THE TACKINID FLIES of ARIZONA Roy W. Simpson a Thesis

Total Page:16

File Type:pdf, Size:1020Kb

THE TACKINID FLIES of ARIZONA Roy W. Simpson a Thesis The Tachinid flies of Arizona Item Type text; Thesis-Reproduction (electronic) Authors Simpson, Roy William, 1931- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 08/10/2021 20:08:25 Link to Item http://hdl.handle.net/10150/551273 THE TACKINID FLIES OF ARIZONA Roy W. Simpson A Thesis submitted to the faculty of the Department of Entomology in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in the Graduate College, University of Arizona 1957 Date /9S'? V This thesis has been submitted in partial fulfillment of require­ ments for an advanced degree at the University of Arizona and is de­ posited in the Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable with­ out special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the dean of the Graduate College when in their judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author. SIGNED: ACKNOWliEDGKENTS The writer is indebted to Dr. H. J. .Reinhard, Department of Entomology, Texas A . .& M. College, College Station, Texas, for the identification of the tachihid flies that form the basis of this thesis. Dr. Floyd G. Werner, Assistant Professor of.Entomology, « University of Arizona, is gratefully recognized for his helpful.sug­ gestions during the preparation of this paper. Mr. 0. L. Barnes of the.Cereal and Forage Insects Section,. Entomology ..Resea.rch: Branch, Agricultural .Research Service, United States Department of Agriculture, Tempe, Arizona, allowed the author to study the insect collection of.the.Laboratory and to copy helpful information from labeled specimens. Dr. L. A. Carruth, Head .of the Department of Entomology, University of Arizona, is acknowledged for his helpful criticisms of this thesis. The author is also indebted,to the collectors of the specimens in the University collection, without which .this thesis would not have been possible.. E. D. Ball, 0. L. Barnes, G. .Bohart,,G. D. Butler, L. A. Carruth, A. & H. Dietrich, D. K. Duncan, R. A. Flock, M. H. Frost, L. Hopkins, A. A. .Nichol, Z. B. Noon, W. L. Nutting, ,F. H. Parker, R. B. Streets, D. M. Tuttle,.C. T. Vorhies, F. G. Werner, L..P. Wehrle and others are recognized for this help. ii iii TABLE OF CONTENTS Page ACKNOWLEDGMENTS. ........................................ ii LIST OF FIGURES.............................................. xvi IljTRODUCTION . 1 Natural and Biological Control............................1 T a x o n o m y ........................ 4 B i o l o g y ................................................ 5 KEY TO ADULTS OF THE ARIZONA GENERA OF TACHINIDAE . 12 GLOSSARY OF T E R M S ........................................ 2 9 NOTES ON GENERA AND SPECIES................................... 32 ACHAETONEURA B.&B............................. .... 35 A. archiopivora ( W i l l . ) ...........................35 ADEJEaNIA Tns............................................ 37 A. vexatrix ( O . S . ) ...............................37 ALLOPHORQCBHA H e n d e l ................................... 38 A. montana Sin.......................................38 ALOPHORELLA Tns............................... .... 39 A. aeneoventris (will.) 39 AI-EDORIR B.&B............................................ 40 A. luctuosa llg...................................... 40 AIIETIA Desv.............................................. 41 A. dimmocki Aid.................. .... 4 1 APRRIA Desv. ............................................42 A. ocyoterata Tns............................ 42 Page A P L O m Desv. 43 A. theclarum (Scudd.) 43 AitCKYTAS Jearm. 44 A. apicifera (wlk.). 45 A. aterrima (Desv. ). 46 A. lateralis (iqt.). 47 A. marixiorata Tns. 48 A. metallica (Desv.) 48 A. vulgaris Cn.. • . 49 ARCTOPHYTO Tns. 50 A. gillettii (Tns.). 50 BELVCSIA Desv. 51 B. bicincta (Desv.). 51 B. bifasciata (Fab.) 52 BSSKIA B.&B............. 53 B. aelops ('Wlk.) 53 BLEPHABIPEZA Rond. 54 B. spinosula (Big.). 54 BONivETIA Desv. 55 B. comta (Fall.) 55 CARCELIA Desv. 57 C. reelinata (A.&W.) 58 CATEIDHPHRIS Tns. 58 C. atronhodoides (Tns.) 59 C. sequens (Tns.) 59 Page CELATORIA Coq. ..........................................60 C. diabroticae (Scaimer) .................... 60 CEHACIA. Rond. ..........................................6l C. dentata (Goq.) ................................. 6l . CERiiTOI-IYIELLA Tns........................................ 62 G. bicincta Hnh. 62 CMETOCBiMIi Tns. ......................................63 antennalis (Coq.) 63 CHAETOGABDIA B.