Infections of Paramecium Burs Aria with Bacteria and Yeasts
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Classes of Endosymbiont of Paramecium Aurelia
J. Cell Sci. 5, 65-91 (1969) 65 Printed in Great Britain THE CLASSES OF ENDOSYMBIONT OF PARAMECIUM AURELIA G. H. BEALE AND A. JURAND Institute of Animal Genetics, Edinburgh 9, Scotland AND J. R. PREER Department of Zoology, Indiana University, Bloomington, Indiana 47401, U.S.A. SUMMARY The endosymbionts of Paramecium aurelia appear to consist of a number of different Gram- negative bacteria which have come to live within many strains of paramecia. It is not known whether in nature this relationship is mutually beneficial or not. The symbionts from one paramecium may kill other paramecia lacking that kind of symbiont. We identify the following classes of endosymbiotic organisms. First, kappa particles (found in P. aurelia, syngens 2 and 4) ordinarily contain highly characteristic refractile, or R, bodies, which are associated with the production of a toxin which kills sensitive paramecia. In certain mutants of kappa found in the laboratory both R bodies and ability to kill have been lost. Second, mu particles (in syngens i, 2 and 8) produce the phenomenon of mate-killing. Third, lambda (syngens 4 and 8) and sigma particles (syngen 2) are very large, flagellated organisms which kill only paramecia of syngens 3, 5 and 9, and are enclosed in membrane-bound vacuoles. Fourth, gamma particles (syngen 8) are minute endosymbionts, surrounded by an additional membrane resembling endoplasmic reticulum. They have strong killing activity but no R bodies. Fifth, delta particles (syngens 1 and 6) possess a dense layer covering the outer membrane. At least one of the two known stocks is a killer. -
<I>Chlorella</I> Strain
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Kenneth Nickerson Papers Papers in the Biological Sciences 7-2016 Comparative genomics, transcriptomics, and physiology distinguish symbiotic from free-living Chlorella strains Cristian F. Quispe University of Nebraska-Lincoln, [email protected] Olivia Sonderman University of Nebraska–Lincoln Maya Khasin University of Nebraska–Lincoln, [email protected] Wayne R. Riekhof University of Nebraska–Lincoln, [email protected] James L. Van Etten University of Nebraska-Lincoln, [email protected] SeFoe nelloxtw pa thige fors aaddndition addal aitutionhorsal works at: https://digitalcommons.unl.edu/bioscinickerson Part of the Computational Biology Commons, Environmental Microbiology and Microbial Ecology Commons, Genomics Commons, Marine Biology Commons, Molecular Genetics Commons, Other Genetics and Genomics Commons, Other Life Sciences Commons, Pathogenic Microbiology Commons, and the Plant Pathology Commons Quispe, Cristian F.; Sonderman, Olivia; Khasin, Maya; Riekhof, Wayne R.; Van Etten, James L.; and Nickerson, Kenneth, "Comparative genomics, transcriptomics, and physiology distinguish symbiotic from free-living Chlorella strains" (2016). Kenneth Nickerson Papers. 15. https://digitalcommons.unl.edu/bioscinickerson/15 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Kenneth Nickerson Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Cristian F. Quispe, Olivia Sonderman, Maya Khasin, Wayne R. Riekhof, James L. Van Etten, and Kenneth Nickerson This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/bioscinickerson/15 Published in Algal Research 18 (2016), pp 332–340. doi 10.1016/j.algal.2016.06.001 Copyright © 2016 Elsevier B.V. -
The Planktonic Protist Interactome: Where Do We Stand After a Century of Research?
