Environmental Impact Assessment of Electromagnetic Techniques Used for Oil & Gas Exploration & Production

Total Page:16

File Type:pdf, Size:1020Kb

Environmental Impact Assessment of Electromagnetic Techniques Used for Oil & Gas Exploration & Production Environmental Impact Assessment of Electromagnetic Techniques Used for Oil & Gas Exploration & Production September 2011 Environmental Impact Assessment of Electromagnetic Techniques Used for Oil & Gas Exploration & Production Prepared by R.A. Buchanan, M.Sc. (Project Manager), R. Fechhelm, Ph.D. (Electromagnetics and Fishes), P. Abgrall, Ph.D. (Marine Mammals), and A.L. Lang, Ph.D. (Seabirds) LGL Limited environmental research associates P.O. Box 13248, Stn. A St. John’s, NL A1B 4A5 Tel: 709-754-1992 [email protected] Prepared for International Association of Geophysical Contractors 1225 North Loop West, Suite 220 Houston, TX 77008 USA September 2011 LGL Project No. SA1084 Suggested format for citation: Buchanan, R.A., R. Fechhelm, P. Abgrall, and A.L. Lang. 2011. Environmental Impact Assessment of Electromagnetic Techniques Used for Oil & Gas Exploration & Production. LGL Rep. SA1084. Rep. by LGL Limited, St. John’s, NL, for International Association of Geophysical Contractors, Houston, Texas. 132 p. + app. EIA of Electromagnetic Techniques Used for Oil & Gas Exploration & Production EXECUTIVE SUMMARY Introduction In October 2010, LGL Limited environmental research associates (LGL) of St. John’s, Newfoundland and Labrador, Canada was contracted by the International Association of Geophysical Contractors (IAGC) to prepare an Environmental Impact Assessment (EIA) of electromagnetic (EM) techniques used for oil and gas exploration and production in the marine environment. The goal of the EIA is to provide a comprehensive resource summarizing available literature and potential effects of EM technologies for a broad audience. IAGC members may also use the EIA to optimize environmental protection plans (EPPs) associated with their EM activities. The EIA focuses on EM technologies that are currently being used to search for resistivity anomalies around the world: Controlled-Source Electromagnetics (CSEM) and Multi-Transient Electromagnetics (MTEM). As such, this EIA is geographically generic in scope. Site-specific EIAs and EPPs will still be needed to address issues associated with local fauna. The document provides a basic description of EM technologies, naturally-occurring electromagnetic fields, and the potential use of these fields by diverse animal groups. Relevant marine species or groups are described with emphasis on elasmobranch (sharks, rays and skates), the group potentially most affected by electromagnetic emissions. Over 400 reports and publications were reviewed during the course of this EIA. The generic effects assessment focuses on those survey activities with at least some potential to affect marine animals such as EM, noise, light emissions, and accidental events. Electromagnetics and Biology Electromagnetic fields are generated by anything that carries or produces electricity. EM fields consist of an electric field component (E) and a magnetic field component (H) that travel together in space at the speed of light. The electromagnetic wave is characterized by a frequency and a wavelength. Frequency is the number of cycles of a wave per unit time and is measured in hertz Hz (1 Hz = 1 cycle per second). Wavelength is the distance traveled by the wave in one cycle. EM technologies use extremely low frequencies (ELF). ELF fields are defined as those less than 300 Hz and include common household electrical systems that operate on 60 and 50 Hz standards for North America and internationally. These low frequencies and long wavelengths carry very little energy and are insufficient to break molecular bonds. As defined by Faraday's Law, an electrical current is generated, or "induced", in any conductor moving through a magnetic field. Magnetic fields have polarity (north and south poles) and the direction of current flow within a conductor is a function of the direction in which the conductor moves relative to iii EIA of Electromagnetic Techniques Used for Oil & Gas Exploration & Production the north-south orientation of the magnetic field. If a conductor moves from left to right relative to the north-south orientation, direct current (DC) will flow in one direction, and if it moves from the right to the left current will flow in the opposite direction. If a conductor is moved back and forth within the magnetic field, the