Laser Technology Inc. Rangefinder, Software Improves Log Inventory Control by Tim Cox Contributing Author

Total Page:16

File Type:pdf, Size:1020Kb

Laser Technology Inc. Rangefinder, Software Improves Log Inventory Control by Tim Cox Contributing Author April 2012 • Volume 18, Number 04 INDUSTRY NEWS & MACHINERY www.timberlinemag.com • 800-805-0263 Laser Technology Inc. Rangefinder, Software Improves Log Inventory Control By Tim Cox Contributing Author Measuring log deck volumes is much faster and easier with the TP360 laser rangefinder. John Calkins knew there had to be a have been developed over time so a sawmill can be used to monitor yield and maximize better way to measure log decks at a saw- can measure incoming raw material as well sawmill operations. mill. He discovered what it was when he as outgoing product. Sawmills can know the volume of a log partnered with Laser Technology Inc. “Logs are our largest cost and accurate deck if it is a ‘closed’ log deck, a practice As a log scaler for Simpson Lumber inventory of raw material is a key business most mills typically follow. A closed deck Co., his duties included measuring decks at metric,” noted John. That information, is one that has been assembled with every the company’s sawmill in Shelton, Wash- knowing precisely how many board feet are log scaled and the scale receipts tracked ington. contained in the inventory of logs as well as tabulated; the mill scales and tracks every Of course, different methods and tools the board feet of lumber out the door, also log that goes into the deck. “When we build Reprinted by persmission of Timberline magazine – Copyright © 2013 Industrial Reporting, Inc., all rights reserved Sawmills find themselves needing to calculate inventory volumes of literally mountains of logs. our log decks, we know the volume going known as a prism pole, which requires one He settled on a tool – a device – that into them,” said John. man to adjust the pole and another standing revolutionized his approach to measuring The need for measuring becomes criti- away from the deck to indicate the appro- log decks: the Laser Technology TruPulse cal as logs are removed from a deck and priate height or the top of the deck. 360 laser rangefinder. processed by the mill; the decks must be “Some try to use other tools,” said “You measure with the laser measured in order to calculate the remain- John. “Some drive around in a pickup and rangefinder right to the deck…It’s straight ing volume. guess. They don’t last long,” he added with forward, easy to understand.” Until now the methods have not pro- a laugh. “This is a great device for measuring vided the accuracy desired. Every sawmill John, 57, who earned a forestry degree this,” he added. has a forester or log yard manager who is in applied science from Green River Com- The technology provides a number of responsible for keeping track of inventory. munity College, was a bureau log scaler for benefits. The most important benefit, to Most of them have to pace the length of a 30 years. He has been employed the past companies like Simpson, according to log deck and measure it with a tape mea- five years as a check scaler and log quality John, is improved safety. “Safety first,” he sure or have a two-man crew, with one man specialist for Simpson, responsible for log said. “It is the most important thing.” stretching the tape measure and the other and chip quality for the company’s north- Using a hand-held laser to take mea- reading the measurement. The height of the west lumber division. surements virtually eliminates all the haz- deck is similarly measured using a device He set out on a four-pronged mission, ards associated with walking around log to come up with a new method that would: decks. In addition, because of water and 1. Improve physical log deck measur- other obstacles, in some cases it is physi- ing for more accurate log accounting. cally impossible to make measurements us- 2. Allow one person to take more mea- ing the manual methods, resulting in forest- surements. ers and log yard managers having to rely on 3. Develop a procedure that would be an estimate or “educated guess.” easy to understand and replicate. “That’s where this device makes it 4. Devise a procedure that would be completely possible,” said John. “You just acceptable to accountants and auditors. could not do it.” John Calkins, a log scaler for Simpson Lumber Co. with over 35 years of experience, set out on a four-pronged mission to come up with a new method to measure log decks. He settled on a Laser Technology TruPulse 360 laser Clinometer deck measurements allow one person to do the job that used to take rangefinder. multiple people much more time to measure log volumes. 