bioRxiv preprint doi: https://doi.org/10.1101/587352; this version posted May 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Bjorbækmo et al., 23.03.2019 – preprint copy - BioRxiv The planktonic protist interactome: where do we stand after a century of research? Marit F. Markussen Bjorbækmo1*, Andreas Evenstad1* and Line Lieblein Røsæg1*, Anders K. Krabberød1**, and Ramiro Logares2,1** 1 University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N- 0316 Oslo, Norway 2 Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, ES-08003, Barcelona, Catalonia, Spain * The three authors contributed equally ** Corresponding authors: Ramiro Logares: Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain. Phone: 34-93-2309500; Fax: 34-93-2309555. [email protected] Anders K. Krabberød: University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N-0316 Oslo, Norway. Phone +47 22845986, Fax: +47 22854726. [email protected] Abstract Microbial interactions are crucial for Earth ecosystem function, yet our knowledge about them is limited and has so far mainly existed as scattered records. Here, we have surveyed the literature involving planktonic protist interactions and gathered the information in a manually curated Protist Interaction DAtabase (PIDA). In total, we have registered ~2,500 ecological interactions from ~500 publications, spanning the last 150 years. -
Pusillus Poseidon's Guide to Protozoa
Pusillus Poseidon’s guide to PROTOZOA GENERAL NOTES ABOUT PROTOZOANS Protozoa are also called protists. The word “protist” is the more general term and includes all types of single-celled eukaryotes, whereas “protozoa” is more often used to describe the protists that are animal-like (as opposed to plant-like or fungi-like). Protists are measured using units called microns. There are 1000 microns in one millimeter. A millimeter is the smallest unit on a metric ruler and can be estimated with your fingers: The traditional way of classifying protists is by the way they look (morphology), by the way they move (mo- tility), and how and what they eat. This gives us terms such as ciliates, flagellates, ameboids, and all those colors of algae. Recently, the classification system has been overhauled and has become immensely complicated. (Infor- mation about DNA is now the primary consideration for classification, rather than how a creature looks or acts.) If you research these creatures on Wikipedia, you will see this new system being used. Bear in mind, however, that the categories are constantly shifting as we learn more and more about protist DNA. Here is a visual overview that might help you understand the wide range of similarities and differences. Some organisms fit into more than one category and some don’t fit well into any category. Always remember that classification is an artificial construct made by humans. The organisms don’t know anything about it and they don’t care what we think! CILIATES Eats anything smaller than Blepharisma looks slightly pink because it Blepharisma itself, even smaller Bleph- makes a red pigment that senses light (simi- arismas. -
Genetic Diversity of Symbiotic Green Algae of Paramecium Bursaria Syngens Originating from Distant Geographical Locations
plants Article Genetic Diversity of Symbiotic Green Algae of Paramecium bursaria Syngens Originating from Distant Geographical Locations Magdalena Greczek-Stachura 1, Patrycja Zagata Le´snicka 1, Sebastian Tarcz 2 , Maria Rautian 3 and Katarzyna Mozd˙ ze˙ ´n 1,* 1 Institute of Biology, Pedagogical University of Krakow, Podchor ˛azych˙ 2, 30-084 Kraków, Poland; [email protected] (M.G.-S.); [email protected] (P.Z.L.) 2 Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Krakow, Poland; [email protected] 3 Laboratory of Protistology and Experimental Zoology, Faculty of Biology and Soil Science, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia; [email protected] * Correspondence: [email protected] Abstract: Paramecium bursaria (Ehrenberg 1831) is a ciliate species living in a symbiotic relationship with green algae. The aim of the study was to identify green algal symbionts of P. bursaria originating from distant geographical locations and to answer the question of whether the occurrence of en- dosymbiont taxa was correlated with a specific ciliate syngen (sexually separated sibling group). In a comparative analysis, we investigated 43 P. bursaria symbiont strains based on molecular features. Three DNA fragments were sequenced: two from the nuclear genomes—a fragment of the ITS1-5.8S rDNA-ITS2 region and a fragment of the gene encoding large subunit ribosomal RNA (28S rDNA), Citation: Greczek-Stachura, M.; as well as a fragment of the plastid genome comprising the 30rpl36-50infA genes. The analysis of two Le´snicka,P.Z.; Tarcz, S.; Rautian, M.; Mozd˙ ze´n,K.˙ Genetic Diversity of ribosomal sequences showed the presence of 29 haplotypes (haplotype diversity Hd = 0.98736 for Symbiotic Green Algae of Paramecium ITS1-5.8S rDNA-ITS2 and Hd = 0.908 for 28S rDNA) in the former two regions, and 36 haplotypes 0 0 bursaria Syngens Originating from in the 3 rpl36-5 infA gene fragment (Hd = 0.984). -