current will alternately flow in opposite directions; an alternating current (AC) is generated. A current may also be induced in a stationary conductor if the surrounding magnetic field is in motion. Either way, electrical induction depends upon movement. Either a conductor must move within a magnetic field, or a magnetic field must move past a stationary conductor. If both elements are motionless, no electric current is induced. Just as a magnetic field induces an electric current in a conductor, an electric current creates a magnetic field in the space surrounding the conductor. When current flow is initiated a magnetic field expands around the conductor. When current flow eventually stabilizes, the surrounding magnetic field stops expanding and becomes a static magnetic field. If the current is shut off, the magnetic field collapses. The polarity of the magnetic field depends upon the direction of current flow. When current flow reverses in a conductor, the polarity of the surrounding magnetic field reverses. When an AC current is applied the surrounding magnetic field continually expands and collapses at the frequency of the current. The relevance of electrical induction to EM surveys is that all animals are electrical conductors. Biological organisms continually generate internal voltage gradients and electrical currents including those associated with the nervous system, all types of biochemical reactions ranging from digestion to higher brain functions, sensory and motor mechanisms, reproductive processes, and membrane integrity. Elecromagnetic fields of sufficient strength have the ability to induce micro-currents within an organism and possibly disrupt these normal electrical functions. Geomagnetic Navigation Many scientists believe that the planet’s geomagnetic field is the primary template that many forms of life use as a navigation coordinate system. It is the dominant feature that underlies the theory of geomagnetic navigation in animals. As such, any disruption to this field could have adverse affects on marine fauna. The Earth's geomagnetic field potentially provides a reliable global positioning system for any organism that can detect and interpret the magnetic landscape in terms of relative position and/or directional orientation. Indeed, over the past 50 years a considerable amount of evidence has been amassed showing that an astounding variety of organisms respond to geomagnetic cues: magnetotactic bacteria, protists, gastropods, crustaceans, insects, bony fish, amphibians, sea turtles, birds, and migratory whales. iv EIA of Electromagnetic Techniques Used for Oil & Gas Exploration & Production For a magnetic map to work the animal must overcome four distinct challenges: 1. Global gradients typically vary in total intensity by 5-10 nano-tesla/kilometer (nT km-1) and in inclination by about 0.01°/km. This is a weak signal. Also, since magnetic gradients cannot be detected directly the animal must make a series of point samples that have a known spatial relationship to each other. This requires that an animal memorize precise measurements from different sites. 2. Local irregularities caused by spatial anomalies in underlying rock can disrupt smoother large scale geomagnetic gradient, and thus the navigational system. 3. Interactions between the Earth’s magnetosphere and solar wind cause daily fluctuations in total intensity of about 30-100 nT and in inclination of about 0.33°. Daily fluctuations could result in significant errors in fine-scale map estimates. Further, solar storms can cause fluctuations as high as 800 nT. 4. Geomagnetic drift over an individual’s life time could cause errors in position determination. Even though the idea of geomagnetic navigation has grown into a major field of scientific study and there is much support for its theory, the mechanisms by which animals might implement a bi- coordinate mapping system and overcome its many challenges remain unknown. Adding to the complexity is the role that other environmental cues such as olfaction, celestial navigation, visual landmarks, currents, and temperature/salinity gradients may play, either interactively with geomagnetic navigation or at times dominating the navigation process. Bird Migration There is a large volume of research on bird navigation. Migratory birds undoubtedly use a suite of navigational systems that may work independently of or in concert with magnetoreceptors: celestial information including stars, sun azimuth position, olfaction, visual landmarks over short distances, and the