Pineal Gland Tumors: a Review

Total Page:16

File Type:pdf, Size:1020Kb

Pineal Gland Tumors: a Review cancers Review Pineal Gland Tumors: A Review Gaia Favero 1,* , Francesca Bonomini 1,2 and Rita Rezzani 1,2 1 Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; [email protected] (F.B.); [email protected] (R.R.) 2 Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy * Correspondence: [email protected] Simple Summary: Pineal neoplasms are tumors with different and variable morphological, histolog- ical, and radiological characteristics and, consequently different diagnosis and management. Due to their rarity, pineal tumors may be misdiagnosed. Pineal tumors, are divided into germ cell tumors, pineal parenchymal tumors and tumors that derive from adjacent structures. In this review, we report the clinical relevance of the main pineal gland tumors, underlining the importance of studying the triggering causes of pineal region carcinogenesis, to realize appropriate diagnosis and, consequently, better clinical management. Abstract: The pineal gland is a small, pinecone-shaped endocrine gland that participates in the biological rhythm regulation of vertebrates. The recognized major product of the pineal gland is melatonin—a multifunctional endogenous indoleamine. Accumulating evidence suggests that the pineal gland is important for preserving ideal health conditions in vertebrate. Tumors of the pineal region account for approximately 3–11% of pediatric brain neoplasms but fewer than 1% of brain neoplasms in adults. It is fundamental to expand advanced imaging techniques together with both clinical and laboratory knowledge, to help to differentiate among pineal neoplasms and thus facilitate accurate primary diagnoses and proper therapeutic interventions. In this review, we report the gross Citation: Favero, G.; Bonomini, F.; anatomy of the pineal gland and its functional significance and discuss the clinical relevance of pineal Rezzani, R. Pineal Gland Tumors: gland tumors, underlining the importance of identifying the leading causes of pineal region masses. A Review. Cancers 2021, 13, 1547. https://doi.org/10.3390/ Keywords: cancers13071547 pineal gland; brain neoplasms; pineal germ cell tumors; pineal parenchymal tumor; pineal metastasis Academic Editor: Marilena Vered Received: 11 February 2021 Accepted: 26 March 2021 1. Introduction Published: 27 March 2021 The Pineal Gland The pineal gland is a pinecone-shaped neuroendocrine gland located in the epithala- Publisher’s Note: MDPI stays neutral mus that participates in the biological rhythm regulation of vertebrates. The gland projects with regard to jurisdictional claims in posteriorly and inferiorly into the quadrigeminal cistern, and the anatomic boundaries published maps and institutional affil- include the backside of the third ventricle wall forming the gland’s base, the splenium of iations. the corpus callosum superiorly, and the thalamus surrounding both sides [1–4]. Figure1 shows the location of the pineal gland in the human brain. The pineal gland’s primary purpose is the production and immediate release of melatonin, a pleiotropic and multifunctional indoleamine [5–10], into the blood [11]. Copyright: © 2021 by the authors. The pineal gland possesses two populations of cells: about 95% are pinealocytes Licensee MDPI, Basel, Switzerland. with dendritic processes, and the other 5% are neuroglial supporting cells that resemble This article is an open access article astrocytes. Both these types of cells can form neoplasms, as well as residual germ cells from distributed under the terms and primordial neural crest cell migration and cells derived from nearby structures [1,2,12–16]. conditions of the Creative Commons The pineal gland may, unfortunately, harbor a variety of neurosurgical diseases such as Attribution (CC BY) license (https:// pineal cysts, different pineal tumors, and vascular malformations, including cavernous, creativecommons.org/licenses/by/ arteriovenous malformations and aneurysms. 