Iot Based Greenhouse Real-Time Data Acquisition and Visualization Through Message Queuing Telemetry Transfer (MQTT) Protocol

Total Page:16

File Type:pdf, Size:1020Kb

Iot Based Greenhouse Real-Time Data Acquisition and Visualization Through Message Queuing Telemetry Transfer (MQTT) Protocol Advances in Internet of Things, 2021, 11, 77-93 https://www.scirp.org/journal/ait ISSN Online: 2161-6825 ISSN Print: 2161-6817 IoT Based Greenhouse Real-Time Data Acquisition and Visualization through Message Queuing Telemetry Transfer (MQTT) Protocol Vincent de Paul Niyigena Kwizera1, Zhanming Li1*, Victus Elikplim Lumorvie2, Febronie Nambajemariya3, Xiaowei Niu1 1School of Electrical and Information Engineering, Lanzhou University of Technology, Qilihe District, Lanzhou, China 2School of Computer and Communication, Lanzhou University of Technology, Qilihe District, Lanzhou, China 3School of Electronics and Information Engineering, Lanzhou Jiaotong University, Lanzhou, China How to cite this paper: Niyigena Kwizera, Abstract V.D.P., Li, Z.M., Elikplim Lumorvie, V., Nambajemariya, F. and Niu, X.W. (2021) One of the most indispensable needs of life is food and its worldwide availa- IoT Based Greenhouse Real-Time Data bility endorsement has made agriculture an essential sector in recent years. Acquisition and Visualization through Mes- As the technology evolved, the need to maintain a good and suitable climate sage Queuing Telemetry Transfer (MQTT) in the greenhouse became imperative to ensure that the indoor plants are Protocol. Advances in Internet of Things, 11, 77-93. more productive hence the agriculture sector was not left behind. That not- https://doi.org/10.4236/ait.2021.112006 withstanding, the introduction and deployment of IoT technology in agricul- ture solves many problems and increases crop production. This paper focuses Received: March 24, 2021 mainly on the deployment of the Internet of Things (IoT) in acquiring real- Accepted: April 27, 2021 Published: April 30, 2021 time data of environmental parameters in the greenhouse. Various IoT tech- nologies that can be applicable in greenhouse monitoring system was pre- Copyright © 2021 by author(s) and sented and in the proposed model, a method is developed to send the air Scientific Research Publishing Inc. temperature and humidity data obtained by the DHT11 sensor to the cloud This work is licensed under the Creative using an ESP8266-based NodeMCU and firstly to the cloud platform Thing- Commons Attribution International License (CC BY 4.0). Speak, and then to Adafruit.IO in which MQTT protocol was used for the re- http://creativecommons.org/licenses/by/4.0/ ception of sensor data to the application layer referred as Human-Machine Open Access Interface. The system has been completely implemented in an actual proto- type, allowing the acquiring of data and the publisher/subscriber concept used for communication. The data is published with a broker’s aid, which is responsible for transferring messages to the intended clients based on topic choice. Lastly, the functionality testing of MQTT was carried out and the re- sults showed that the messages are successfully published. Keywords Greenhouse, Sensors, Monitoring System, Internet of Things (IOT), DOI: 10.4236/ait.2021.112006 Apr. 30, 2021 77 Advances in Internet of Things V. D. P. Niyigena Kwizera et al. ThingSpeak, Data Visualization, MQTT, Adafruit.IO, MQTT Testing 1. Introduction The Greenhouse system enclosure allows the management and control of the crop ecosystem resulting in increased crop production, longer production time, enhanced product quality, and less defensive chemicals [1]. To achieve this, the agriculture industry is bound to adopt the Internet of Things because its intro- duction in the agricultural sector can solve many problems for farmers [2]. Ac- cording to recent statistics, IoT systems installation in the agriculture sector is rising at a compound annual growth rate of 20 percent (20% CAGR). It is esti- mated in [3] that the number of connected devices is growing from 13 million to 225 million in the period of 10 years (2014-2024). With the current development worldwide, a lot of agricultural lands have been used in other non-agricultural areas, such as buildings, industrial sites, and other infrastructures, which will undoubtedly lower the agricultural production and have negative impacts on environments and economy in general. With this problem, the need of develop- ing new technologies to close and cover this gap is increasing day-to-day. One solution that the community can implement is to create an agricultural system with limited land availability commonly called urban farming or urban agricul- ture. Smart farming IoT platform based on edge and cloud computing was pro- posed in [4]. In this work, Miguel A. Zamora-Izquierdo et al. describes the de- sign, development, and evaluation of a technology that provides automated IoT technology to meet severe PA requirements. It is quite challenging to solve these particular problems such as Soil Fertility Management, Crop Disease, Pest Con- trol, Irrigation and Water Management, etc. in precise monitoring of wide-scale agricultural