&B........................................ 64 C. crebra VdW ......................................64 C. monticola B i g . ................................. 65 G. species near analis VdlV.........................6? CHAETOPLAGIA Coq......................................... 6? G. atrioennis Goq................................... 68 GISTOGASTER Lat. ........................................68 C. irnmaculaba Mqt................................... 69 G O R O K I M m T n s . ......................................... 69 C. geniculata Tns.......................... 69 CUPHC'CERA. Mat. ...........................................70 C. contigua Rnh..................................... 70 hirsuta (Tns.) ................................. 71 CYLINDROMYIA. H e . ..................................... 72 C. armata Aid....................................... 73 C. decora Aid 74 vi Page C. fumipemis Big................................... 75 C. intermedia (Kg.)................................. 75 C. nana (Tns.) ..................................... 76 DEaDDES B.&B. 76 D. tenella Bnh..................................... 77 D. species near.xylata On.......................... 77 DISTICHOm V d W ......................................... 78 D. varxa VdW ......................................78 POLIOHOCODIA. Tns. 79 D. bivittata (Coq.). 79 DORYPHOROPHaGA Tns. .....................................79 D. doryphorae ( R i l e y ) ............................. 80 ERKESTIA Desv. .... ..................................81 E. aldrichi (Tns.) ................................. 81 SUBLEPHARIPEEA. Tns....................................... 82 E. hystrix nigra Tns................................ 82 EUCELA.TORIA. Tns.. 82 E. amigera (Coq.) ................................. 83 EUCHAETOGYI'ES Tns. ......................................84 E. roederi (Will.) ................................. 84 EUIASONIA T n s . .................................... 85 E, cornstocki Tns.. 85 E. nigra Cn......................................... 86 EUI'EGAPARIA Tns...........................................86 E. flaveola (Coq. ) ................................. 87 vii Page EUPHASIQPTERYX Tns.................................. 8? E. ochracea (Big.) .................... .... 88 EXORISTA Me..........................................88 E. larvarum (L.) ............................ 88 EXQRISTOIDES Coo..................................... 90 E. .iohnsoni Coq. 90 FABRICXELLii B e z s i ................................ 91 F. cordiforceps.Rowe ........................ 91 F. spinosa Tot...................................... 92 FRONTINIELLA Tns.....................................92 F . parancilla (Tns.) ........................ 92 GAEDIOPSIS B . & B . ................................ 93 G. msxicana B. &B.................................... 94 G. serricole Tns.................................... 94 GONIA Hg._ . .................. .... 95 G. aldrichi Tot................................ 96 G. breviforceos. Tot............................ ^7 . G. longipulvilli Tot................................97 G. occidentalis Brks................................98 G. sequax W i l l . ................................. 99 GONIOCHAETA Tns...................................... 99 G. plagioides Tns.............................. 100 GUERHIA Desv. ............................ 100 G. siaulans (Eg.) 100 viii Page GYMNOSCm M g . .....................................102 G. fuliginosa Desv............................. 102 HESPERQPHASIA Tns.................................... 104 H. setosa Tns.............. .................... 104 HIALOMYIOPSIS Brks...................................104 ik aldrichi (Tns.) .............................. 105 LESGHENAULT1A. Desv. ........................ 106 adusta (Lw. ).................................10g L. exul (Tns.).................................109 L. fulvipes (Big.) ............................ HO L. • grossa B r k s . ............................ 110 L. halisidotae Brks............................ m LEUCOSTOMA. % . ................................. H 2 L. atra Tns.....................................112 aterrimum V l l r s . ........................ y_3 L. gravioes VdW.................................113 L. new species................................ 114 MACROKSIGEklA. B.&B. ........................ n / , M. frioensis (Enh.)............................ 115 MADREMIIA Tns. ..................................... 115 M. saundersii ( ¥ 1 1 1 . ) ........................ 115 1-ERICIA Desv. ...................