4.0/). Cancers 2021, 13, 1547. https://doi.org/10.3390/cancers13071547 https://www.mdpi.com/journal/cancers Cancers 2021, 13, x 2 of 19 Cancers 2021, 13, x 2 of 19 Cancers 2021, 13, 1547 2 of 18 asas pineal pineal cysts, cysts, different different pineal pineal tumors, tumors, and and vascular vascular malformations, malformations, including including cavernous, cavernous, arteriovenousarteriovenous malformations malformations and and aneurysms. aneurysms. FigureFigure 1. 1.Human Human pinealpineal pineal gland gland gland ( a()a and)( aand) and its its anatomic its anatomic anatomic boundaries boundaries boundaries (b). (b The ().b The). pineal The pineal pineal gland gland gland is visible is isvisible visible in yellow in inyellow yellow (a). Anatomage (a ).(a Anatomage). Anatomage Inc.— Inc.—AnatomageAnatomageInc.—Anatomage Table EDU.Table Table TheEDU. EDU. 3D The renderingThe 3D 3D rendering rendering of the cadaverof ofthe the cadaver cadaver data is data from data is Anatomage isfrom from Anatomage Anatomage Table. Table. Table. 2.2. 2.Pineal Pineal Pineal Gland Gland Gland Tumors Tumors Tumors PinealPinealPineal neoplasms neoplasms areare are fairly fairly fairly uncommon uncommon uncommon tumors, tu tumors,mors, and and and they they they are are predominantly are predominantly predominantly childhood child- child- hoodmalignancieshood malignancies malignancies representing representing representing 3–11% 3–11% of3–11% all pediatricof of all all pediatric pediatric brain brain tumors brain tumors tumors compared compared compared to <1% to ofto <1% brain<1% of of braintumorsbrain tumors tumors in adults in in adults [1 adults,14,17 [1,14,17–20].– [1,14,17–20].20]. Age, sex, Age, Age, and sex, ethnicitysex, and and ethnicity mayethnicity modulate may may modulate modulate the relative the the incidencerelative relative in- of in- cidencepinealcidence neoplasms of of pineal pineal neoplasms [21 neoplasms]. Pineal [21] tumors [21]. Pineal. Pineal are classifiedtumors tumors are as:are classified germ classified cell as: tumors, as: germ germ pinealcell cell tumors, tumors, parenchymal pineal pineal parenchymaltumorsparenchymal and tumors tumors tumors that and and derive tumors tumors from that that adjacent derive derive from anatomical from adjacent adjacent structures. anatomical anatomical Germinoma structures. structures. isGer- theGer- most common pineal tumor, representing up to 50% of pineal tumors in Europe, the United minomaminoma is isthe the most most common common pineal pineal tumor, tumor, repr representingesenting up up to to 50% 50% of of pineal pineal tumors tumors in in States and Japan [1,22,23]. In a series of 370 pineal tumors in patients aged 3–73 years, it Europe,Europe, the the United United States States and and Japan Japan [1,22,23]. [1,22,23]. In In a seriesa series of of 370 370 pineal pineal tumors tumors in in patients patients was observed that 27% were germinomas; 26% were astrocytomas; 12% were pineoblas- agedaged 3–73 3–73 years, years, it itwas was observed observed that that 27% 27% were were germinomas; germinomas; 26% 26% were were astrocytomas; astrocytomas; 12% 12% tomas; 12% were pineocytomas; 4.3% were ependymomas; 4.3% were teratomas; 2.7% were werewere pineoblastomas; pineoblastomas; 12% 12% were were pineocytomas; pineocytomas; 4.3% 4.3% were were ependymomas; ependymomas; 4.3% 4.3% were were ter- ter- ganglioglioneuromas, lymphomas, meningiomas, metastases, and pineal cysts; 1.6% were atomas;atomas; 2.7% 2.7% were were ganglioglioneuromas, ganglioglioneuromas, lymphomas, lymphomas, meningiomas, meningiomas, metastases, metastases, and and pin- pin- mixed embryonal cell tumors (embryonal carcinomas)/malignant teratomas; 1.1% were ealeal cysts; cysts; 1.6% 1.6% were were mixed mixed embryonal embryonal cell cell tumors tumors (embryonal (embryonal carcinomas)/malignant carcinomas)/malignant ter- ter- choriocarcinomas; and 0.54% were oligodendrogliomas [24] (Figure2). atomas;atomas; 1.1% 1.1% were were choriocarcinomas; choriocarcinomas; and and 0.54% 0.54% were were oligodendrogliomas oligodendrogliomas [24] [24] (Figure (Figure 2). 2). Figure 2. Pineal tumor classification. FigureFigure 2. 