2 “I can stay in one position without log decks at five sawmills – by himself – in terly or even annual basis, the technology moving my feet and measure a deck 300 a week’s time. allows log deck volumes to be measured feet long.” Another important benefit is improved weekly and adjustments can be made In addition, measuring log decks no accuracy. “It’s really quite incredible com- monthly. “They figure weekly (lumber) longer is a task that may involve several pared to the way that we used to do it,” said sales, so they want to be able to figure people. It can be done by one employee. John, referring to the improved accuracy. their supply on a weekly basis,” noted “This has really made it extremely easy for The methods of manually measuring log John. one person,” said John. decks had a margin of error 10 percent at “We don’t need to over-supply our Typically a crew of two people would best, he suggested. The LTI technology mills with costly raw material,” added start by sweeping the pavement of the log doubled the accuracy to 5 percent or even John. In the past, because of uncertainty deck, then using a measuring device that better, he said. With more ‘shots’ with the over inventory, sawmill mangers would utilizes a small wheel, rolling it along the hand-held laser, accuracy is even greater be prone to make sure they had plenty of length of a given deck in order to measure and approaches the accuracy of individu- logs on hand. “This allows you to get just it. The process would take the two employ- ally scaling a log, John argued. a little closer to reality,” said John, by ees all afternoon. Where in the past log deck volumes keeping track of inventory more accu- “You don’t need any of that,” said were determined on a monthly basis, and rately. John, who now measures all the pertinent the figures could be used only on a quar- The technology would benefit virtu- LTI a True Pioneer in Laser Technology From missions in outer space to golfing and hunting, Laser the first recreational rangefinder and the first reflectorless hand- Technology Inc. (LTI) can claim to be a true pioneer in design- held total station. ing and manufacturing lasers for what’s technically known as LTI began working with the US government over 24 years reflectorless measurement. ago by designing lasers that measured distances between two The company’s hand-held laser rangefinders find many ap- planes in-flight for a de-icing exercise. The company subse- plications in the forest products and other industries. In addition, quently won a contract with NASA to build a custom laser that it has developed computer software tools specifically to be used could measure both distances and speeds for space docking mis- with its devices for forest products industry applications. sions. Later it partnered with Bushnell Optics and designed the For example, mills can readily ascertain the volume of a chip first low-cost recreational rangefinder for golfing and hunting. pile with the aid of an LTI laser rangefinder in conjunction with LTI’s line of TruPulse laser rangefinders can be used with a the company’s MapSmart and Volumetrics software. The tech- compatible data collector with either a standard serial port or nology makes the task quick, safe, and accurate. Bluetooth. Each ‘shot’ with the rangefinder automatically down- The latest addition to the company’s portfolio of products for loads a full data string that comprises horizontal, slope and ver- the forest products industry is its Log Deck Volume software. It is tical distance, the degree of inclination, and azimuth values. a cost-effective, easy solution to instantly calculate deck area as well They feature superior optics with 7X magnification and in- as the board feet volume for specified log species and diameters. scope data display for capturing the right measurement to the cor- Users can quickly get accurate, repeatable results simply by rect target. Toggling on the ‘Closest’ or ‘Farthest’ mode ensures following the step-by-step instructions built into the software and the laser sensor ignores unwanted obstructions in front or behind using the helpful illustrations that guide them through the pro- the desired target. cess. It offers five different survey methods that can be adapted Small enough to fit in a pocket and economically priced, the to the specific environment of any log deck. These features also LTI TruPulse laser rangefinders display all measurements and address the difficulty of working with uneven ground. menus right in the scope, and they integrate with GPS and popu- “We developed the Log Deck Volume software because it lar GIS software. can streamline the inventory process and even make it safer for The LTI TruPulse 360 features on-board height and missing our customers,” said Steve Colburn, Laser Technology’s national line solutions. The user can instantly measure slope distance, in- sales director.