fields. In [5], N. K. Nawandar and V. R. Satpute designed an IoT- based, low-cost, and intelligent module for smart irrigation systems using three modules as physical part and MQTT with HTTP Protocol for transferring in- formation from field location to the user Daponte P. et al. in [6] also proposes an overview of the different techniques applicable to precision agricultural moni- toring. The drone architecture for multispectral/thermal sensing and DTM/DSM has been discussed. Researchers in the IoT domain must also consider the cloud platform that manages information and various IoT protocols such as MQTT, CoAP, and AMQP that are used to communicate and transmit data to the cloud as well as to the end-user in order to keep farmers informed about crop conditions from a remote location. It is expected that the technology will be evaluated further in long-term crop cycles in order to optimize activities and adapt to decision sup- port capability, which will be provided to human operators as management solu- tions. The rest of the paper is organized as follows: Section 2 describes the Back- DOI: 10.4236/ait.2021.112006 78 Advances in Internet of Things V. D. P. Niyigena Kwizera et al. ground Theory and related works, Section 3 shows the Structure and Develop- ment of IoT system in the greenhouse, MQTT Protocols and its application in Greenhouse monitoring is depicted in Section 4, Greenhouse Data Acquisition and Monitoring System design was described in Section 5, Section 6 shows the Experimental results and Discussions and Finally, Conclusions are in Section 7. 2. Background Theory of IoT The researchers defined the Internet of Things (IoT) in many different ways. In general, it is a concept based on combining information technology, sensor technology, wireless communication technology, and internet technology [7]. In [8], IoT is defined as a network of physical objects and devices that are inte- grated with an Internet connection. Also, in [9], they defined IoT as a recent communication paradigm that envisions a near future in which the objects of everyday life will be fitted with sensors, microcontrollers, transceivers for digital communication, and appropriate protocol stacks that will make them able to communicate easily with one another and with the user becoming an integral part of the internet. The Internet of Things (IoT) changed how we live, work, travel, and do busi- ness since 1999, when it was first discovered; it is marking a new industrial transformation, known as Industry 4.0, and key in the digital transformation of organizations, cities, and society as well. Figure 1 shows the roadmap to under- stand the essence of the Internet of Things in the past decades. After the presentation on the application of internet-connected RFID in Proc- ter & Gamble’s supply chain, Ashton identified a future in which computers can collect data and transform it into useful information without human interven- tion [10], which is possible with technology such as sensors and the RFID where computers can observe, interpret and understand the environment. Figure 1. Technology roadmap for the internet of things (IoT) in last two decades. Source: https://www.nsti.org/directory/org.html?i=2218. DOI: 10.4236/ait.2021.112006 79 Advances in Internet of Things V. D. P. Niyigena Kwizera et al. Although RFID’s commercial implementations have continued to draw on its barcode-like characteristics to date, RFID provides far more over the long term and aims to be a core technology for the Internet of Things. The quicker check- out is the most significant benefit of a department store using RFID [11]. 3. Structure and Development of the Greenhouse IoT System Smart agriculture can be represented as a farm or greenhouse fitted with smart objects; a field network enables information to be transmitted between field- installed devices and a gateway to link the smart agriculture sector to the outside world of the internet. These smart objects make it easier to communicate with farmers with real-time information to manage them. Figure 2 shows the Con- ceptual model of the Greenhouse IoT based Monitoring System. IoT Architecture is a network of various elements, such as sensors, actuators, protocols, cloud servers, which make up an IoT networking system. It typically consists of distinct layers that allow system administrators to monitor and ana- lyze the system working. Although some researchers represent it into more lay- ers and name them accordingly based on their conceptions, in [12], Sethi P. et al. differentiated between 3-layers and 5-layers IoT architecture, and in [13] M. Burhan et al. in their comprehensive survey on IoT elements, Layered Architec- tures and Security Issues they compared 3-4-5 layers architecture, more than three layers can be particularly applicable in edge or fog computing IoT system, for 4-layer architecture the support layer that secure cloud computing is added whereas for 5-layer architecture, the business layer is added in order to manage data and applications, business and all profits within the system and the network layer is divide into two layers namely; the transport and processing layers.