2.Pineal Pineal tumor tumor classification. classification. Cancers 2021, 13, 1547 3 of 18 Pineal region masses may produce nonspecific signs and symptoms, and they usually cause syndromes of mass effect, including headaches, aqueductal stenosis, and hydro- cephalus, or compressive hypothalamic syndromes, such as diabetes insipidus and slowed growth [13,16,25]. A mass in the pineal area may also interfere with the normal func- tion of the pineal gland. Pineal tumors associated with acute and rapidly progressive hydrocephalus may be clinically managed via external ventriculostomy, endoscopic third ventriculostomy, ventriculoperitoneal/ventriculoatrial shunts, or direct removal [26]. It is fundamental to expand advanced imaging techniques, together with both clinical and laboratory knowledge to help to differentiate among the pineal neoplasms and thus realize accurate primary diagnoses and correct treatment and patient management plans. Open surgical resection and stereotactic or endoscopic biopsy are needed for pineal tissue diagnosis [27,28]. However, stereotactic biopsy seems to be associated with a higher risk of hemorrhage in pineal region tumors [18,29]. In practice, the diagnosis of pineal region neoplasms is based on clinical presentation,
Recommended publications
  • Pediatric Suprasellar Germ Cell Tumors: a Clinical and Radiographic Review of Solitary Vs
    cancers Article Pediatric Suprasellar Germ Cell Tumors: A Clinical and Radiographic Review of Solitary vs. Bifocal Tumors and Its Therapeutic Implications Darian R. Esfahani 1 , Tord Alden 1,2, Arthur DiPatri 1,2, Guifa Xi 1,2, Stewart Goldman 3 and Tadanori Tomita 1,2,* 1 Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL 60611, USA; [email protected] (D.R.E.); [email protected] (T.A.); [email protected] (A.D.); [email protected] (G.X.) 2 Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA 3 Division of Hematology, Oncology, Neuro-Oncology & Stem Cell Transplantation, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL 60611, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-312-2274220 Received: 7 August 2020; Accepted: 10 September 2020; Published: 14 September 2020 Simple Summary: Bifocal suprasellar germ cell tumors are a unique type of an uncommon brain tumor in children. Compared to other germ cell tumors in the brain, bifocal tumors are poorly understood and have a bad prognosis. In this paper we explore features that predict which children will have good outcomes and which will not. This is important for the research community because it can help physicians decide what type of radiation treatment is best to treat these children. Our study shows that bifocal tumors have a unique appearance on magnetic resonance imaging (MRI) compared to other germ cell tumors. Children with bifocal tumors are more likely to be male, have tumors that come back sooner, and cause death sooner.
    [Show full text]
  • Central Nervous System Tumors General ~1% of Tumors in Adults, but ~25% of Malignancies in Children (Only 2Nd to Leukemia)
    Last updated: 3/4/2021 Prepared by Kurt Schaberg Central Nervous System Tumors General ~1% of tumors in adults, but ~25% of malignancies in children (only 2nd to leukemia). Significant increase in incidence in primary brain tumors in elderly. Metastases to the brain far outnumber primary CNS tumors→ multiple cerebral tumors. One can develop a very good DDX by just location, age, and imaging. Differential Diagnosis by clinical information: Location Pediatric/Young Adult Older Adult Cerebral/ Ganglioglioma, DNET, PXA, Glioblastoma Multiforme (GBM) Supratentorial Ependymoma, AT/RT Infiltrating Astrocytoma (grades II-III), CNS Embryonal Neoplasms Oligodendroglioma, Metastases, Lymphoma, Infection Cerebellar/ PA, Medulloblastoma, Ependymoma, Metastases, Hemangioblastoma, Infratentorial/ Choroid plexus papilloma, AT/RT Choroid plexus papilloma, Subependymoma Fourth ventricle Brainstem PA, DMG Astrocytoma, Glioblastoma, DMG, Metastases Spinal cord Ependymoma, PA, DMG, MPE, Drop Ependymoma, Astrocytoma, DMG, MPE (filum), (intramedullary) metastases Paraganglioma (filum), Spinal cord Meningioma, Schwannoma, Schwannoma, Meningioma, (extramedullary) Metastases, Melanocytoma/melanoma Melanocytoma/melanoma, MPNST Spinal cord Bone tumor, Meningioma, Abscess, Herniated disk, Lymphoma, Abscess, (extradural) Vascular malformation, Metastases, Extra-axial/Dural/ Leukemia/lymphoma, Ewing Sarcoma, Meningioma, SFT, Metastases, Lymphoma, Leptomeningeal Rhabdomyosarcoma, Disseminated medulloblastoma, DLGNT, Sellar/infundibular Pituitary adenoma, Pituitary adenoma,