Recommended publications
  • AR4000 Laser Rangefinder Users Manual
    AccuRange 4000™ Laser Rangefinder AccuRange™ Line Scanner User’s Manual LLL004001 – Rev. 2.7 For use with AR4000™ and Line Scanner September 5, 2008 Acuity A product of Schmitt Industries, Inc. 2765 NW Nicolai St. Portland, OR 97210 www.acuitylaser.com Limited Use License Agreement YOU SHOULD CAREFULLY READ THE FOLLOWING TERMS AND CONDITIONS BEFORE OPENING THE PACKAGE CONTAINING THE COMPUTER SOFTWARE AND HARDWARE LICENSED HEREUNDER. CONNECTING POWER TO THE MICROPROCESSOR CONTROL UNIT INDICATES YOUR ACCEPTANCE OF THESE TERMS AND CONDITIONS. IF YOU DO NOT AGREE WITH THEM, YOU SHOULD PROMPTLY RETURN THE UNIT WITH POWER SEAL INTACT TO THE PERSON FROM WHOM IT WAS PURCHASED WITHIN FIFTEEN DAYS FROM DATE OF PURCHASE AND YOUR MONEY WILL BE REFUNDED BY THAT PERSON. IF THE PERSON FROM WHOM YOU PURCHASED THIS PRODUCT FAILS TO REFUND YOUR MONEY, CONTACT SCHMITT INDUSTRIES INCORPORATED IMMEDIATELY AT THE ADDRESS SET OUT BELOW. Schmitt Industries Incorporated provides the hardware and computer software program contained in the microprocessor control unit, and licenses the use of the product to you. You assume responsibility for the selection of the product suited to achieve your intended results, and for the installation, use and results obtained. Upon initial usage of the product your purchase price shall be considered a nonrefundable license fee unless prior written waivers are obtained from Schmitt Industries incorporated. LICENSE a. You are granted a personal, nontransferable and non-exclusive license to use the hardware and software in this Agreement. Title and ownership of the hardware and software and documentation remain in Schmitt Industries, Incorporated; b. the hardware and software may be used by you only on a single installation; c.
    [Show full text]
  • Core Sampling for Plant Belowground Biomass Date: 02/17/2017
    Title: TOS Protocol and Procedure: Core Sampling for Plant Belowground Biomass Date: 02/17/2017 NEON Doc. #: NEON.DOC.014038 Author: C. Meier Revision: E TOS PROTOCOL AND PROCEDURE: CORE SAMPLING FOR PLANT BELOWGROUND BIOMASS PREPARED BY ORGANIZATION DATE Courtney Meier SCI 03/25/2013 APPROVALS ORGANIZATION APPROVAL DATE Andrea Thorpe SCI 01/27/2017 Mike Stewart SYS 02/15/2017 RELEASED BY ORGANIZATION RELEASE DATE Judy Salazar CM 02/17/2017 See configuration management system for approval history. The National Ecological Observatory Network is a project solely funded by the National Science Foundation and managed under cooperative agreement by Battelle. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. Template NEON.DOC.050006 Rev F Title: TOS Protocol and Procedure: Core Sampling for Plant Belowground Biomass Date: 02/17/2017 NEON Doc. #: NEON.DOC.014038 Author: C. Meier Revision: E Change Record REVISION DATE ECO # DESCRIPTION OF CHANGE A 03/25/2011 ECO-00148 Initial release Production release, template change, method B 01/20/2015 ECO-02273 improvements C 02/26/2015 ECO-02702 Migration to new protocol template Major changes to protocol include: All SOPs now implemented together every time protocol is executed, previously SOP D implemented 1X per site Timing information updated, and preservation of cores prior to core processing eliminated. Equipment list updates for lab work SOP C.1 sieving methods updated based on megapit sampling experience Roots from 2 cores within a clipCell are now pooled after D 1/28/2016 ECO-03547 weighing takes place and prior to grinding for chemical analysis / archive.