Recommended publications
  • Note on Crumb's "Liberae Et Confluentae" Couplet (Noctuidae)1.2
    VOLUME 39, NUMBER 1 57 FIG. 2. Pupae of Occidryas anicia bernadetta. School of Life Sciences, University of Nebraska, Lincoln, NE 68588 (S. occidentalis); V. K. Gupta, Center for Parasitic Hymenoptera, Gainesville, FL 32602 (Benjaminia sp., Pterocormus sp.); S. R. Shaw and P. M. Marsh, Systematic Entomology Laboratory, USDA-ARS, Insect Identification and Beneficial Insect Introduction Institute, Beltsville, MD 20705 (c. koebelei). STEPHEN M. SPOMER, Department of Entomology, University of Nebraska, Lincoln, Nebraska 68583 AND JAMES M. REISER, 1511 David Drive, Lincoln, Nebraska 68504. Journal of the Lepidopterists' Society 39(1), 1985, 57-59 NOTE ON CRUMB'S "LIBERAE ET CONFLUENTAE" COUPLET (NOCTUIDAE)1.2 The first major systematic treatment of the larvae of North American Noctuidae was written by Crumb (1956, Larvae of the Phalaenidae, USDA Tech. Bull. 1135. 356 pp.). It is a monumental work, containing extensive diagnostic keys, larval descriptions, geo- 1 Partially funded by the Illinois Agricultural Experiment Station Project 12-361 Biosystematics of Insects . .2 Michigan Agricultural Experiment Station Journal Article No. 11102. 58 JOURNAL OF THE LEPIDOPTERISTS' SOCIETY FIGS. 1-4. Tenth abdominal segments showing ventral and subanal regions of last instar noctuid larvae. 1 & 2, truncate or convex condition of posterior margin of venter (subanal region) (see arrows) (Alypia octomaculata); 3 & 4, medially impressed or grooved condition of the same region (see arrows) (Papaipema nebris). (Figs. 1 & 3 were photo­ graphed through a Leitz Aristophot, printed sizes = 9 x and 13 x, respectively; 2 & 4 were taken with the aid of a scanning electron microscope, printed sizes = 36 x; all photographs by G.L.G.) graphic distributions, and a wealth of host plant information.
    [Show full text]
  • Please Scroll Down for Article
    This article was downloaded by: [USDA National Agricultural Library] On: 1 October 2008 Access details: Access Details: [subscription number 790740294] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Biocontrol Science and Technology Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713409232 A critical evaluation of host ranges of parasitoids of the subtribe Diabroticina (Coleoptera: Chrysomelidae: Galerucinae: Luperini) using field and laboratory host records Stefan Toepfer a; Guillermo Cabrera Walsh b; Astrid Eben c; Rebeca Alvarez-Zagoya d; Tim Haye a; Feng Zhang a; Ulrich Kuhlmann a a CABI Europe-Switzerland, Delémont, Switzerland b USDA ARS South American Biocontrol Laboratory, Hurlingham, Buenos Aires, Argentina c Departamento de Ecología Funcional, Instituto de Ecología, Xalapa, Veracruz, Mexico d Instituto Politécnico Nacional, CIIDR-IPN, Durango, Mexico Online Publication Date: 01 January 2008 To cite this Article Toepfer, Stefan, Cabrera Walsh, Guillermo, Eben, Astrid, Alvarez-Zagoya, Rebeca, Haye, Tim, Zhang, Feng and Kuhlmann, Ulrich(2008)'A critical evaluation of host ranges of parasitoids of the subtribe Diabroticina (Coleoptera: Chrysomelidae: Galerucinae: Luperini) using field and laboratory host records',Biocontrol Science and Technology,18:5,483 — 504 To link to this Article: DOI: 10.1080/09583150802001742 URL: http://dx.doi.org/10.1080/09583150802001742 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.