    [Show full text]
  • The Potential Therapeutic Effect of Melatonin in Gastro-Esophageal Reflux Disease Tharwat S Kandil1*, Amany a Mousa2, Ahmed a El-Gendy3, Amr M Abbas3
    Kandil et al. BMC Gastroenterology 2010, 10:7 http://www.biomedcentral.com/1471-230X/10/7 RESEARCH ARTICLE Open Access The potential therapeutic effect of melatonin in gastro-esophageal reflux disease Tharwat S Kandil1*, Amany A Mousa2, Ahmed A El-Gendy3, Amr M Abbas3 Abstract Background: Gastro-Esophageal Reflux Disease (GERD) defined as a condition that develops when the reflux of stomach contents causes troublesome symptoms and/or complications. Many drugs are used for the treatment of GERD such as omeprazole (a proton pump inhibitor) which is a widely used antiulcer drug demonstrated to protect against esophageal mucosal injury. Melatonin has been found to protect the gastrointestinal mucosa from oxidative damage caused by reactive oxygen species in different experimental ulcer models. The aim of this study is to evaluate the role of exogenous melatonin in the treatment of reflux disease in humans either alone or in combination with omeprazole therapy. Methods: 36 persons were divided into 4 groups (control subjects, patients with reflux disease treated with melatonin alone, omeprazole alone and a combination of melatonin and omeprazole for 4 and 8 weeks) Each group consisted of 9 persons. Persons were subjected to thorough history taking, clinical examination, and investigations including laboratory, endoscopic, record of esophageal motility, pH-metry, basal acid output and serum gastrin. Results: Melatonin has a role in the improvement of Gastro-esophageal reflux disease when used alone or in combination with omeprazole. Meanwhile, omeprazole alone is better used in the treatment of GERD than melatonin alone. Conclusion: The present study showed that oral melatonin is a promising therapeutic agent for the treatment of GERD.
    [Show full text]
  • 07. Endocrine, Reproductive and Urogenital Pharmacology 07.001
    07. Endocrine, Reproductive and Urogenital Pharmacology 07.001 Mirabegron relaxes urethral smooth muscle by a dual mechanism involving β3-Adrenoceptor activation and α1-adrenoceptor blockade. Alexandre EC1, Kiguti LR2, Calmasini FB1, Ferreira R3, Silva FH1, Silva KP2, Ribeiro CA2, Mónica FZ1, Pupo AS2, Antunes E1 1FCM-Unicamp – Farmacologia, 2IBB-Unesp, 3FCM- Unicamp – Hematologia e Hemoterapia Introduction: Overactive bladder syndrome (OAB) is a subset of storage LUTS (lower urinary tract symptoms) highly prevalent in diabetes, obesity and hypertension. Benign prostatic hyperplasia (BPH) in aging men is another pathological condition highly associated with OAB secondary to bladder outlet obstruction (BOO). The β3- adrenoceptor apparently is the major receptor to induce bladder relaxations. Mirabegron is the first β3-adrenoceptor (β3-AR) agonist approved for OAB treatment (Chapple et al., 2014). Urethral smooth muscle plays a critical role to urinary continence, but no studies have examined the mirabegron-induced urethral relaxations. Aims: This study was designed to investigate the mirabegron-induced mouse urethral relaxations. In preliminary assays, mirabegron showed an unexpected action by competitively antagonizing the urethral contractions induced by the α1-AR agonist phenylephrine. Therefore, this study also aimed to characterize the α1-AR blockade by mirabegron, focusing on the α1-AR subtypes in rat vas deferens and prostate (α1A- AR), spleen (α1B-AR) and aorta (α1D-AR) preparations. Methods: Functional assays were carried out in mouse urethra rings, and rat vas deferens, prostate, aorta and spleen. β3-AR expression (mRNA and immunohistochemistry) and cyclic AMP levels were determined in mouse urethra. Competition assays for the specific binding of [3H]Prazosin to membrane preparations of HEK 293 cells expressing each of the human α1-ARs subtypes were performed.