23.3 Groups of Protists
Chapter 23 | Protists 639 cysts that are a protective, resting stage. Depending on habitat of the species, the cysts may be particularly resistant to temperature extremes, desiccation, or low pH. This strategy allows certain protists to “wait out” stressors until their environment becomes more favorable for survival or until they are carried (such as by wind, water, or transport on a larger organism) to a different environment, because cysts exhibit virtually no cellular metabolism. Protist life cycles range from simple to extremely elaborate. Certain parasitic protists have complicated life cycles and must infect different host species at different developmental stages to complete their life cycle. Some protists are unicellular in the haploid form and multicellular in the diploid form, a strategy employed by animals. Other protists have multicellular stages in both haploid and diploid forms, a strategy called alternation of generations, analogous to that used by plants. Habitats Nearly all protists exist in some type of aquatic environment, including freshwater and marine environments, damp soil, and even snow. Several protist species are parasites that infect animals or plants. A few protist species live on dead organisms or their wastes, and contribute to their decay. 23.3 | Groups of Protists By the end of this section, you will be able to do the following: • Describe representative protist organisms from each of the six presently recognized supergroups of eukaryotes • Identify the evolutionary relationships of plants, animals, and fungi within the six presently recognized supergroups of eukaryotes • Identify defining features of protists in each of the six supergroups of eukaryotes. In the span of several decades, the Kingdom Protista has been disassembled because sequence analyses have revealed new genetic (and therefore evolutionary) relationships among these eukaryotes. -
Faculty of Biology
Self Assessment Report 2006-2010 Self Assessment Report 2006-2010 Faculty of Biology Faculty of Biology December 2010 Content 1 1 FACULTY OF BIOLOGY .................................................................................................... 3 1.1 Indroduction ......................................................................................................................... 3 1.2 Presentation of the faculty ...................................................................................................... 4 1.3 Staff ....................................................................................................................................... 6 1.4 Financial resources ................................................................................................................. 7 1.5 Research ................................................................................................................................ 9 1.6 Teaching and outreach ........................................................................................................ 10 1.7 SWOT analysis – Perspectives for future developments ........................................................ 12 2 INSTITUTE OF BOTANY ................................................................................................ 15 1.1 Mission statement ................................................................................................................ 15 2.2 Presentation of the institute .............................................................................................. -
CSHL AR 1981.Pdf