    [Show full text]
  • Lepidoptera of North America 5
    Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera by Valerio Albu, 1411 E. Sweetbriar Drive Fresno, CA 93720 and Eric Metzler, 1241 Kildale Square North Columbus, OH 43229 April 30, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration: Blueberry Sphinx (Paonias astylus (Drury)], an eastern endemic. Photo by Valeriu Albu. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523 Abstract A list of 1531 species ofLepidoptera is presented, collected over 15 years (1988 to 2002), in eleven southern West Virginia counties. A variety of collecting methods was used, including netting, light attracting, light trapping and pheromone trapping. The specimens were identified by the currently available pictorial sources and determination keys. Many were also sent to specialists for confirmation or identification. The majority of the data was from Kanawha County, reflecting the area of more intensive sampling effort by the senior author. This imbalance of data between Kanawha County and other counties should even out with further sampling of the area. Key Words: Appalachian Mountains,
    [Show full text]
  • Ramblings with Rebecca April 30 – May 16, 2005
    Ramblings with Rebecca April 30 – May 16, 2005 ANNOUCEMENTS: * I’ll bet you’ve met, or at least seen, the 11 head of cattle Daniel Gluesenkamp has “hired” to help manage invasive grass growth in the lower field! Because we’re sharing space in the lower field with this small number of very well-behaved cattle for the rest of this season (and maybe longer), it’s even more important than ever to be absolutely sure you never leave one of the gates near the highway open unattended! Gate keepers- you should also know that the fencing along the entry is electrified, a not- so-subtle reminder to these animals that fences are intended as impenetrable barriers! So- don’t grab or try to climb this fence… and DO let a member of the staff know as soon as possible if you see a cow or bull behaving in a too athletic, or otherwise inappropriate or un-bovine fashion ! We’ve heard tell of fence jumping once in a blue moon, and think we have that problem licked, but we want to know if you see any such shenanigans. With all that said, let me tell you these 11 are actually pretty docile, and very responsive. And, as odd as it might seem, grazing on a wildlife preserve is a necessary means of counteracting the effects of invasive, introduced non-native grasses. If left alone, the grasslands at Bouverie would be anything but “natural”. Instead, these areas would grow to more closely resemble unkempt pasture land with few if any native species, rather than the kinds of grasslands that evolved in California before European interference.
    [Show full text]
  • Tachinid (Diptera: Tachinidae) Parasitoid Diversity and Temporal Abundance at a Single Site in the Northeastern United States Author(S): Diego J
    Tachinid (Diptera: Tachinidae) Parasitoid Diversity and Temporal Abundance at a Single Site in the Northeastern United States Author(s): Diego J. Inclan and John O. Stireman, III Source: Annals of the Entomological Society of America, 104(2):287-296. Published By: Entomological Society of America https://doi.org/10.1603/AN10047 URL: http://www.bioone.org/doi/full/10.1603/AN10047 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. CONSERVATION BIOLOGY AND BIODIVERSITY Tachinid (Diptera: Tachinidae) Parasitoid Diversity and Temporal Abundance at a Single Site in the Northeastern United States 1 DIEGO J. INCLAN AND JOHN O. STIREMAN, III Department of Biological Sciences, 3640 Colonel Glenn Highway, 235A, BH, Wright State University, Dayton, OH 45435 Ann. Entomol. Soc. Am. 104(2): 287Ð296 (2011); DOI: 10.1603/AN10047 ABSTRACT Although tachinids are one of the most diverse families of Diptera and represent the largest group of nonhymenopteran parasitoids, their local diversity and distribution patterns of most species in the family are poorly known.