associated skylight polarization at sunrise and sunset to determine and maintain migratory direction. Polarized light studies show that migratory songbirds use cues from the region of the sky near the horizon to recalibrate their magnetic compass at sunrise and sunset (Muheim et al. 2006). Clock-shifting experiments show that experienced pigeons use the sun as a preferred compass and when it is not available they rely on magnetic cues (Walcott 2005). Walcott (2005) contends that pigeons use multiple and redundant cues to find their way home. There is even some evidence that pigeons may use several cues and that pigeons raised in different lofts under different environmental conditions may prefer to use one cue over
Recommended publications
  • University of Cape Town
    The effects of introduced mice on seabirds breeding at sub-Antarctic Islands Ben J. Dilley Thesis presented for the degree of Doctor of Philosophy Town FitzPatrick Institute of African Ornithology DST/NRF Centre of Excellence Department of Biological Sciences, Faculty of Science University of CapeCape Town of June 2018 University Supervised by Professor Peter G. Ryan The copyright of this thesis vests in the author. No quotation from it or information derivedTown from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes Capeonly. of Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University Declaration This thesis reports original research that I conducted under the auspices of the FitzPatrick Institute, University of Cape Town. All assistance received has been fully acknowledged. This work has not been submitted in any form for a degree at another university. ………………….................. Ben J. Dilley Cape Town, June 2018 i A 10 day-old great shearwater Ardenna gravis chick being attacked by an invasive House mouse Mus musculus in an underground burrow on Gough Island in 2014 (photo Ben Dilley). ii Table of Contents Page Abstract ....................................................................................................................................... iv Acknowledgements .......................................................................................................................... vi Chapter 1 General introduction: Islands, mice and seabirds ......................................................... 1 Chapter 2 Clustered or dispersed: testing the effect of sampling strategy to census burrow-nesting petrels with varied distributions at sub-Antarctic Marion Island ...... 13 Chapter 3 Modest increases in densities of burrow-nesting petrels following the removal of cats Felis catus from sub-Antarctic Marion Island ...................................
    [Show full text]
  • NOTORNIS 27 1980 LAKES of NORTH KAIPARA 3 for Observation Were Far from Suitable
    NOTORNIS Journal of the Ornithological Society of New Zealand Volume 27 Part 1 March 1980 OFFICERS 1979 - 80 President - Mr. B. D. BELL, Wildlife Service, Dept. of Internal Affairs, Private Bag, Wellington Vice-president - Mr. M. L. FALCONER, 188 Miromiro Road, Normandale, Lower Hutt Editor - Mr. B. D. HEATHER, 10 Jocelyn Crescent, Silverstream Treasurer - Mr. H. W. M. HOGG, P.O. Box 3011, Dunedin Secretary - Mr R. S. SLACK, 31 Wyndham Road, Silverstream Council Members: Dr. BEN D. BELL, 45 Gurney Road, Belmont, Lower Hutt Mrs. B. BROWN, 39 Red Hill Road, Papakura Dr. P. C. BULL, 131A Waterloo Road, Lower Hutt Mr D. E. CROCKETT, 21 McMillan Avenue, Kamo, Whangarei Mr. F. C. KINSKY, 338 The Parade, Island Bay, Wellington 5 Mrs. S. M. REED, 4 Mamaku Street, Auckland 5 Mr. R. R. SUTTON, Lorneville, No. 4 R.D., Invercargill Conveners and Organisers: Rare Birds Committee (Acting): Mr. B. D. BELL Beach Patrol: Mr. C. R. VEITCH, Wildlife Service, Dept. of Internal Affairs, P.O. Box 2220, Auckland Card Committee: Mr. R. N. THOMAS, 25 Ravenswood Drive, Forest Hill, Auckland 10 Field Investigation Committee: Mr. B. D. BELL ~ibraria;: Miss A. J. GOODWIN, R.D. 1, Clevtdon Nest, Records: Mr. D. E. CROCKETT Recording (including material for Classified SU-arised Notes) : Mr. R. B. SIBSON, 26 Entrican Avenue, kemuera, Auckland Representative on Member Bodies' Committee of Royal Society of NX.: Mr. B. D. BELL Assistant Editor: Mr A. BLACKBURN, 10 Score Road, isb borne Editor of OSNZ ~ek:Mr'P. SAGAR, 38A Yardley St., Christchurch 4 .SUBSCRIPTIONS AND MEMBERSHIP Annual Subscription: Ordinary member $12; Husband & wife mem- bers $18; Junior'member (under 20) $9; Life mepber $240; Family member (one Notornis per household) ,bein other family of a member in.