Recommended publications
  • Home Automation System Using Google Assistant
    © 2021 JETIR June 2021, Volume 8, Issue 6 www.jetir.org (ISSN-2349-5162) HOME AUTOMATION SYSTEM USING GOOGLE ASSISTANT MUDASIR M, NEHA V, NIHAAL THATHIR K, PAVAN YADAV M, POLLARPU SREERAMULU, SMITHA PATIL B.Tech. Student, Department of Computer Science and Engineering, Presidency University, Bangalore, India B.Tech. Student, Department of Computer Science and Engineering, Presidency University, Bangalore, India B.Tech. Student, Department of Computer Science and Engineering, Presidency University, Bangalore, India B.Tech. Student, Department of Computer Science and Engineering, Presidency University, Bangalore, India B.Tech. Student, Department of Computer Science and Engineering, Presidency University, Bangalore, India Assistant Professor, Department of Computer Science and Engineering, Presidency University, Bangalore, India Abstract: Nowadays Technology keeps on upgrading. The idea behind Google assistant-controlled Home automation is to control home devices with voice. On the market there are many devices available to do that, but making our own is awesome. In this project, the Google assistant requires voice commands. Adafruit account which is a cloud based free IoT web server used to create virtual switches, is linking to IFTTT website abbreviated as “If This Than That” which is used to create if else conditional statements. The voice commands for Google assistant have been added through IFTTT website. In this home automation, as the user gives commands to the Google assistant, Home appliances like Bulb, Fan and Motor etc., can be controlled accordingly. The commands given through the Google assistant are decoded and then sent to the microcontroller, the microcontroller in turn control the relays connected to it. The device connected to the respective relay can be turned ON or OFF as per the users request to the Google Assistant.
    [Show full text]
  • A18xji2iiis.Pdf
    1 2 Control LED by programming NODE MCU ESP8266-12E sing Arduino IDE NodeMCU Dev Board is based on widely explored esp8266 System on Chip from Express if. It combined features of WIFI access point and station + microcontroller and uses simple LUA based programming language. ESP8266 NodeMCU offers- Arduino-like hardware IO Event-driven API for network applications 10 GPIOs D0-D10, PWM functionality, IIC and SPI communication, 1-Wire and ADC A0 etc. all in one board Wi-Fi networking (can be uses as access point and/or station, host a webserver), connect to internet to fetch or upload data. Excellent system on board for Internet of Things (IOT) projects 3 Specifications SDIO 2.0, SPI, UART 32-pin QFN package Integrated RF switch,24dBm PA, DCXO, and PMU Integrated RISC processor, on-chip memory and external memory interfaces Integrated MAC/baseband processors Quality of Service management I2S interface for high fidelity audio applications On-chip low-dropout linear regulators for all internal supplies Proprietary spurious-free clock generation architecture Integrated WEP, TKIP, AES, and WAPI engines Hardware Required 4 NODE MCU ESP8266-12E – 1 Arduino DUE cable – 1 Mini Breadboard 160 points – 1 LED pack Jumper wires(male to male) - 20 pieces each Software Required Arduino IDE ((Programmable platform for Arduino boards) You can download it from this link: https://www.arduino.cc/en/Main/Software) Pin Description ESP8266-12E ESP8266EX offers a complete and self-contained Wi-Fi networking solution; it can be used to host the application or to offload Wi-Fi networking functions from another application processor.