    [Show full text]
  • There Is a Difference Between 10 Years Experience, and Six Months of Experience Repeated 20 Times
    CUT TIPS FROM THE CANOPY There is a difference between 10 years experience, and six months of experience repeated 20 times. That is quite a powerful concept that I was fortunate enough to learn from professional arborist, trainer, author, and all-around great guy, Tony Tresselt. The concept has stuck with me, and I find its value in the industry and life as well. If we only repeat what we learned in the first six months on a job, and do not take the initiative to continue our learning, then why should we expect to become better at what we do? We should always be looking to advance our knowledge and put it into practice in the field. Identifying opportunities and searching for a solution should be part of our thought process. Nothing wrong with using what we learned when first starting our career. After all, you have to start somewhere, but we should aim to venture out and look to further our knowledge, and not rely only on our initial training. It is easy to look at rigging and climbing gear and get lost in the multitude of new products and techniques, but how often do we look at new methods or systems for cutting and felling? A lot of injuries and fatalities occur every year, which are directly caused by some act of cutting. These casualties occur from both cutting in the tree and on the ground. Looking at climbing systems or rigging systems, we are quick to explore other options and methods because we see distinct advantages.
    [Show full text]
  • LRF Effective Range Can Proceed from the Projected Laser Spot Is Smaller Than the Target
    Voxtel Technical Note Williams and Huntington, “Laser Rangefinder Effective Range” Laser Rangefinder Effective Range George M. Williams, Jr.*; Andrew Huntington, PhD Voxtel Inc., 15985 NW Schendel Ave., Beaverton, OR, USA 97006 Abstract. The effective range of a laser rangefinder (LRF) depends on the sensitivity of its photoreceiver and the strength of optical signal returns as a function of target range. Parameters affecting signal-return strength are reviewed, including laser pulse energy, atmospheric conditions, and the size, orientation, and surface properties of the target. Keywords: laser rangefinder, time of flight, lidar, direct detection, laser radar, photodetector Voxtel Technical Note Published Nov. 19, 2018 Introduction: Laser Ranging Table 1. Parameters for Example Case Since the introduction of lasers, laser ranging has proven to be one Parameter Description Value 2 of the most useful methods to measure distance. Laser ranging is At Target cross-sectional area 2.3×2.3 m a time-of-flight method analogous to radar that uses short pulses ϕ half-angle laser beam divergence 0.5 mrad of light instead of microwaves. A laser rangefinder (LRF) ROF Range beyond which a target becomes overfilled 2.6 km Etx Transmitted laser pulse energy 300 μJ comprises a laser transmitter that emits nanosecond-scale pulses, θ Angle of incidence 30° a photoreceiver circuit that detects and times optical pulses, and ρ Diffuse reflectivity 30% the optics required to project the laser onto a target, collect the η Efficiency of the optical system 90% back-scattered
    [Show full text]
  • Operating/Safety Instructions Consignes De Fonctionnement/Sécurité Instrucciones De Funcionamiento Y Seguridad
    IMPORTANT: IMPORTANT : IMPORTANTE: Read Before Using Lire avant usage Leer antes de usar Operating/Safety Instructions Consignes de fonctionnement/sécurité Instrucciones de funcionamiento y seguridad GLR500 GLR825 Call Toll Free for Pour obtenir des informations Llame gratis para Consumer Information et les adresses de nos centres obtener información & Service Locations de service après-vente, para el consumidor y appelez ce numéro gratuit ubicaciones de servicio 1-877-BOSCH99 (1-877-267-2499) www.boschtools.com For English Version Version française Versión en español See page 6 Voir page 18 Ver la página 29 h i g f a e d b c 9 8 7 6 5 4 3 2 1 10 11 12 13 14 15 22 18 17 16 23 IEC 60825-1:2007-03 ≤ 1mW @ 635 nm 2 Laser Radiation. Do not stare into the beam. Class 2 Laser product. 19 Complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice 50,6/24/2007 Radiación láser. No mire al rayo. 21 Producto láser de Clase 2. Cumple con las normas 21 CFR 1040.10y 1040.11, excepto por las desviaciones conforme al Aviso para láseres 50 del juio de 2007 20 Rayonnement laser. Ne regardez pas directement dans le faisceau. Produit laser de Classe 2. Conforme à 21 CFR 1040.10 et 1040.11, sauf pour les écarts suivant l’ Avis laser 50, 24/6/2007 24 29 28 27 10 26 24 25 -2- A B 1.6 ft 1.6 ft C D t 1.6 f t 1.6 f E F min 1.6 ft -3- max 2 G H 1 2 E 1 90˚ 3 1 2 I 2 3 J 1 E 3 3 E 2 1 90˚ 1 90˚ 2 2 3 K 1 L E B1 A 3 B3 2 90˚ 90˚ 1 B2 -4- M 2.0 ft 2.0 ft N O 30 31 DLA001 DLA002 -5- General Safety Rules ! IEC 60825-1:2007-03 WARNING LASER RADIATION.
