Your Drinking Water Quality Is Our Top Priority

Total Page:16

File Type:pdf, Size:1020Kb

Your Drinking Water Quality Is Our Top Priority Information Collection Rule (ICR) Potential contaminants in source water include: • Microbial contaminants, such as viruses and bacteria, The USEPA implemented the Information which may come from sewage treatment plants, septic Collection Rule (ICR) to collect information to systems, agricultural livestock operations and wildlife. support future regulation of microbial contami- • Inorganic contaminants, such as salts and metals, can be nants, disinfectants, and disinfection by-products. naturally occurring or result from urban stormwater runoff, PAID PRSRT STD PRSRT Permit #6654 Permit industrial or domestic wastewater discharges, oil and gas U.S. POSTAGE THE INFORMATION COLLECTION RULE REQUIRED production, mining or farming. MO Kansas City, US TO MONITOR: • Pesticides and herbicides, which may come from a Water District No. 1 of Johnson County Parameter Average Range variety of sources such as agriculture, urban stormwater THM4 (Trihalomethanes) 19.7 ppb 7 - 43.7 ppb runoff and residential uses. HAA6 (Haloacetic Acids) 19.6 ppb 3.7 - 34 ppb • Organic chemical contaminants, including synthetic HAN (Haloacetilenitriles) 1.8 ppb 0 - 7.7 ppb and volatile organic chemicals, which are by-products of HK (Haloketones) 0.2 ppb 0 - 1.0 ppb industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic CP (Chloropicrin) 0.6 ppb 0 - 0.8 ppb systems. CH (Chloral Hydrate) 2.3 ppb 0.9 - 4.3 ppb • Radioactive contaminants, which can be naturally occur- TOX (Total Organic Halides) 74 ppb 50 - 130 ppb ring or be the result of oil and gas production and mining Free Chlorine 0.2 ppm 0.1 - 0.6 ppm activities. Total Chlorine 2.2 ppm 1.3 - 2.8 ppm Cyanogen Chloride 0.6 ppb 0.3 - 1.3 ppb To ensure that tap water is safe to drink, the Chlorite*** 957 ppb 410 - 1720 ppb EPA prescribes regulations that limit the amount of Chlorate 125 ppb 54 - 220 ppb certain contaminants in water provided by public Bromate 0.24 ppb 0.22 - 0.28 ppb water systems. FDA regulations establish limits for Aldehydes 10.6 ppb 3.3 - 26.2 ppb contaminants in bottled water which must provide Formaldehyde 8.4 ppb 3.3 - 23.6 ppb the same protection for public health. Acetaldehyde 3.5 ppb 2.6 - 6.3 ppb *** In March of 2000, a ferrous chloride feed system was installed to Arsenic remove the chlorite from our drinking water. Arsenic is a naturally occurring contaminant. For over 20 years, our arsenic data shows we have been Why are there contaminants well below both the current 50 ppb regulation and in drinking water? the newly proposed regulation of 10 ppb. All drinking water, including bottled water, may reasonably be expected to contain at least small One Mission...Quality Water amounts of naturally occurring or manmade Do I need to take special precautions? contaminants. However, the presence of Some people may be more vulnerable to contami- contaminants does not necessarily pose a nants in drinking water than the general public. health risk. To understand the possible health Immuno-compromised persons, such as those with effects described for most customers, consider the cancer undergoing chemotherapy, persons who following example. A person would have to drink have undergone transplants, people with 2 liters of water every day at the maximum drinking water standard for a lifetime to have a HIV/AIDs or other immune system disorders, some one-in-a-million chance of having the described elderly, and infants can be particularly at risk from health effect. More information about contami- infections. These people should seek advice about nants and potential health effects can be drinking water from their health care providers. obtained by calling the Environmental Drinking Water Protection Agency’s Safe For additional information, including fact sheets and water Hotline (800-426-4791). quality FAQ’s, visit our website at www.waterone.org. Information is also available at the EPA’s website at drinking water quality is our top priority Your www.EPA.gov. 10747 Renner Boulevard Lenexa, Kansas 66219 Water District No. 1 of Johnson County Water Or, call a WaterOne Customer Service Representative at 913-895-1800. Is my water safe to drink? Summary of Water Quality Understanding the WaterOne makes the quality of your Regulated