    [Show full text]
  • Smart Garbage Monitoring System Using
    SMART GARBAGE MONITORING SYSTEM USING IOT Y.Himanth1, B.V.Pavan Kumar2, M.Lalitha Bhavani 3 1,2,3Asst.Professor, ECE Department, SASI Institute of Technology & Engineering, Tadepalligudem, India Abstract Helps in maintaining the surrounding of In the recent years, there was a rapid growth dustbins clean. in population which leads to more waste The statistics can be used to estimate area disposal. So, a proper waste management wise quantity of waste which in turn used system is necessary to avoid spreading some to rank areas. deadly diseases. But due to lack of resources, In our system, the Smart dust bins are ineffective groundwork, some waste is not connected to the internet to get the real time collected which poses serious health hazard to information of the smart dustbins. These the surrounding environment. The dustbins are interfaced with Arduino based government of India announced smart cities system with ultrasonic sensors and weight and the key to smart cities is cleanliness. In sensors and Node MCU. Where the ultrasonic support of clean city we design a dustbin sensor detects the level of the dust in dustbin and which can interact with the cloud (free cloud sends the signals to Node MCU the same signal for demonstration) and push its filling percent is encoded and send to the application and it is at regular intervals (say every 1 hour or its received. The data has been received, analyzed status set to full). If the status of the dustbin is and processed in the database, which displays the filled, a message is pushed to the municipal status of the Garbage in the dustbin on the person who is responsible to empty the bin.
    [Show full text]
  • Wireless Car Using WIFI – Iot - Bluetooth
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072 Wireless Car Using WIFI – IoT - Bluetooth Dhruv Ketan Kotecha1 1Department of Electronics Engineering, K. J. Somaiya College of Engineering (Autonomous), (Affiliated to University of Mumbai), Mumbai, India ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - A working prototype has been designed to Existing technologies related to the development of the control a car Wirelessly using an Android Application. This is project were studied. These technologies even used arduino done with the help of Arduino, a microcontroller, interfacing it as a backbone of the entire prototype and leveraged the with Bluetooth module and wifi module for better connectivity. efficiency of the controlling system using the Arduino Android application is used by the User to send data wirelessly NodeMCU module. This ensured a wide range using the either by Bluetooth Connection or by connecting to the prototype.[1] This project differs from the studied Arduino using Wifi. This data is an input to the microcontroller system and the microcontroller uses it as the technologies as it also captures the real time video and controlling parameter to the underlying hardware. The provides user the privilege to view it using an online cloud prototype also captures the real time video using a video service that comes with the Camera module. Also the project camera interfaced with the arduino and the user can locate is developed such that it initiates the connection between the position of the device connecting to the cloud service three technologies: Wifi, Bluetooth and IOT provided for the captured real time video.