ANNUAL REPORT 1981 COLD SPRING HARBOR LABORATORY Cold Spring Harbor Laboratory Box 100, Cold Spring Harbor, New York 11724 1981 Annual Report Editors: Annette Kirk, Elizabeth Ritcey Photo credits: 9, 12, Elizabeth Watson; 209, Korab, Ltd.; 238, Robert Belas; 248, Ed Tronolone. All otherphotos by Herb Parsons. Front and back covers: Sammis Hall, new residence facility at the Banbury Conference Center.Photos by K orab, Ltd. COLD SPRING HARBOR LABORATORY COLD SPRING HARBOR, LONG ISLAND, NEW YORK OFFICERS OF THE CORPORATION Walter H. Page, Chairman Dr. Bayard Clarkson, Vice-Chairman Dr. Norton D. Zinder, Secretary Robert L. Cummings, Treasurer Roderick H. Cushman, Assistant Treasurer Dr. James D. Watson, Director William R. Udry, Administrative Director BOARD OF TRUSTEES Institutional Trustees Individual Trustees Albert Einstein College of Medicine John F. Carr Dr. Matthew Scharff Emilio G. Collado Robert L. Cummings Columbia University Roderick H. Cushman Dr. Charles Cantor Walter N. Frank, Jr. John P. Humes Duke Mary Lindsay Dr. Robert Webster Walter H. Page William S. Robertson Long Island Biological Association Mrs. Franz Schneider Edward Pulling Alexander C. Tomlinson Dr. James D. Watson Massachusetts Institute of Technology Dr. Boris Magasanik Honorary Trustees Memorial Sloan-Kettering Cancer Center Dr. Bayard Clarkson Dr. Harry Eagle Dr. H. Bentley Glass New York University Medical Center Dr. Alexander Hollaender Dr. Claudio Basilico The Rockefeller University Dr. Norton D. Zinder State University of New York, Stony Brook Dr. Thomas E. Shenk University of Wisconsin Dr. Masayasu Nomura Wawepex Society Bache Bleeker Yale University Dr. Charles F. Stevens Officers and trustees are as of December 31, 1981 DIRECTOR'S REPORT 1981 The daily lives of scientists are much less filled now be solvable or whether we must await the re- with clever new ideas than the public must im- ception of some new facts that as yet do not exist. -
Data on the Occurrence of Species of the Paramecium Aurelia Complex World-Wide
Protistology 1 (4), 179–184 (2000) Protistology August, 2000 Data on the occurrence of species of the Paramecium aurelia complex world-wide Ewa Przybo and Sergei Fokin1 Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland, 1 Biological Research Institute of St. Petersburg State University, St. Petersburg, Russia Summary At present 15 species of the Paramecium aurelia complex are known world-wide (Sonneborn, 1975; Aufderheide et al., 1983). Data on their distribution in the Americas, Africa, and Australia are mainly in the papers cited above, the following ones are cosmopolitan: P. primaurelia, P. biaurelia, P. tetraurelia, and P. sexaurelia. Data on the distribution of species of the P. aurelia complex in Asia are scattered in the literature and rather rare, P. primaurelia, P. biaurelia, P. tetraurelia, P. sexaurelia, and P. novaurelia were there recorded. The greatest data on distribution and frequency of occurrence of the particular species of the P. aurelia complex concerns Europe. As far as Europe is concerned, the following conclusions were drawn: P. novaurelia is a dominant species (found in 178 habitats among 459 studied), P. biaurelia is a frequent one (in 151 habitats), while P. primaurelia (in 103 habitats) is also characteristic but less frequent. Other species known from Europe are rare. Key words: frequency of species occurrence, geographical distribution, Paramecium aurelia spp. complex At present 15 species of the P. aurelia complex are occurrence of the particular species of the P. aurelia com- known world-wide (Sonneborn,1975; Aufderheide et al., plex concerns Europe (Table 3). The following species 1983). have been recorded there: P. -
Factors Determining the Frequency of the Killer Trait Within Populations of the Paramecium Aurelia Complex
Copyright 0 1987 by the Genetics Society of America Factors Determining the Frequency of the Killer Trait Within Populations of the Paramecium aurelia Complex Wayne G. Landis Environmental Toxicology Branch, Toxicology Division, Chemical Research and Development Center, Aberdeen Proving Ground, Maryland, 21010-5423 Manuscript received March 3, 1986 Revised copy accepted September 15, 1986 ABSTRACT The factors maintaining the cytoplasmically inherited killer trait in populations of Paramecium tetraurelia and Paramecium biaurelia were examined using, in part, computer simulation. Frequency of the K and k alleles, infection and loss of the endosymbionts,recombination during conjugation and autogamy, cytoplasmic exchange and natural selection were incorporated in a model. Infection during cytoplasmic exchange at conjugation and natural selection were factors that would increase the proportion of killers in a