    [Show full text]
  • Laser Rangefinder Group 2
    Laser Rangefinder Group 2 Aaron Smeenk Jackson Ritchey Keith Hargett Kourtney Bosshardt Table of Contents 1. Introduction 1.1. Executive Summary 1.2. Motivation and Goals 1.3. Specifications 1.4. Design Constraints and Standards 1.4.1. Economic 1.4.2. Environmental 1.4.2.1. Outdoors/indoors 1.4.3. Health and Safety 1.4.3.1. Lithium-Ion Batteries 1.4.3.2. Lasers 2. Research 2.1. Similar Projects/LIDAR Technologies 2.1.1. Instructables Project 2.1.2. Webcam Based DIY Laser Rangefinder 2.1.3. OSLRF-01 2.1.3.1. Transmitter End 2.1.3.2. Receiver End 2.1.3.3. Control Logic 2.2. Control system 2.2.1. SLAM 2.3. Base Module 2.3.1. Interface 2.3.1.1. SPI 2.3.1.2. I2C 2.3.1.3. UART 2.3.2. Motor Technology 2.3.2.1. Servo Motors 2.3.2.2. Continuous Rotation Servo Motors 2.3.2.3. Brushed DC (BDC) Motors 2.3.2.4. Brushless DC (BLDC) Motors 2.3.2.5. Stepper Motors 2.3.2.6. Motor Encoders 2.3.2.6.1. Optical Rotary Encoders 2.3.2.6.2. Magnetic Rotary Encoders 2.3.2.6.3. Encoder Operation and Specifications 2.3.2.7. Motor Drivers 2.3.2.7.1. H-Bridges 2.3.2.7.2. Brushed DC Motor Drivers 2.3.2.7.3. Brushless DC Motor Drivers 2.3.2.7.4. Stepper Motor Drivers 2.3.2.8. Motor Gearboxes 2.3.3.
    [Show full text]
  • IFER - Monitoring and Mapping Solutions, Ltd
    IFER - Monitoring and Mapping Solutions, Ltd. Tool designed for computer aided field data collection Technology Field-Map Company name: IFER – Monitoring and Mapping Solutions, Ltd. Registered address: Strašice 299, 338 45 Postal address: Areál 1. jílovské a.s., 254 01 Jílové u Prahy Country: Czech Republic Company representative: Dr. Martin Černý Company registration No: 26391040 Company VAT No.: CZ26391040 January 2009 2 IFER – Monitoring and Mapping Solutions, Ltd. Content: General features and description of system Field-Map ........................................................... 3 1.1 Flexible database structure........................................................................................................ 3 1.2 Support of measurement devices .............................................................................................. 3 1.3 Import/export functionality....................................................................................................... 6 1.4 Field navigation ........................................................................................................................ 6 1.5 Mapping.................................................................................................................................... 7 1.6 Tree measurements ................................................................................................................... 9 1.7 Repeated measurements.........................................................................................................