    [Show full text]
  • UNEP/CBD/RW/EBSA/SIO/1/4 26 June 2013
    CBD Distr. GENERAL UNEP/CBD/RW/EBSA/SIO/1/4 26 June 2013 ORIGINAL: ENGLISH SOUTHERN INDIAN OCEAN REGIONAL WORKSHOP TO FACILITATE THE DESCRIPTION OF ECOLOGICALLY OR BIOLOGICALLY SIGNIFICANT MARINE AREAS Flic en Flac, Mauritius, 31 July to 3 August 2012 REPORT OF THE SOUTHERN INDIAN OCEAN REGIONAL WORKSHOP TO FACILITATE THE DESCRIPTION OF ECOLOGICALLY OR BIOLOGICALLY SIGNIFICANT MARINE AREAS1 INTRODUCTION 1. In paragraph 36 of decision X/29, the Conference of the Parties to the Convention on Biological Diversity (COP 10) requested the Executive Secretary to work with Parties and other Governments as well as competent organizations and regional initiatives, such as the Food and Agriculture Organization of the United Nations (FAO), regional seas conventions and action plans, and, where appropriate, regional fisheries management organizations (RFMOs), with regard to fisheries management, to organize, including the setting of terms of reference, a series of regional workshops, with a primary objective to facilitate the description of ecologically or biologically significant marine areas (EBSAs) through the application of scientific criteria in annex I of decision IX/20, and other relevant compatible and complementary nationally and intergovernmentally agreed scientific criteria, as well as the scientific guidance on the identification of marine areas beyond national jurisdiction, which meet the scientific criteria in annex I to decision IX/20. 2. In the same decision (paragraph 41), the Conference of the Parties requested that the Executive Secretary make available the scientific and technical data and information and results collated through the workshops referred to above to participating Parties, other Governments, intergovernmental agencies and the Subsidiary Body on Scientific, Technical and Technological Advice (SBSTTA) for their use according to their competencies.
    [Show full text]
  • Group Foraging in Socotra Cormorants: a Biologging Approach to the Study of a Complex Behavior Timothée R
    Group foraging in Socotra cormorants: A biologging approach to the study of a complex behavior Timothée R. Cook, Rob Gubiani, Peter G. Ryan, Sabir B. Muzaffar To cite this version: Timothée R. Cook, Rob Gubiani, Peter G. Ryan, Sabir B. Muzaffar. Group foraging in Socotra cormorants: A biologging approach to the study of a complex behavior. Ecology and Evolution, Wiley Open Access, 2017, 7 (7), pp.2025-2038. 10.1002/ece3.2750. hal-01526388 HAL Id: hal-01526388 https://hal.sorbonne-universite.fr/hal-01526388 Submitted on 23 May 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Received: 5 October 2016 | Revised: 6 December 2016 | Accepted: 22 December 2016 DOI: 10.1002/ece3.2750 ORIGINAL RESEARCH Group foraging in Socotra cormorants: A biologging approach to the study of a complex behavior Timothée R. Cook1,2 | Rob Gubiani3 | Peter G. Ryan2 | Sabir B. Muzaffar3 1Department of Evolutionary Ecology, Evolutionary Ecophysiology Abstract Team, Institute of Ecology and Environmental Group foraging contradicts classic ecological theory because intraspecific competition Sciences, University Pierre et Marie Curie, Paris, France normally increases with aggregation.
    [Show full text]
  • Rapid Radiation of Southern Ocean Shags in Response to Receding Sea Ice 2 3 Running Title: Blue-Eyed Shag Phylogeography 4 5 Nicolas J
    bioRxiv preprint doi: https://doi.org/10.1101/2021.08.18.456742; this version posted August 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 1 Rapid radiation of Southern Ocean shags in response to receding sea ice 2 3 Running title: Blue-eyed shag phylogeography 4 5 Nicolas J. Rawlence1, *, Alexander T. Salis1, 2, Hamish G. Spencer1, Jonathan M. Waters1, 6 Lachie Scarsbrook1, Richard A. Phillips3, Luciano Calderón4, Timothée R. Cook5, Charles- 7 André Bost6, Ludovic Dutoit1, Tania M. King1, Juan F. Masello7, Lisa J. Nupen8, Petra 8 Quillfeldt7, Norman Ratcliffe3, Peter G. Ryan5, Charlotte E. Till1, 9, Martyn Kennedy1,* 9 1 Department of Zoology, University of Otago, Dunedin, New Zealand. 10 2 Australian Centre for Ancient DNA, University of Adelaide, South Australia, Australia. 11 3 British Antarctic Survey, Natural Environment Research Council, United Kingdom. 12 4 Instituto de Biología Agrícola de Mendoza (IBAM, CONICET-UNCuyo), Argentina. 13 5 FitzPatrick Institute of African Ornithology, Department of Biological Sciences, University 14 of Cape Town, South Africa. 15 6 CEBC-CNRS, UMR 7372, 405 Route de Prissé la Charrière, 79360 Villiers en Bois, 16 France. 17 7 Justus Liebig University, Giessen, Germany. 18 8 Organisation for Tropical Studies, Skukuza, South Africa. 19 9 School of Human Evolution and Social Change, Arizona State University, Arizona, USA. 20 21 Prepared for submission as a research article to Journal of Biogeography 22 23 * Corresponding authors: [email protected]; [email protected] 24 25 ACKNOWLEDGEMENTS 26 This work was supported with funding from the University of Otago.