    [Show full text]
  • Pineal Region Tumors: Computed Tomographic-Pathologic Spectrum
    415 Pineal Region Tumors: Computed Tomographic-Pathologic Spectrum Nancy N. Futrell' While several computed tomographic (CT) studies of posterior third ventricular Anne G. Osborn' neoplasms have included descriptions of pineal tumors, few reports have concentrated Bruce D. Cheson 2 on these uncommon lesions. Some authors have asserted that the CT appearance of many pineal tumors is virtually pathognomonic. A series of nine biopsy-proved pineal gland and eight other presumed tumors is presented that illustrates their remarkable heterogeneity in both histopathologic and CT appearance. These tumors included germinomas, teratocarcinomas, hamartomas, and other varieties. They had variable margination, attenuation, calcification, and suprasellar extension. Germinomas have the best response to radiation therapy. Biopsy of pineal region tumors is now feasible and is recommended for treatment planning. Tumors of the pineal region account for less th an 2% of all intracrani al neoplasms [1]. While several reports of computed tomography (CT) of third ventricular neoplasms have in cluded an occasi onal pineal tumor [2 , 3], few have focused on the radiographic spectrum of th ese uncommon lesions [4]. Some authors have asserted that the CT appearance of many pineal tumors is virtuall y pathognomonic [5]. We studied a series of nine biopsy-proven pineal gland tumors that demonstrated remarkable heterogeneity in both histopath ologic and CT appearance. Materials and Methods A total of 17 pineal gland tumors were detected in 15,000 consecutive CT scans. Four patients were female and 13 were male. Mean age for the fe males was 27 years; for the males, 15 years. Initial symptoms ranged from headache, nausea, and vomiting, to Parinaud syndrome, vi sual field defects, diabetes insipidus, and hypopituitari sm (table 1).
    [Show full text]
  • 2018 Camp Lesson Book
    Arkansas 4-H Veterinary Science Urinalysis 1 Why Urine? Urine is the end product of a filtering process that removes waste from the body The color of urine can give you information about hydration level as well as possible underlying disease A urinalysis should be performed at least yearly for healthy pets, and more often for older animals and those with existing or chronic health issues Important elements of a urinalysis include a visual inspection of the urine sample, a dipstick test, and microscopic evaluation of urine sediment 2 The Urinary System The urinary tract consists of the kidneys, the ureters, the bladder, the urethra, and finally, the urethral opening at either the end of the penis or just within the vagina Kidneys filter out waste products from the blood Ureters connect the kidneys to the bladder The urethra is a tube that is controlled by a sphincter muscle that empties the bladder to the outside world 3 The Bladder Detrusor muscle Ureter Bladder Ureteral Opening Bladder Neck Sphincter Muscles Trigone Urethra 4 Urinary Tract Problems Inflammation of bladder caused by stress Bacterial or fungal bladder infections Inflammation of bladder from urinary crystals Inflammation of bladder from bladder stones Inflammation of the urethra Damage to ureters by trauma, passing kidney stones, surgical accident or cancer Damage to kidneys by dehydration, infection, toxins or cancer 5 Feline Idiopathic Cystitis Inflammation of the bladder with an unknown cause Can quickly lead to kidney and heart problems Can lead to
    [Show full text]
  • The Third Eye and Pineal Gland Connection
    D.U.Quark Volume 5 Issue 1 Fall 2020 Article 2 12-27-2020 Rolling My Third Eye: The Third Eye and Pineal Gland Connection Shannon B. Jackson Follow this and additional works at: https://dsc.duq.edu/duquark Recommended Citation Jackson, S. B. (2020). Rolling My Third Eye: The Third Eye and Pineal Gland Connection. D.U.Quark, 5 (1). Retrieved from https://dsc.duq.edu/duquark/vol5/iss1/2 This Staff Piece is brought to you for free and open access by Duquesne Scholarship Collection. It has been accepted for inclusion in D.U.Quark by an authorized editor of Duquesne Scholarship Collection. Rolling My Third Eye: The Third Eye and Pineal Gland Connection By Shannon Bow Jackson D.U.Quark 2020. Volume 5 (Issue 1) pgs. 6-13 Published December 27, 2020 Staff Article Chances are the optometrist only checks that two of your eyes are functioning. But what about your third eye; who checks on that? A neurologist? Spiritual Healer? Yoga Instructor? Yourself? The answer might vary, given that this third eye is believed to reside within the pineal gland inside of the brain. The name “third eye” comes from the pineal gland’s primary function of ‘letting in light and darkness’, just as our two eyes do. This gland is the melatonin-secreting neuroendocrine organ containing light-sensitive cells that control the circadian rhythm (1). The diagram shows that nerve cells in the retinas of our eyes allow for light to be sensed. When there is light, the nerve cells in the retina then signal to the suprachiasmatic nucleus (SCN) in the hypothalamus.