    [Show full text]
  • Géneros Goniini (Diptera: Tachinidae: Exoristiinae) De Cusco, Perú
    Volumen 36, Nº 1. Páginas 91-104 IDESIA (Chile) Enero, 2018 Géneros Goniini (Diptera: Tachinidae: Exoristiinae) de Cusco, Perú: clave, redescripciones y distribución Goniini genera (Diptera: Tachinidae: Exoristiinae) from Cusco, Perú: key, redescriptions and distribution Lizeth Paucar D.1, Christian R. González2, Erick Yábar L.1* RESUMEN Tachinidae es una de las familias de Diptera más diversificadas, y la más grande de Oestroidea, con más de 8.500 especies descritas en más de 1.500 géneros y distribuidas en todas las regiones zoogeográficas del planeta. Se reportan para Cusco seis géneros de Goniini (Diptera, Tachinidae): Araucosimus Aldrich, Chaetocnephalia Townsend, Chaetocraniopsis Townsend, Dolichocnephalia Townsend, Germariopsis Townsend y Gonia Meigen. Los géneros Chaetocnephalia, Chaetocraniopsis, Dolichocnephalia y Germariopsis se reportan por primera vez para Cusco y Araucosimus por primera vez para Perú. Se incluye una clave para los seis géneros estudiados. Palabras claves: taxonomía, Goniini, claves, Región Neotropical, Perú. ABSTRACT The family Tachinidae is one of the most diverse of all the insect families with more than 8,500 described species classified into more than 1,500 genera. Six genera of Goniini (Diptera, Tachinidae) are reported to Cusco: Araucosimus Aldrich, Chaetocnephalia Townsend, Chaetocraniopsis Townsend, Dolichocnephalia Townsend, Germariopsis Townsend y Gonia Meigen. The genus Araucosimus is cited for the first time to Peru. Genera Chaetocnephalia, Chaetocraniopsis, Dolichocnephalia, and Germariopsis are cited for the first time to Cusco. A key to the six genera is included. Key words: taxonomy, Goniini, keys, Neotropical Region, Perú. Introducción incluyendo desiertos, bosques, pasturas, montañas y tundra (Stireman et al., 2006). Los Tachinidae son un grupo de muscoideos En la Región Neotropical, la subfamilia caliptrados de la superfamilia Oestroidea, con Exoristinae, Goniinae sensu Guimaraes (1971), más de 8.500 especies clasificadas en un número comprende 21 tribus, una de las cuales es Goniini.
    [Show full text]
  • £Arasites Associated with Lepidopterous Pests of Alfalfa in .Qklahoma
    £ARASITES ASSOCIATED WITH LEPIDOPTEROUS PESTS OF ALFALFA IN .QKLAHOMA By KATHLEEN MARY SENST I' Bachelor of Arts Wartburg College Waverly, Iowa 1974 Master of Science Oklahoma State University Stillwater, Oklahoma 1978 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY July, 1982 PARASITES ASSOCIATED WITH LEPIDOPTEROUS PESTS OF ALFALFA IN OKLAHOMA Thesis Approved: . ~ \ . ii 1143730 j ACKNOWLEDGMENTS I w.isb. to expres.s. my deep appreciation to my major adviser, Dr. Ricb.ard Berberet, for hi:s willi.ngness. to advise and help, and for his friendsb.i.p duri.ng thi:s: s:tudy and preparation of this manuscript. Appreciation is. expressed to Ors. Ray Eikenbary, Jerry Young, Robert Burton, and John Caddel for serving as members of my graduate committee, and to Or. Ron McNeu for his help in analyzing the data. Thanks. are extended to Mary Hininger, Melinda Davis, Donna Ridge, Phoebe Courtney, and Debbie Lauchner for their assistance in the lab­ oratory, and to Doug Sander and Kevin Mussett for their assistance in the fi.el d. Special thanks goes to Ms. Anne Hunt for clerical review and typing of this manuscript. My most sincere appreciation is reserved for my husband, John (Soteres}, for his encouragement, understanding, and patience while I was completing this work. I share the credit for this work with my family, whose love and support have been a constant source of encourage­ ment in my life. iii TABLE OF CONTENTS Chapter Page I. GENERAL INTRODUCTION 1 II.