    [Show full text]
  • SWFSC Archive
    CONTENTS LIST OF TABLES ........................................................................................................................ ii LIST OF FIGURES ...................................................................................................................... ii INTRODUCTION......................................................................................................................... 1 OBJECTIVES ............................................................................................................................... 1 STUDY AREA AND ITINERARY ............................................................................................. 2 MATERIALS AND METHODS ................................................................................................. 3 Oceanography ............................................................................................................................. 3 Net Tows ...................................................................................................................................... 4 Acoustic Backscatter.................................................................................................................... 4 Seabirds ....................................................................................................................................... 5 Contour Plots............................................................................................................................... 5 RESULTS .....................................................................................................................................
    [Show full text]
  • Antarctic Sea-Birds As Subjects for Ecological Research
    Antarctic Sea-Birds as Subjects for Ecological Research ROBERT CARRICK and SUSAN E. INGHAM Mawson Institute for Antarctic Research, UniYersity of Adelaide, South Australia The environment of the Antarctic and Subantarctic region is briefly Abstract: described, mainly as it affects the breeding of sea-birds. The 36 species of 8 families that breed mainly in this region, and their feeding and nesting requirements, are listed. Breeding distribution and annual cycles are analyzed in relation to these factors, and explanations of special cases and apparent anomalies are offered. Population ecology studies are summarized, including current work on the Wandering Albatross, and Royal Penguin, at Macquarie Island. In the latter it is established that socially-induced deferment of maturity Diomedeato 5-11 years exulans, of age is due to competitionEudyptes for feedingchrysolophus status schlegeli at sea, and not for nest-site or breeding status ashore. Suggestions are made for future ecological research on Antarctic sea-birds. The necessity for better data on their foods, available and taken, is stressed, and also the unusual opportunities that some of these species offer for long-term popu­ lation study. 1. Introduction In this review the Antarctic region includes the high Antarctic and the Subantarctic. Each faunal zone grades into adjacent ones, so the empirical northern limit here set for the Subantarctic zone is the Antarctic Convergence plus those islands just north of it which have no woody vegetation, namely Marion and Prince Edward, the Crozets, Kerguelen and Macquarie (Fig. 1 ). This exciudes islands that lie not much farther north, but which have woody plants and whose avifaunas contain many temperate zone species not found within the Subantarctic.
    [Show full text]
  • The Prince Edward Islands Millennium Expedition
    News & Views South African Journal of Science 99, September/October 2003 407 sailed from Cape Town on 12 December 2001 on board the research ship Africana. The Prince Edward Islands The members consisted of 23 scientists and technicians, two media personnel and a medical doctor. Twelve scientists Millennium Expedition were drawn from Marine & Coastal Man- agement (Department of Environmental R.J.M. Crawforda, L.G. Underhillb, M.N. Besterc, J. Cooperb*, Affairs and Tourism), six from the Univer- d a a,b e sity of Cape Town (Avian Demography M.D. Greyling , M.A. Meler , S.L. Petersen , P.G.Ryan and Unit and Percy FitzPatrick Institute of W. Wilkinsonf African Ornithology), two from the Uni- versity of Pretoria (Mammal Research Institute), and one each from the Univer- sity of the Witwatersrand, Western Cape N EXPEDITION TO SURVEY BIRD AND SEAL of which is to protect the fragile ecosys- Nature Conservation Board and the Apopulations on the Prince Edward Is- tems of the islands. One of the key ways of Robben Island Museum. In addition, two lands took place from 11 to 31 December achieving this is to prevent the landing of members of the Marion Island M58 team 2001. The first priority was to undertake a alien plants or animals.3 Access to the assisted with the scientific fieldwork. count of the breeding birds during the peak of the summer breeding season. An additional islands is thus tightly restricted. John Cooper was appointed the expedi- objective was to obtain estimates of the num- In terms of the management plan there tion’s conservation officer by the PEIMC.