    [Show full text]
  • Clinical Radiation Oncology Review
    Clinical Radiation Oncology Review Daniel M. Trifiletti University of Virginia Disclaimer: The following is meant to serve as a brief review of information in preparation for board examinations in Radiation Oncology and allow for an open-access, printable, updatable resource for trainees. Recommendations are briefly summarized, vary by institution, and there may be errors. NCCN guidelines are taken from 2014 and may be out-dated. This should be taken into consideration when reading. 1 Table of Contents 1) Pediatrics 6) Gastrointestinal a) Rhabdomyosarcoma a) Esophageal Cancer b) Ewings Sarcoma b) Gastric Cancer c) Wilms Tumor c) Pancreatic Cancer d) Neuroblastoma d) Hepatocellular Carcinoma e) Retinoblastoma e) Colorectal cancer f) Medulloblastoma f) Anal Cancer g) Epndymoma h) Germ cell, Non-Germ cell tumors, Pineal tumors 7) Genitourinary i) Craniopharyngioma a) Prostate Cancer j) Brainstem Glioma i) Low Risk Prostate Cancer & Brachytherapy ii) Intermediate/High Risk Prostate Cancer 2) Central Nervous System iii) Adjuvant/Salvage & Metastatic Prostate Cancer a) Low Grade Glioma b) Bladder Cancer b) High Grade Glioma c) Renal Cell Cancer c) Primary CNS lymphoma d) Urethral Cancer d) Meningioma e) Testicular Cancer e) Pituitary Tumor f) Penile Cancer 3) Head and Neck 8) Gynecologic a) Ocular Melanoma a) Cervical Cancer b) Nasopharyngeal Cancer b) Endometrial Cancer c) Paranasal Sinus Cancer c) Uterine Sarcoma d) Oral Cavity Cancer d) Vulvar Cancer e) Oropharyngeal Cancer e) Vaginal Cancer f) Salivary Gland Cancer f) Ovarian Cancer & Fallopian
    [Show full text]
  • The Diagnosis and Pathological Value of Combined Detection of HE4 and CA125 for Patients with Ovarian Cancer
    Open Med. 2016; 11:125-132 Research Article Open Access Li-e Zheng*, Jun-ying Qu, Fei He The diagnosis and pathological value of combined detection of HE4 and CA125 for patients with ovarian cancer DOI 10.1515/med-2016-0024 other. Conclusion HE4 can be used as a novel clinical bio- received January 28, 2016; accepted March 9, 2016 marker for predicting malignant ovarian tumors and its expression was closely related with the clinical pathologi- Abstract: Objective To evaluate the value of individual and cal features of malignant ovarian tumors. combined measurement of human epididymis protein 4 (HE4) and cancer antigen 125 (CA-125) in the diagnosis Keywords: HE4; CA125; diagnosis; ovarian tumor of ovarian cancer. Methods A clinical case-control study was performed in which the levels of serum HE4 and CA-125 of subjects with malignant, borderline, benign ovarian tumors and healthy women were measured before 1 Introduction surgery. An immunohistochemistry method was used In the female reproductive system, ovarian cancer ranks to measure the expression of HE4 in different tissues. third in incidence and 1st in mortality in gynecological Statistical analysis was performed to determine the rela- malignancies [1]. Nearly 70% of patients with ovarian tionship between the level of HE4 and the pathologic cancer are diagnosed at an advanced stage, and the 5 year type as well as the stage of the ovarian tumors. Results survival rate for patients with ovarian cancer rises up to The level of HE4 in the serum was significantly elevated in 90% through early effective treatment [2]. Hence, diag- the malignant ovarian cancer group compared with other nosing at early stage is crucial to improve the prognosis of groups.