    [Show full text]
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • Phylogenetic Relationships of Tachinid Flies in Subfamily Exoristinae Tachinidae: Diptera) Based on 28S Rdna and Elongation Factor-1A
    Systematic Entomology *2002) 27,409±435 Phylogenetic relationships of tachinid flies in subfamily Exoristinae Tachinidae: Diptera) based on 28S rDNA and elongation factor-1a JOHN O. STIREMAN III Department of Ecology and Evolutionary Biology,University of Arizona,Tucson,U.S.A. Abstract. The phylogenetic relationships within the largest subfamily of Tachi- nidae,Exoristinae,were explored using nucleotide sequences of two genes *EF-1 a and 28S rDNA). A total of fifty-five and forty-three taxa were represented in the analyses for each gene,respectively,representing forty-three genera. Neighbour joining,parsimony and maximum likelihood inference methods were employed to reconstruct phylogenetic relationships in separate analyses of each gene,and parsimony was used to analyse the combined dataset. Although certain taxa were highly mobile,phylogenetic reconstructions generally supported recent clas- sification schemes based on reproductive habits and genitalia. Generally,the monophyly of Tachinidae and Exoristinae was supported. Tribes Winthemiini, Exoristini and Blondeliini were repeatedly constructed as monophyletic groups, with the former two clades often occupying a basal position among Exoristinae. Goniini and Eryciini generally clustered together as a derived clade within Exoristinae; however,they were never reconstructed as two distinct clades. These results suggest that the possession of unembryonated eggs is plesiomorphic within the subfamily and that there may have been multiple transitions between micro- type and macrotype egg forms. Introduction 1987; Williams et al.,1990; Eggleton & Belshaw,1993), and the wide variety of mechanisms by which they attack Tachinidae is generally regarded as a relatively recent, them *O'Hara,1985). These oviposition strategies include actively radiating clade of parasitic flies *Crosskey,1976).
    [Show full text]
  • Survey of Lepidoptera of the Wainwright Dunes Ecological Reserve
    SURVEY OF LEPIDOPTERA OF THE WAINWRIGHT DUNES ECOLOGICAL RESERVE Alberta Species at Risk Report No. 159 SURVEY OF LEPIDOPTERA OF THE WAINWRIGHT DUNES ECOLOGICAL RESERVE Doug Macaulay Alberta Species at Risk Report No.159 Project Partners: i ISBN 978-1-4601-3449-8 ISSN 1496-7146 Photo: Doug Macaulay of Pale Yellow Dune Moth ( Copablepharon grandis ) For copies of this report, visit our website at: http://www.aep.gov.ab.ca/fw/speciesatrisk/index.html This publication may be cited as: Macaulay, A. D. 2016. Survey of Lepidoptera of the Wainwright Dunes Ecological Reserve. Alberta Species at Risk Report No.159. Alberta Environment and Parks, Edmonton, AB. 31 pp. ii DISCLAIMER The views and opinions expressed are those of the authors and do not necessarily represent the policies of the Department or the Alberta Government. iii Table of Contents ACKNOWLEDGEMENTS ............................................................................................... vi EXECUTIVE SUMMARY ............................................................................................... vi 1.0 Introduction ................................................................................................................... 1 2.0 STUDY AREA ............................................................................................................. 2 3.0 METHODS ................................................................................................................... 6 4.0 RESULTS ....................................................................................................................