    [Show full text]
  • Threats to Seabirds: a Global Assessment 2 3 4 Authors: Maria P
    1 Threats to seabirds: a global assessment 2 3 4 Authors: Maria P. Dias1*, Rob Martin1, Elizabeth J. Pearmain1, Ian J. Burfield1, Cleo Small2, Richard A. 5 Phillips3, Oliver Yates4, Ben Lascelles1, Pablo Garcia Borboroglu5, John P. Croxall1 6 7 8 Affiliations: 9 1 - BirdLife International. The David Attenborough Building, Pembroke Street Cambridge CB2 3QZ UK 10 2 - BirdLife International Marine Programme, RSPB, The Lodge, Sandy, SG19 2DL 11 3 – British Antarctic Survey. Natural Environment Research Council, High Cross, Madingley Road, 12 Cambridge CB3 0ET, UK 13 4 – Centre for the Environment, Fishery and Aquaculture Science, Pakefield Road, Lowestoft, NR33, UK 14 5 - Global Penguin Society, University of Washington and CONICET Argentina. Puerto Madryn U9120, 15 Chubut, Argentina 16 * Corresponding author: Maria Dias, [email protected]. BirdLife International. The David 17 Attenborough Building, Pembroke Street Cambridge CB2 3QZ UK. Phone: +44 (0)1223 747540 18 19 20 Acknowledgements 21 We are very grateful to Bartek Arendarczyk, Sophie Bennett, Ricky Hibble, Eleanor Miller and Amy 22 Palmer-Newton for assisting with the bibliographic review. We thank Rachael Alderman, Pep Arcos, 23 Jonathon Barrington, Igor Debski, Peter Hodum, Gustavo Jimenez, Jeff Mangel, Ken Morgan, Paul Sagar, 24 Peter Ryan, and other members of the ACAP PaCSWG, and the members of IUCN SSC Penguin Specialist 25 Group (Alejandro Simeone, Andre Chiaradia, Barbara Wienecke, Charles-André Bost, Lauren Waller, Phil 26 Trathan, Philip Seddon, Susie Ellis, Tom Schneider and Dee Boersma) for reviewing threats to selected 27 species. We thank also Andy Symes, Rocio Moreno, Stuart Butchart, Paul Donald, Rory Crawford, 28 Tammy Davies, Ana Carneiro and Tris Allinson for fruitful discussions and helpful comments on earlier 29 versions of the manuscript.
    [Show full text]
  • South Africa Prince Edward Islands RIS 2006 E
    Information Sheet on Ramsar Wetlands (RIS) – 2006-2008 version Available for download from http://www.ramsar.org/ris/key_ris_index.htm. Categories approved by Recommendation 4.7 (1990), as amended by Resolution VIII.13 of the 8th Conference of the Contracting Parties (2002) and Resolutions IX.1 Annex B, IX.6, IX.21 and IX. 22 of the 9 th Conference of the Contracting Parties (2005). Notes for compilers: 1. The RIS should be completed in accordance with the attached Explanatory Notes and Guidelines for completing the Information Sheet on Ramsar Wetlands. Compilers are strongly advised to read this guidance before filling in the RIS. 2. Further information and guidance in support of Ramsar site designations are provided in the Strategic Framework and guidelines for the future development of the List of Wetlands of International Importance (Ramsar Wise Use Handbook 7, 2 nd edition, as amended by COP9 Resolution IX.1 Annex B). A 3 rd edition of the Handbook, incorporating these amendments, is in preparation and will be available in 2006. 3. Once completed, the RIS (and accompanying map(s)) should be submitted to the Ramsar Secretariat. Compilers should provide an electronic (MS Word) copy of the RIS and, where possible, digital copies of all maps. 1. Name and address of the compiler of this form: FOR OFFICE USE ONLY . DD MM YY John Cooper Co-opted Member, PEIMC c/o Avian Demography Unit Designation date Site Reference Number Department of Statistical Sciences University of Cape Town Rondebosch 7701 SOUTH AFRICA Tel: +27-21-650-3426; Fax +27-21-650-3434 [email protected] Contact: Mr Henry Valentine Chair Prince Edward Islands Management Committee Department of Environmental Affairs & Tourism P.O.