    [Show full text]
  • Genitourinary Advanced Pca and Its Efficacy As a Therapeutic Agent Is Presently Being Studied in Clinical Trials
    ANNUAL MEETING ABSTRACTS 133A because they were over age 80 and as such, the IHC results were likely due to acquired 599 Anterior Predominant Prostate Tumors: A Contemporary methylation of the MLH1 promoter. The remaining 4 patients with absent staining have Look at Zone of Origin been referred to Cancer Genetics for possible further work-up. The reimbursement rate HA Al-Ahmadie, SK Tickoo, A Gopalan, S Olgac, VE Reuter, SW Fine. Memorial Sloan and turn-around time for the IHC stains were similar to that for other IHC stains used Kettering Cancer Center, NY, NY. in clinical practice. Background: Aggressive PSA screening and prostate needle biopsy protocols have Conclusions: IHC stains for the MMR proteins are fast and relatively easy to institute in successfully detected low-volume posterior tumors, with a concurrent increase in routine evaluation of CRC, and we have not had difficulty interpreting the stains leading anterior-predominant prostate cancer (AT). Zone of origin, patterns of spread, and to additional testing. Furthermore, reimbursement was obtained at a level similar to extraprostatic extension of these tumors have not been well studied. other IHC stains used in clinical practice. The surgeons and oncologists welcomed the Design: We greatly expanded and refined our previous studies to include pathologic prognostic information. Further study is warranted to confirm these initial findings. features of 197 patients with largest tumors anterior to the urethra in whole-mounted radical prostatectomy specimens. 597 High Fidelity Image Cytometry in Neoplastic Lesions in Barrett’s Results: Of 197 AT, 97 (49.2%) were predominantly located in the peripheral zone Esophagus, Including Basal Crypt Dysplasia-Like Atypia with Surface (PZ-D), 70 (35.5%) in the transition zone (TZ-D), 16 (8.1%) were of indeterminate Maturation zone (IND), and 14 (7.1%) in both PZ and TZ (PZ+TZ).
    [Show full text]
  • The Digestive System
    69 chapter four THE DIGESTIVE SYSTEM THE DIGESTIVE SYSTEM The digestive system is structurally divided into two main parts: a long, winding tube that carries food through its length, and a series of supportive organs outside of the tube. The long tube is called the gastrointestinal (GI) tract. The GI tract extends from the mouth to the anus, and consists of the mouth, or oral cavity, the pharynx, the esophagus, the stomach, the small intestine, and the large intes- tine. It is here that the functions of mechanical digestion, chemical digestion, absorption of nutrients and water, and release of solid waste material take place. The supportive organs that lie outside the GI tract are known as accessory organs, and include the teeth, salivary glands, liver, gallbladder, and pancreas. Because most organs of the digestive system lie within body cavities, you will perform a dissection procedure that exposes the cavities before you begin identifying individual organs. You will also observe the cavities and their associated membranes before proceeding with your study of the digestive system. EXPOSING THE BODY CAVITIES should feel like the wall of a stretched balloon. With your skinned cat on its dorsal side, examine the cutting lines shown in Figure 4.1 and plan 2. Extend the cut laterally in both direc- out your dissection. Note that the numbers tions, roughly 4 inches, still working with indicate the sequence of the cutting procedure. your scissors. Cut in a curved pattern as Palpate the long, bony sternum and the softer, shown in Figure 4.1, which follows the cartilaginous xiphoid process to find the ventral contour of the diaphragm.
    [Show full text]
  • Pineal Calcification, Melatonin Production, Aging, Associated
    molecules Review Pineal Calcification, Melatonin Production, Aging, Associated Health Consequences and Rejuvenation of the Pineal Gland Dun Xian Tan *, Bing Xu, Xinjia Zhou and Russel J. Reiter * Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA; [email protected] (B.X.); [email protected] (X.Z.) * Correspondence: [email protected] (D.X.T.); [email protected] (R.J.R.); Tel.: +210-567-2550 (D.X.T.); +210-567-3859 (R.J.R.) Received: 13 January 2018; Accepted: 26 January 2018; Published: 31 January 2018 Abstract: The pineal gland is a unique organ that synthesizes melatonin as the signaling molecule of natural photoperiodic environment and as a potent neuronal protective antioxidant. An intact and functional pineal gland is necessary for preserving optimal human health. Unfortunately, this gland has the highest calcification rate among all organs and tissues of the human body. Pineal calcification jeopardizes melatonin’s synthetic capacity and is associated with a variety of neuronal diseases. In the current review, we summarized the potential mechanisms of how this process may occur under pathological conditions or during aging. We hypothesized that pineal calcification is an active process and resembles in some respects of bone formation. The mesenchymal stem cells and melatonin participate in this process. Finally, we suggest that preservation of pineal health can be achieved by retarding its premature calcification or even rejuvenating the calcified gland. Keywords: pineal gland; calcification; melatonin; aging; neurodegenerative diseases; rejuvenation 1. Introduction Pineal gland is a unique organ which is localized in the geometric center of the human brain. Its size is individually variable and the average weight of pineal gland in human is around 150 mg [1], the size of a soybean.
    [Show full text]