MCL MCLG WaterOne WaterOne Source drinking water our number one priority. Summary of Water Quality Parameters Value Range We produce water that meets or exceeds INORGANIC CHEMICALS all state and federal standards for safe The Summary of Water Quality (displaying only detected contaminants) shows you the monitoring Barium 2 ppm 2 ppm 0.059 ppm 0.014 ppm - 0.059 ppm Discharge of drilling wastes; drinking water. We monitor your drinking Discharge from metal refineries; water according to EPA regulations to results for the period January 1 to December 31, Erosion of natural deposits. ensure it meets all state and federal stan- 2001. Chromium 100 ppb 100 ppb 3 ppb 2 ppb - 3 ppb Discharge from steel & pulp mills; dards. We run hundreds of tests a day to Erosion of natural deposits. ensure your water is safe. Copper* AL=1.3 ppm 1.3 ppm 0.028 ppm 0 samples exceeding; Corrosion of household plumbing WaterOne continues to make security a results from 1999 systems; Erosions of natural deposits; MCLG Maximum Contaminant Level Goal: high priority and remains proactive to From wood preservatives; Leaching. The level of a contaminant in drinking water ensure the safety of your water. Fluoride 4 ppm 4 ppm 0.97 ppm 0.73 ppm - 0.97 ppm Erosions of natural deposits; Water below which there is no known or expected risk additive which promotes strong teeth; Discharge from fertilizer and to health. MCLGs allow for a margin of safety. aluminum factories. What is the source of my water? MCL Maximum Contaminant Level: The highest level Lead* AL=15 ppb 0 ppb 5 ppb 0 samples exceeding; Corrosion of household plumbing The sources of drinking water (both tap of a contaminant that is allowed in drinking results from 1999 systems; Erosions of natural deposits. water. MCLs are set as close to the MCLGs as water and bottled water) include rivers, Nitrate 10 ppm 10 ppm 2.96 ppm 0.40 ppm - 2.96 ppm Runoff from fertilizer use; Leaching lakes, streams, ponds, reservoirs, springs and feasible using the best available treatment from septic tanks, sewage; Erosion of wells. As water travels over the surface of technology. natural deposits. the land or through the ground, it dissolves TT Treatment Technique:A required process Selenium 0.05 ppm 0.05 ppm 0.023 ppm 0.002 ppm - 0.023 ppm Discharge from petroleum and metal naturally-occurring minerals and, in some intended to reduce the level of a contaminant refineries; Erosion of natural deposits; in drinking water. Discharge from mines. cases, radioactive material, and can pick up SYNTHETIC ORGANIC CHEMICALS substances resulting from the presence of AL Action Level: The concentration of a contaminant which, if exceeded, triggers Atrazine 3 ppb 3 ppb 0.35 ppb ND(0.2) ppb - 2.9 ppb Runoff from herbicide used on animals or human activities. At different row crops. treatment or other requirements which a water times of the year the water content varies Total 100 ppb n/a 17.1 ppb 0.7 ppb - 37.9 ppb By-product of drinking water and we treat it accordingly to produce high system must follow. Trihalomethanes chlorination. NTU Nephelometric Turbidity Units:A measure of quality water that is safe to drink! MICROBIOLOGICAL CONTAMINANTS the clarity of water. pCi/L picocuries per liter: A measure of radioactivity. Total Coliforms MCL: presence of <1/100 0.07% 0.07% Positive Naturally present in the environment. coliform bacteria mls samples per month ppm parts per million, or milligrams per liter (mg/L). in >5% of ppb parts per billion, or micrograms per liter (ug/L). monthly samples mls milliliters Turbidity TT n/a **0.38 NTU 100% (lowest monthly Soil runoff. n/a Not applicable. percentage meeting 0.5 NTU) Water RADIOLOGICAL CONTAMINANTS Treatment Plant Beta Particle 50 pCi/L 0 pCi/L 5.8 pCi/L ND(1) - 5.8 pCi/L Decay of natural and man-made Need more information? & Photon deposits. Attend and participate in the WaterOne Governing * We are on reduced monitoring for Lead and Copper. The values are from 1999, which was the most recent testing performed in accordance with Board’s monthly meetings, held the second Tuesday of the regulations. each month at 7:00 p.m. at the Byron N. Johnson ** This is the highest turbidity measurement for 2001. Compliance is based on 95% of monthly samples being less than 0.5 NTU. The average turbidity was around 0.07 NTU. Turbidity is measured as an indicator of the