    [Show full text]
  • 1 Getting the Most out of Your Laser Rangefinder by Major John L
    Getting the Most Out of Your Laser Rangefinder By Major John L. Plaster, USA (retired) It’s hard to believe. Just twenty years ago laser rangefinders were an expensive curiosity; but today they’re modestly priced and standard kit for most serious long-distance rifle shooters. The only problem is, once you start using one it seems a laser is as temperamental an instrument as ever devised by man. One day, you can range to 750 yards on a rangefinder rated to 600 yards, then the next day you can’t range to 400 yards with the same laser! For the past decade I’ve used eleven different laser rangefinders — owned six — from three different manufacturers, and field-tested them from the Arizona desert and northland snowfields, to the forested mountains of Eastern Europe and the rarified air of the Rockies — from dawn beyond dusk — and, at last, I think I’ve collected enough tips and lessons learned so you can get the most out of your laser. How a Laser Rangefinder Works To understand the fundamentals of a laser ranging device, I spoke with Bushnell’s top laser engineer, Tim Carpenter, who explained that a rangefinder uses a laser diode similar to a pen pointer, except it emits pulses of non-visible wavelength light. (For those of you technically inclined, Bushnell lasers have a wavelength of 905 nanometers, in the infrared spectrum, while visible light wavelength is 400-700 nm.) The laser diode emits light pulses of about 35-45 nanoseconds, which reflect off the target, and then the light is optically detected in the rangefinder.
    [Show full text]
  • The Hammer-Beam Roof: Tradition, Innovation and the Carpenter’S Art in Late Medieval England
    The Hammer-Beam Roof: Tradition, Innovation and the Carpenter’s Art in Late Medieval England Robert Beech A thesis submitted to the University of Birmingham for the degree of DOCTOR OF PHILOSOPHY Department of Art History, Film and Visual Studies College of Arts and Law University of Birmingham September 2014 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT This thesis is about late medieval carpenters, their techniques and their art, and about the structure that became the fusion of their technical virtuosity and artistic creativity: the hammer-beam roof. The structural nature and origin of the hammer-beam roof is discussed, and it is argued that, although invented in the late thirteenth century, during the fourteenth century the hammer-beam roof became a developmental dead-end. In the early fifteenth century the hammer-beam roof suddenly blossomed into hundreds of structures of great technical proficiency and aesthetic acumen. The thesis assesses the role of the hammer-beam roof of Westminster Hall as the catalyst to such renewed enthusiasm. This structure is analysed and discussed in detail.
    [Show full text]
  • Development of a Portable Measuring Device for Diameter at Breast Height and Tree Height
    Development of a portable measuring device for diameter Seite 25 138. Jahrgang (2021), Heft 1, S. 25-50 Development of a portable measuring device for diameter at breast height and tree height Entwicklung eines tragbaren Messgerätes für Durchmesser in Brusthöhe und Baumhöhe Fangxing Yuan1,2, Luming Fang1,2*, Linhao Sun1,2, Siqing Zheng1,2, Xinyu Zheng1,3 Keywords: DBH, tree height, sensor, algorithm, simulation Schlüsselbegri e: DBH, Baumhöhe, Sensor, Algorithmus, Simulation Abstract The diameter at breast height (DBH) and tree height are signi cant parameters of tree growth. Conventional measurement and recording methods take considerable time collect information on tree growth; where an intelligent electronic device (IED) could increase e ciency. The main achievements documented in this paper are: (1) an IED to accurately and e ciently measure DBH and tree height was developed, (2) a simple algorithm to estimate the DBH by using high-precision Hall angle sensors was designed. (3) A convenient tree height measurement method using a high-precision laser ranging sensor and dip sensor was designed. (4) A simulation experiment to analyze the DBH and tree height measurement range of the device at di erent an- gles was designed. (5) A personal computer (PC) software application was developed to automatically store and upload DBH and tree height data. The simulation results showed that the maximum measurable DBH and tree height were 151.47 cm and College of Information Engineering, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China Zhejiang Provincial Key Laboratory of Forestry Intelligent Monitoring and Information Technology, Hangzhou 311300, Zhejiang, China Key Laboratory of State Forestry and Grassland Administration on Forestry Sensing Technology and Intelligent Equipment Hangzhou 311300, Zhejiang, China *Corresponding author: Luming Fang, [email protected] Seite 26 Fangxing Yuan, Luming Fang, Linhao Sun, Siqing Zheng, Xinyu Zheng 65.94 m, respectively.