    [Show full text]
  • AMNH Digital Library
    About 1.6 million people die of tuberculosis (TB) each year' mostly in developing nations lacking access to fast, accurate testing technology. TB is the current focus of the Foundation for Fino Innovative New Diagnostics (FIND), established with ^" loundation ^ funding from the Bill and Melinda Gates Foundation. for innovative new diagnostics FIND is dedicated to the advancement of diagnostic testing for infectious diseases in developing countries. For more information, visit www.finddiagnostics.org. Partnering against TB Twenty-two developing countries carry the burden culture from 42 days to as little as 10-14 days. In of 80 percent of the world's cases of TB, the addition, by identifying resistance to specific drugs, second-leading killer among infectious diseases the BD MGIT™ system provides fast and reliable and primary cause of death among people with information that can help physicians prescribe HIV/AIDS. The problem is compounded by TB's more effective treatments. All this can contribute resistance to drug treatment, limiting the options to the reduction in spread and mortality of TB, for over 450,000 patients annually. particularly in the HIV/AIDS population, where it is especially difficult to diagnose. BD is pleased to work with FIND to provide equipment, reagents, training and support to the Named one of America's Most Admired public health sector in high-burdened countries Companies' as well as one of the World's IVIost on terms that will enable them to purchase and Ethical Companies/ BD provides advanced medical implement these on a sustainable basis. technology to serve the global community's greatest needs.
    [Show full text]
  • Introduction and Kerguelen Oceanic Zone
    Ecoregionalisation of the Kerguelen and Crozet islands oceanic zone Part I: Introduction and Kerguelen oceanic zone Authors: Koubbi P.1, Guinet C.², Alloncle N.3, Ameziane N.4, Azam C.S.5, Baudena A.6, Bost C.A.², Causse R.1, Chazeau C.1, Coste G.5, Cotté C.6, D'Ovidio F.6, Delord K.², Duhamel G.1, Forget A.3, Gasco N.1, Hautecœur M.1, Lehodey P.7, Lo Monaco C.6, Marteau C.5, Martin A.1, Mignard C.1,5, Pruvost P.1, Saucède T.8, Sinegre R.1, Thellier T.5, Verdier A.G.5, Weimerskirch H.². Affiliations: 1. Unité Biologie des organismes et écosystèmes aquatiques (BOREA, UMR 7208), Sorbonne Universités, Muséum national d'Histoire naturelle, Université Pierre et Marie Curie, Université de Caen Basse-Normandie, CNRS, IRD; CP26, 57 rue Cuvier 75005 Paris, France. 2. Centre d’Études Biologiques de Chizé, UMR 7372 du CNRS-Université de La Rochelle, 79360 Villiers-en-Bois, France. 3. Agence des aires marines protégées - 16 quai de la douane - CS42932 - 29229 Brest Cedex 2, France. 4. Unité Biologie des organismes et écosystèmes aquatiques (BOREA, UMR 7208), Sorbonne Universités, Muséum national d'Histoire naturelle, Université Pierre et Marie Curie, Université de Caen Basse-Normandie, CNRS, IRD; BP 225, 29182 Concarneau Cedex, France. 5. Terres Australes et Antarctiques Françaises (TAAF, Rue Gabriel Dejean, 97410 Saint-Pierre, La Réunion, France. 6. LOCEAN-IPSL, CNRS/MNHN/UPMC/IRD (UMR 7159), 4 place Jussieu, 75005, Paris, France. 7. CLS, Space Oceanography Division. 11 rue Hermes, 31520 Ramonville St Agne, France. 8. UMR 6282 Biogéosciences, Univ.
    [Show full text]