effectiveness of the water treatment process. Administrative Headquarters and Service Center, 10747 Renner Blvd., Lenexa, Kansas 66219. Unregulated Federal WaterOne WaterOne Our Board agenda and the actions taken at each Board Parameter Recommended Level Value Range meeting can be found on our website at www.waterone.org. Aluminum 200 ppb 59 ppb ND (10) ppb - 327 ppb Chloride 250 ppm 40 ppm 18.9 ppm - 85.1 ppm In 2001 we treated approximately 17.2 billion gallons Sulfate 250 ppm 134 ppm 35.6 ppm - 235 ppm of Missouri River water, 4.4 billion gallons of Kansas River water, and a little less than 0.2 Total Dissolved Solids (TDS) 500 ppm 333 ppm 145 ppm - 571 ppm billion gallons of well water from wells south of the NOTE: The USEPA requires monitoring of over 92 drinking water contaminants. Those listed above are the only Kansas River.
Recommended publications
  • National Primary Drinking Water Regulations
    National Primary Drinking Water Regulations Potential health effects MCL or TT1 Common sources of contaminant in Public Health Contaminant from long-term3 exposure (mg/L)2 drinking water Goal (mg/L)2 above the MCL Nervous system or blood Added to water during sewage/ Acrylamide TT4 problems; increased risk of cancer wastewater treatment zero Eye, liver, kidney, or spleen Runoff from herbicide used on row Alachlor 0.002 problems; anemia; increased risk crops zero of cancer Erosion of natural deposits of certain 15 picocuries Alpha/photon minerals that are radioactive and per Liter Increased risk of cancer emitters may emit a form of radiation known zero (pCi/L) as alpha radiation Discharge from petroleum refineries; Increase in blood cholesterol; Antimony 0.006 fire retardants; ceramics; electronics; decrease in blood sugar 0.006 solder Skin damage or problems with Erosion of natural deposits; runoff Arsenic 0.010 circulatory systems, and may have from orchards; runoff from glass & 0 increased risk of getting cancer electronics production wastes Asbestos 7 million Increased risk of developing Decay of asbestos cement in water (fibers >10 fibers per Liter benign intestinal polyps mains; erosion of natural deposits 7 MFL micrometers) (MFL) Cardiovascular system or Runoff from herbicide used on row Atrazine 0.003 reproductive problems crops 0.003 Discharge of drilling wastes; discharge Barium 2 Increase in blood pressure from metal refineries; erosion 2 of natural deposits Anemia; decrease in blood Discharge from factories; leaching Benzene
    [Show full text]
  • Effectiveness of Virginia's Water Resource Planning and Management
    Commonwealth of Virginia House Document 8 (2017) October 2016 Report to the Governor and the General Assembly of Virginia Effectiveness of Virginia’s Water Resource Planning and Management 2016 JOINT LEGISLATIVE AUDIT AND REVIEW COMMISSION Joint Legislative Audit and Review Commission Chair Delegate Robert D. Orrock, Sr. Vice-Chair Senator Thomas K. Norment, Jr. Delegate David B. Albo Delegate M. Kirkland Cox Senator Emmett W. Hanger, Jr. Senator Janet D. Howell Delegate S. Chris Jones Delegate R. Steven Landes Delegate James P. Massie III Senator Ryan T. McDougle Delegate John M. O’Bannon III Delegate Kenneth R. Plum Senator Frank M. Ruff, Jr. Delegate Lionell Spruill, Sr. Martha S. Mavredes, Auditor of Public Accounts Director Hal E. Greer JLARC staff for this report Justin Brown, Senior Associate Director Jamie Bitz, Project Leader Susan Bond Joe McMahon Christine Wolfe Information graphics: Nathan Skreslet JLARC Report 486 ©2016 Joint Legislative Audit and Review Commission http://jlarc.virginia.gov February 8, 2017 The Honorable Robert D. Orrock Sr., Chair Joint Legislative Audit and Review Commission General Assembly Building Richmond, Virginia 23219 Dear Delegate Orrock: In 2015, the General Assembly directed the Joint Legislative Audit and Review Commission (JLARC) to study water resource planning and management in Virginia (HJR 623 and SJR 272). As part of this study, the report, Effectiveness of Virginia’s Water Resource Planning and Management, was briefed to the Commission and authorized for printing on October 11, 2016. On behalf of Commission staff, I would like to express appreciation for the cooperation and assistance of the staff of the Virginia Department of Environmental Quality and the Virginia Water Resource Research Center at Virginia Tech.