    [Show full text]
  • Guide to Trimble GPS with Terrasync
    Guide to Trimble GPS with Terrasync This Guide provides the essentials for using the Trimble GPS units (Juno for 3-5 m accuracy, ProXH and GeoXH for submeter) to collect data points and other features using Terrasync. Data can be post-processed, and the setup can be configured to accept a Laser Rangefinder with Compass for offset shots. This guide documents its use with TerraSync software to collect points, lines and polygons. For more information, see the Terrasync Software Getting Started Guide (224 pp) which you can download from: http://www.trimble.com/terrasync_ts.asp and the manufacturer’s Juno, GeoXH or ProXH manual. Contents Physical Setups ............................................................................................................................... 2 Juno ............................................................................................................................................. 2 GeoXH 2008 ............................................................................................................................... 3 GeoXH & Zephyr Box Organization .......................................................................................... 4 GeoXH & Zephyr Rangepole Setup ........................................................................................... 5 ProXH + Recon ........................................................................................................................... 6 Trimble ProXH & Recon Parts List & Box Organization .........................................................
    [Show full text]
  • Number 8 Trumbull Edition February 25, 2021 Trumbull Free Press 814-638-0114 February 25, 2021 Page 2
    VOLUME 42 - NUMBER 8 TRUMBULL EDITION FEBRUARY 25, 2021 TRUMBULL FREE PRESS 814-638-0114 FEBRUARY 25, 2021 PAGE 2 AUCTIONS! AUCTIONS! AUCTIONS! PUBLIC AUCTION UPCOMING AUCTIONS WEDNESDAY MARCH 3, 2021 •Sat. March 20th at 10 AM: MILLER’S CONSIGNMENT AUCTION 4:30 P.M. SHARP Absolute Real Estate & Contents Auction 2nd SATURDAY OF EACH MONTH Will Sell The Following Personal Property Of Very well kept and updated 3 bedroom mobile STARTING MARCH 13TH @ 9:00 A.M. Chester D & Barbara Byler At Mespo Expo, home w/ 28’ x 32’ 2 car garage situated on a 4275 Kinsman Rd (Rt87), Mesopotamia, Ohio, .642 acre lot, located at Located 4177 US Hwy 19. Cochranton, PA 44450, Trumbull County. Located Just East 10932 Culver Dr. Meadville, PA Consigning:Farm Equipment, Lawn & Garden, ATV’s, Of Rt 534 On Rt 87 To Facility On North Side. •Sat. April 3rd at 1 PM: Watch For Pete Howes Auction Service Or- Absolute Commercial Real Estate Auction Shop Equipment, Tools and much more. ange Signs. 6,700 +/- sq. ft. commercial building w/ 3 phase Drop off times will be Monday-Friday from 12pm-6pm the ********WILL SELL A FIREARM EVERY 10 - 15 elec., natural gas heat, modern offices, loading week of the auction. All other times by appointment only. MINUTES STARTING AT 4:45 PM********* dock, shop/production & customer service ar- AUCTION HELD INSIDE HEATED BUILDING! eas, blacktop customer parking & large employ- Drop off for March 13th Auction is FIREARMS, FISHING AND MISC: Winchester ee parking area. Sale also includes residential Monday March 8th-Friday March 12th ~ 12pm-6pm Model 70 7mm Rem Mag Bolt W/3x9x40 Bur- duplex with current tenant.
    [Show full text]