    [Show full text]
  • What Determines Host Range in Parasitoids? an Analysis of a Tachinid Parasitoid Community
    Oecologia (2003) 135:629–638 DOI 10.1007/s00442-003-1235-2 COMMUNITY ECOLOGY John O. Stireman · Michael S. Singer What determines host range in parasitoids? An analysis of a tachinid parasitoid community Received: 21 November 2002 / Accepted: 25 February 2003 / Published online: 9 April 2003 Springer-Verlag 2003 Abstract Despite the vast diversity of parasitic insects study suggest that ecological factors are important and their importance in natural and agricultural commu- determinants of host use in these parasitoids and although nities, our knowledge of what determines their patterns of phylogenetic history may influence the range of hosts association with hosts remains sparse. Unlike most used, its power to explain the ecological or taxonomic parasites that tend to be specialized, parasitoid flies in character of hosts used appears limited. the family Tachinidae exhibit a broad spectrum of host- specificity, with many species attacking a wide range of Keywords Specialization · Polyphagy · Ecological hosts. This variability in host-specificity makes them a determinant · Lepidoptera · Tachinidae useful model for examining the ecological and historical factors that determine host associations. We analyzed data collected from a 5-year rearing program of Lepidoptera in Introduction southern Arizona to investigate the factors that influence tachinid-host associations. After controlling for a strong Patterns of host use in parasitic insects have been the effect of sample size, a significant portion of the focus of an enormous amount of research by behavioral remaining variance in host range was explained by ecologists, evolutionary biologists, and community ecol- differences among phylogenetic groups of tachinids and/ ogists (Price 1980; Futuyma and Moreno 1988; Jaenicke or their correlated reproductive strategies.
    [Show full text]
  • Culture Corner Put Aside to Await Hatching, Which Takes 6 to 12 Or So Days at 75° to 80°F
    No.3 May/June 1983 of tht> LEPIDOPTERISTS' snell-TV June Preston, Editor 832 Sunset Drive Lawrenc~ KS 66044 USA ======================================================================================= ASSOCIATE EDITORS ART: Les Sielski RIPPLES: Jo Brewer ZONE COORDINATORS 1 Robert Langston 8 Kenelm Philip 2 Jon Shepard 5 Mo Nielsen 9 Eduardo Welling M. 3 Ray Stanford 6 Dave Baggett 10 Boyce Drummond 4 Hugh Freeman 7 Dave Winter 11 Quimby Hess ===.=========================================================.========================= CULTURING SATYRIDS Satyrids (or satyrines, if you prefer) have always had a special fascination for me, perhaps partly because of their tendency for great geographic variation. In Eurasia satyrids account for a large part of the butterfly fauna, and many of the common species (e.g. Pararge spp.) are multivoltine even in northern Europe. Here the grass-feeding niche seems to be dominated by skippers, and only a very few of the American species north of, say, latitude 40 0 N have more than one generation per season. When rearing satyrids, the key word is PATIENCE. Most species grow very slowly and must be carried over the winter as diapausing larvae. On the other hand, generally they are quite tough and survive well under laboratory culture conditions. There is usually no problem getting eggs. I confine each wild or lab-mated female in a quart jar put on its side and scatter a handful of grass sedge the length of the jar so that the female will flutter on top of it. Females are fed individually each morning on sugar-water-soaked pieces of paper towel in petri dishes, then put into the jars. I cover the open end of each jar with a piece of nylon stocking held with a rubber band, then line the jars up on their sides on a shelf with a fluorescent light with two 40-watt tubes about 8 inches above.
    [Show full text]