    [Show full text]
  • Reference: Groundwater Quality and Groundwater Pollution
    PUBLICATION 8084 FWQP REFERENCE SHEET 11.2 Reference: Groundwater Quality and Groundwater Pollution THOMAS HARTER is UC Cooperative Extension Hydrogeology Specialist, University of California, Davis, and Kearney Agricultural Center. roundwater quality comprises the physical, chemical, and biological qualities of UNIVERSITY OF G ground water. Temperature, turbidity, color, taste, and odor make up the list of physi- CALIFORNIA cal water quality parameters. Since most ground water is colorless, odorless, and Division of Agriculture without specific taste, we are typically most concerned with its chemical and biologi- and Natural Resources cal qualities. Although spring water or groundwater products are often sold as “pure,” http://anrcatalog.ucdavis.edu their water quality is different from that of pure water. In partnership with Naturally, ground water contains mineral ions. These ions slowly dissolve from soil particles, sediments, and rocks as the water travels along mineral surfaces in the pores or fractures of the unsaturated zone and the aquifer. They are referred to as dis- solved solids. Some dissolved solids may have originated in the precipitation water or river water that recharges the aquifer. A list of the dissolved solids in any water is long, but it can be divided into three groups: major constituents, minor constituents, and trace elements (Table 1). The http://www.nrcs.usda.gov total mass of dissolved constituents is referred to as the total dissolved solids (TDS) concentration. In water, all of the dissolved solids are either positively charged ions Farm Water (cations) or negatively charged ions (anions). The total negative charge of the anions always equals the total positive charge of the cations.
    [Show full text]
  • A Public Health Legal Guide to Safe Drinking Water
    A Public Health Legal Guide to Safe Drinking Water Prepared by Alisha Duggal, Shannon Frede, and Taylor Kasky, student attorneys in the Public Health Law Clinic at the University of Maryland Carey School of Law, under the supervision of Professors Kathleen Hoke and William Piermattei. Generous funding provided by the Partnership for Public Health Law, comprised of the American Public Health Association, Association of State and Territorial Health Officials, National Association of County & City Health Officials, and the National Association of Local Boards of Health August 2015 THE PROBLEM: DRINKING WATER CONTAMINATION Clean drinking water is essential to public health. Contaminated water is a grave health risk and, despite great progress over the past 40 years, continues to threaten U.S. communities’ health and quality of life. Our water resources still lack basic protections, making them vulnerable to pollution from fracking, farm runoff, industrial discharges and neglected water infrastructure. In the U.S., treatment and distribution of safe drinking water has all but eliminated diseases such as cholera, typhoid fever, dysentery and hepatitis A that continue to plague many parts of the world. However, despite these successes, an estimated 19.5 million Americans fall ill each year from drinking water contaminated with parasites, bacteria or viruses. In recent years, 40 percent of the nation’s community water systems violated the Safe Drinking Water Act at least once.1 Those violations ranged from failing to maintain proper paperwork to allowing carcinogens into tap water. Approximately 23 million people received drinking water from municipal systems that violated at least one health-based standard.2 In some cases, these violations can cause sickness quickly; in others, pollutants such as inorganic toxins and heavy metals can accumulate in the body for years or decades before contributing to serious health problems.