population. Conversely, k alleles reduced the proportion of killers in a population,acting through conjugation and autogamy. Field studies indicate that the odd mating type is prevalent in P. tetraurelia isolated from nature. Conjugation and therefore transmission by cyto- plasmic transfer would be rare. Competition studies indicate a strong selective disadvantage for sensitives at concentrationsfound in nature. Natural selection must therefore be the factor maintaining the killer trait in P. tetraurelia. YTOPLASMIC inheritance is a widespread phe- The two hosts, P. tetraurelia and P. biaurelia, are C nomenon that includes sex and drug resistance sibling species within the P. aurelia complex as con- in bacteria, CO2 sensitivity in Drosophilia melanogaster structed by SONNEBORN(1975). Paramecia of this and possibly certain tumors in mammals. Indeed, the complex undergo two major sexual processes, conju- origin of the eukaryotic cell may have been dependent gation and autogamy. -
The Culture of Paramecium a Ureliain the Absence
VOL. 35, 1949 ZOOLOGY: VAN WAGTENDONK AND HACKETT 155 6 See, for example, top of page 9, J. of Symbolic Logic, 6. 7Compare middle of page 158, Ibid., 7. 8 Am. Math. Mo., 44, p. 70. 9 J. of Symbolic Logic, 7, p. 1. The inconisistent system contains N7' in place of N7. However, whether the replacement of N7' by N7 would affect the derivation of the Burali-Forti contradiction is not immediately obvious. 10 Middle of page 228, J. r. angew. Math., 160. 11 If we want to obtain N7' instead of N7, just delete the clause "and all the bound variables in 4 are small variables" in ZZ7. 1 Compare the proof of *231, ML, page 171. 13 Ti can be proved by ZZI and ZZ1 in the usual manner. Cf., e.g., ML, page 170, *223. * I am indebted to Dr. I. L. Novak for suggestion in connection with the introduction of large variables. I wish also to thank Dr. Novak and Dr. H. Hiz for reading the manuscript of the paper and suggesting improvements in the manner of presentation. I am grateful to Professor Quine for corrections. THE CULTURE OF PARAMECIUM A URELIA IN THE ABSENCE OF OTHER LIVING ORGANISMS BY W. J. VAN WAGTENDONK AND PATRICIA L. HACKETT DEPARTMENT OF ZOOLOGY, INDIANA UNIVERSITY, BLOOMINGTON, INDIANA Communicated by T. M. Sonneborn, January 22, 1949 The growth requirements of ciliated protozoa are very complex, and little accurate work on this has so far been possible since only a few species have been cultivated in the absence of other living organisms. -
Paramecium Diversity and a New Member of the Paramecium Aurelia Species Complex Described from Mexico
diversity Article Paramecium Diversity and a New Member of the Paramecium aurelia Species Complex Described from Mexico Alexey Potekhin 1,2,* and Rosaura Mayén-Estrada 3 1 Department of Microbiology, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia 2 Laboratory of Cellular and Molecular Protistology, Zoological Institute RAS, 199034 Saint Petersburg, Russia 3 Laboratorio de Protozoología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Ext. s/núm. Ciudad Universitaria, Av. Universidad 3000, Coyoacán, 04510 Ciudad de México, Mexico; [email protected] * Correspondence: [email protected] http://zoobank.org/urn:lsid:zoobank.org:act:B5A24294-3165-40DA-A425-3AD2D47EB8E7 Received: 17 April 2020; Accepted: 13 May 2020; Published: 15 May 2020 Abstract: Paramecium (Ciliophora) is an ideal model organism to study the biogeography of protists. However, many regions of the world, such as Central America, are still neglected in understanding Paramecium diversity. We combined morphological and molecular approaches to identify paramecia isolated from more than 130 samples collected from different waterbodies in several states of Mexico. We found representatives of six Paramecium morphospecies, including the rare species Paramecium jenningsi, and Paramecium putrinum, which is the first report of this species in tropical regions. We also retrieved five species of the Paramecium aurelia complex, and describe one new member of the complex, Paramecium quindecaurelia n. sp., which appears to be a sister species of Paramecium biaurelia. We discuss criteria currently applied for differentiating between sibling species in Paramecium. Additionally, we detected diverse bacterial symbionts in some of the collected ciliates. Keywords: biogeography; ciliates; Paramecium quindecaurelia; cytochrome C oxidase subunit I gene; sibling species; species concept in protists; bacterial symbionts 1.