 4R2 2 7 Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom 8 3Oncode Institute, Hubrecht Institute – KNAW (Royal Netherlands Academy of Arts and Sciences) 9 and University Medical Centre Utrecht, Utrecht, The Netherlands 10 4Institute of Parasitology Biology Centre, Czech Acad. Sci, České Budějovice, Czech Republic 11 5Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, 12 South China Normal University, Guangzhou 510631, China 13 6CONACyT-Centro de Investigación en Materiales Avanzados, Departamento de medio ambiente y 14 energía, Miguel de Cervantes 120, Complejo Industrial Chihuahua, 31136 Chihuahua, Chih., México 15 7Centre for Comparative Genomics and Evolutionary Bioinformatics (CGEB), Department of 16 Biology, Dalhousie University, Halifax, NS, Canada, B3H 4R2 17 *corresponding author: [email protected] 18 D.E.S-L ORCID iD: 0000-0003-2356-3351 19 E.C.T.
    [Show full text]
  • Dikar-Induced Synthetic Lethality in a Drosophila Model of CAG Repeat
    University of Connecticut OpenCommons@UConn Honors Scholar Theses Honors Scholar Program Spring 5-12-2013 Dikar-Induced Synthetic Lethality in a Drosophila Model of CAG Repeat Diseases Does Not Result from an Expression Feedback Loop Daniel Camacho University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/srhonors_theses Part of the Cell Biology Commons, and the Molecular Biology Commons Recommended Citation Camacho, Daniel, "Dikar-Induced Synthetic Lethality in a Drosophila Model of CAG Repeat Diseases Does Not Result from an Expression Feedback Loop" (2013). Honors Scholar Theses. 295. https://opencommons.uconn.edu/srhonors_theses/295 1 HONORS THESIS DIKAR-INDUCED SYNTHETIC LETHALITY IN A DROSOPHILA MODEL OF CAG REPEAT DISEASES DOES NOT RESULT FROM AN EXPRESSION FEEDBACK LOOP Presented by Daniel R. Camacho Department of Molecular and Cell Biology The University of Connecticut 2013 2 Abstract Human CAG repeat diseases manifest themselves through the common pathology of neurodeneration. This pathological link is attributed to the property shared by all nine of these diseases: an expanded polyglutamine (polyQ) tract. The most evident result of polyQ expansion is protein aggregation, and it is believed that this phenomenon is partly responsible for conferring cytotoxic properties on the mutated protein. Apart from sequestering the mutated protein, cellular aggregates are able to incorporate native proteins via polyQ-mediated aggregation, thus disrupting important cellular pathways. Using Drosophila melanogaster as a disease model, researchers have been able to compile collections of these so-called disease modifiers for most of the CAG repeat diseases. Moreover, a recently characterized Drosophila gene, Dikar, appears to synergistically react with polyQ-expanded proteins in an especially strong fashion, causing a synthetic lethal phenotype.
    [Show full text]