    [Show full text]
  • WHO Guidelines for Indoor Air Quality : Selected Pollutants
    WHO GUIDELINES FOR INDOOR AIR QUALITY WHO GUIDELINES FOR INDOOR AIR QUALITY: WHO GUIDELINES FOR INDOOR AIR QUALITY: This book presents WHO guidelines for the protection of pub- lic health from risks due to a number of chemicals commonly present in indoor air. The substances considered in this review, i.e. benzene, carbon monoxide, formaldehyde, naphthalene, nitrogen dioxide, polycyclic aromatic hydrocarbons (especially benzo[a]pyrene), radon, trichloroethylene and tetrachloroethyl- ene, have indoor sources, are known in respect of their hazard- ousness to health and are often found indoors in concentrations of health concern. The guidelines are targeted at public health professionals involved in preventing health risks of environmen- SELECTED CHEMICALS SELECTED tal exposures, as well as specialists and authorities involved in the design and use of buildings, indoor materials and products. POLLUTANTS They provide a scientific basis for legally enforceable standards. World Health Organization Regional Offi ce for Europe Scherfi gsvej 8, DK-2100 Copenhagen Ø, Denmark Tel.: +45 39 17 17 17. Fax: +45 39 17 18 18 E-mail: [email protected] Web site: www.euro.who.int WHO guidelines for indoor air quality: selected pollutants The WHO European Centre for Environment and Health, Bonn Office, WHO Regional Office for Europe coordinated the development of these WHO guidelines. Keywords AIR POLLUTION, INDOOR - prevention and control AIR POLLUTANTS - adverse effects ORGANIC CHEMICALS ENVIRONMENTAL EXPOSURE - adverse effects GUIDELINES ISBN 978 92 890 0213 4 Address requests for publications of the WHO Regional Office for Europe to: Publications WHO Regional Office for Europe Scherfigsvej 8 DK-2100 Copenhagen Ø, Denmark Alternatively, complete an online request form for documentation, health information, or for per- mission to quote or translate, on the Regional Office web site (http://www.euro.who.int/pubrequest).
    [Show full text]
  • Indoor Air Quality: a Time for Recognition
    EMFeatureFeature Indoor Air Quality: A Time for Recognition by Richard L. Corsi It can be argued that the field of indoor air quality has not progressed to the same extent as other environmental fields. It can also be argued that IAQ deserves far more attention than it has received. So, starting this month and running through December, EM will publish a series of articles that discuss some of the many issues now facing those working in the indoor environmental sciences. century and a half ago, John Griscom, a New York While important progress has been made in our under- surgeon, described the effects of indoor air on hu- standing of indoor air pollution, it can be reasonably argued A man health in his book, The Uses and Abuses of Air: that the field of indoor air quality, especially in nonindustrial Showing its Influence in Sustaining Life, and Producing Disease; settings, has not progressed to the same extent as other envi- with Remarks on the Ventilation of Houses.1 Much of what ronmental fields in the past 150 years. In this paper, I have Griscom described in 1850 continues to concern those in the attempted to provide a broad overview of the importance of indoor air quality field today. Consider his description of in- indoor air quality and some of the sources that contribute to fant exposure to impure indoor air: “First, as a tender infant, its degradation. I have also attempted to make an argument he scarcely has made his entrance into the great ocean of air, for why the field of indoor air quality deserves far more atten- and uttered his plaintive petition for a portion of the new tion than it has received, including the need for an immedi- element to expand his little chest, ere, by the careful nurse, he ate and significant expansion of public education, research, is tucked away under the coverlid ….
    [Show full text]
  • Water Resource Management Policy
    Corporate Policy: Water Resource Management Policy Statement Water is an essential resource for sustaining Exelon’s operations and creating shareholder value. Ensuring access to affordable, reliable and adequate water supplies is imperative. The water resources we depend on are shared with the communities and customers where we operate and accordingly we will act responsibly to protect them for others, ourselves and future generations. We recognize that effective water resources management must address present and long-term considerations and competing demands. Policy Intent Exelon shall: • Institutionalize the management of water as an essential natural resource for sustained operations; • Continuously improve our management of water resources, prevent pollution, and comply with all applicable water use laws and regulations, with the objective of advancing water resource management beyond compliance to create or protect value; • Understand natural and man-made impacts on water resources, including climate change, and continuously adapt strategies and plans to address these issues; • Engage local and other relevant stakeholders when addressing water issues including those related to operational changes, development of strategic plans, or public policy advocacy; and • Build goodwill and enhance the Exelon brand by collaborating with communities and other interested parties to address opportunities for protecting and enhancing watershed resources. Implementation: This policy shall be implemented by: • Identifying and assessing relevant
    [Show full text]
  • Water Quality and Children's Health
    Water Quality and Children’s Health Water pollution impacts all of us, but children and infants are especially at risk of exposure to contaminated water. Children drink more water per pound of body weight than adults, which means they also ingest higher amounts of any harmful chemicals that may be present in the water. In addition, when young children swim, they typically swallow more water than adults, and are therefore at greater risk of exposure to contaminants in lakes, rivers, and bays. Children are also more vulnerable to harm from contaminated water since their metabolic systems and organ systems are still developing. Toxic chemicals are especially harmful to children’s developing organs and tissues because it is harder for their systems to break down and get rid of harmful chemicals that enter their bodies. For instance, long-term exposure to lead, a potent neurotoxicant, can result in permanent neurological damage in young children. Contaminants from industrial farms such as nitrate from fertilizers or atrazine, an herbicide known to disrupt hormone function, can also be very harmful to children when consumed in water. The best line of defense to protect our nation’s water quality is to prevent harmful contaminants from entering our groundwater, rivers, lakes, streams and bays in the first place. Once groundwater or surface water is contaminated, it can be very difficult and expensive to treat that water so that it is safe to drink. When there is a failure to prevent or treat contamination, or treatment is delayed, communities are left to deal with the consequences. Clean Water for All is a broad coalition of environmental, conservation, outdoor recreation, and community groups standing together in support of commonsense protections for clean water and public health.
    [Show full text]
  • Drinking Water Is Delivered Via One Million Miles of Pipes Across the Country
    OVERVIEW Drinking water is delivered via one million miles of pipes across the country. Many of those pipes were laid in the early to mid‐20th century with a lifespan of 75 to 100 years. The quality of drinking water in the United States remains high, but legacy and emerging contaminants continue to require close attention. While water consumption is down, there are still an estimated 240,000 water main breaks per year in the United States, wasting over two trillion gallons of treated drinking water. According to the American Water Works Association, an estimated $1 trillion is necessary to maintain and expand service to meet demands over the next 25 years. CAPACITY AND CONDITION The United States uses 42 billion gallons of water a day to support daily life from cooking and bathing in homes to use in factories and offices across the country. Around 80% of drinking water in the U.S. comes from surface waters such as rivers, lakes, reservoirs, and oceans, with the remaining 20% from groundwater aquifers. In total, there are approximately 155,000 active public drinking water systems across the country. Most Americans – just under 300 million people – receive their drinking water from one of the nation’s 51,356 community water systems. Of these, just 8,674 systems, or approximately 17%, serve close to 92% of the total population, or approximately 272.6 million people. Small systems that serve the remaining 8% of the population frequently lack both economies of scale and financial, managerial, and technical capacity, which can lead to problems of meeting Safe Drinking Water Act standards.
    [Show full text]
  • Guidelines for Drinking-Water Quality FIRST ADDENDUM to THIRD EDITION Volume 1 Recommendations WHO Library Cataloguing-In-Publication Data World Health Organization
    Guidelines for Drinking-water Quality FIRST ADDENDUM TO THIRD EDITION Volume 1 Recommendations WHO Library Cataloguing-in-Publication Data World Health Organization. Guidelines for drinking-water quality [electronic resource] : incorporating first addendum. Vol. 1, Recommendations. – 3rd ed. Electronic version for the Web. 1.Potable water – standards. 2.Water – standards. 3.Water quality – standards. 4.Guidelines. I. Title. ISBN 92 4 154696 4 (NLM classification: WA 675) © World Health Organization 2006 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 3264; fax: +41 22 791 4857; email: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; email: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expres- sion of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.
    [Show full text]
  • Federal Programs Related to Indoor Pollution by Chemicals
    Federal Programs Related to Indoor Pollution by Chemicals Linda-Jo Schierow Specialist in Environmental Policy David M. Bearden Specialist in Environmental Policy July 23, 2012 Congressional Research Service 7-5700 www.crs.gov R42620 CRS Report for Congress Prepared for Members and Committees of Congress Federal Programs Related to Indoor Pollution by Chemicals Summary “Toxic” drywall, formaldehyde emissions, mold, asbestos, lead-based paint, radon, PCBs in caulk, and many other indoor pollution problems have concerned federal policy makers and regulators during the last 30 years. Some problems have been resolved, others remain of concern, and new indoor pollution problems continually emerge. This report describes common indoor pollutants and health effects that have been linked to indoor pollution, federal statutes that have been used to address indoor pollution, key issues, and some general policy options for Congress. Indoor pollutants are chemicals that are potentially harmful to people and found in the habitable portions of buildings, including homes, schools, offices, factories, and other public gathering places. Some indoor pollutants, like lead or ozone, are also outdoor pollutants. Others, like formaldehyde or asbestos, are primarily indoor pollutants. Indoor pollutants may be natural (for example, carbon monoxide or radon) or synthetic (polychlorinated biphenyls [PCBs]), and may originate indoors or outdoors. They may be deliberately produced, naturally occurring, or inadvertent byproducts of human activities. For example, they may arise indoors as uncontrolled emissions from building materials, paints, or furnishings, from evaporation following the use of cleaning supplies or pesticides, or as a combustion byproduct as a result of heating or cooking. Some pollution that originates outdoors infiltrates through porous basements (e.g., radon) or is inadvertently brought into indoor spaces, perhaps through heating or air conditioning systems or in contaminated drinking water.
    [Show full text]
  • PUBLIC HEALTH STATEMENT Cobalt CAS#: 7440-48-4
    PUBLIC HEALTH STATEMENT Cobalt CAS#: 7440-48-4 Division of Toxicology April 2004 This Public Health Statement is the summary External exposure to radiation may occur from chapter from the Toxicological Profile for cobalt. It natural or man-made sources. Naturally occurring is one in a series of Public Health Statements about sources of radiation are cosmic radiation from space hazardous substances and their health effects. A or radioactive materials in soil or building materials. shorter version, the ToxFAQs™, is also available. Man-made sources of radioactive materials are This information is important because this found in consumer products, industrial equipment, substance may harm you. The effects of exposure to atom bomb fallout, and to a smaller extent from any hazardous substance depend on the dose, the hospital waste and nuclear reactors. duration, how you are exposed, personal traits and habits, and whether other chemicals are present. For If you are exposed to cobalt, many factors more information, call the ATSDR Information determine whether you'll be harmed. These factors Center at 1-888-422-8737. include the dose (how much), the duration (how _____________________________________ long), and how you come in contact with it. You must also consider the other chemicals you're This public health statement tells you about cobalt exposed to and your age, sex, diet, family traits, and the effects of exposure. lifestyle, and state of health. The Environmental Protection Agency (EPA) 1.1 WHAT IS COBALT? identifies the most serious hazardous waste sites in the nation. These sites make up the National Cobalt is a naturally-occurring element that has Priorities List (NPL) and are the sites targeted for properties similar to those of iron and nickel.
    [Show full text]