    [Show full text]
  • Iot Home with Voice Commands Using Google Assistants
    International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering (IJAREEIE) | e-ISSN: 2278 – 8875, p-ISSN: 2320 – 3765| www.ijareeie.com | Impact Factor: 7.122| ||Volume 9, Issue 6, June 2020|| IoT Home with Voice Commands Using Google Assistants Vivek Yadav1, Abhishek Yadav2, Anurag Tiwari3, Dr. Himani Mittal4 B.Tech. Student, Department of Electronics and Communication Engineering, RKGIT Ghaziabad, Uttar Pradesh, India1,2,3 Associate Professor, Department of Electronics & Communication Engineering, RKGIT Ghaziabad, Uttar Pradesh, India4 ABSTRACT: This paper presents a proposal for home automation using voice via Google Assistant. Home automation or domoticz a term for home automation coined by Jim Hill has been evolving drastically. We saw many home automation technologies introduced over these years from Zigbee automation to Amazon Echo, Google Home and Home from Apple. It has become a craze these days. Google Home price is around 150$ (USD) with an additional cost of the devices to be connected to, the total cost of the system reaches over 250$ (USD). Apple Home Kit too is pretty more expensive, over 100$ (USD) more than the Google Home just for a basic setup. Philips Hue, a smart light which is controlled by the Google Assistant, Amazon Echo and Siri, voice assistant by Apple is priced around 145$ (USD). Similarly, Belikin’s Wemo light is priced around 44$ (USD) per unit and this can be controlled both by Siri and Google Assistant. So, overall we can see here that to make our home smart we need to invest quite a lot, let’s say some 250$ (USD) for a basic setup.
    [Show full text]
  • JETIR Research Journal
    © 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162) Heart-Rate Monitoring System Using Node MCU 1D.Swathi, 2V.S.D.Rekha 1Assistant Professor, 2Assistant Professor 1Electronics and Communication Engineering, 1P.V.P.Siddhartha Institute of Science & Technology, Vijayawada, India Abstract: This paper describes the design process of a low cost and portable microcontroller based heart-rate counting system for monitoring heart condition that can be implemented with off-the-shelf components. The raw heart-rate signals were collected from finger using IR TX-RX (Infrared Transmitter and Receiver pair) module which was amplified in order to convert them to an observable scale. Extending the concept we have replaced Arduino board with NODE MCU. In this extension we have used Thing Speak and created a private channel. In that channel updating of heart rate at regular intervals is done. If it crosses a particular limit or threshold limit it will be send to a concern doctor. This technique can be used in remote areas. The results obtained using the developed device when compared to those obtained from the manual test involving counting of heart rate was found satisfactory. The proposed system is applicable for family, hospital, clinic, community medical treatment, sports healthcare and other medical purposes. Index Terms – NodeMCU, Thing speak, Pulse Sensor I. INTRODUCTION Heart rate data can be really useful whether you’re designing an exercise routine, studying your activity or anxiety levels or just want your shirt to blink with your heart beat. Monitoring heart rate is very important for athletes, patients as it determines the condition of the heart (just heart rate).
    [Show full text]
  • Implementation of Vehicle Ventilation System Using Nodemcu ESP8266 for Remote Monitoring
    Bulletin of Electrical Engineering and Informatics Vol. 10, No. 1, February 2021, pp. 327~336 ISSN: 2302-9285, DOI: 10.11591/eei.v10i1.2669 327 Implementation of vehicle ventilation system using NodeMCU ESP8266 for remote monitoring Amirun Murtaza Abd Jalil1, Roslina Mohamad2, Nuzli Mohamad Anas3, Murizah Kassim4, Saiful Izwan Suliman5 1,2,4,5Faculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia 3Wireless Innovation, MIMOS Berhad, 57000 Kuala Lumpur, Wilayah Persekutuan, Malaysia Article Info ABSTRACT Article history: In this paper, an implementation of vehicle ventilation system using microcontroller NodeMCU is described, as an internet of things (IoT) Received Mar 24, 2020 platform. A low-cost wireless fidelity (Wi-Fi) microchip ESP8266 integrated Revised May 27, 2020 with NodeMCU provides full-stack transmission control protocol/internet Accepted Jul 11, 2020 protocol (TCP/IP) to communicate between mobile applications. This chip is capable to monitor and control sensor devices connected to the IoT platform. In this reserach, data was collected from a temperature sensor Keywords: integrated to the platform, which then monitored using Blynk application. The vehicle ventilation system was activated/deactivated through mobile Embedded controller application and controlled using ON/OFF commands sent to the connected Internet of things devices. From the results, the vehicle ventilation system built using NodeMCU NodeMCU ESP8266 microcontroller is capable to provide near real-time data monitoring for Remote monitoring temperature in the car before and after the ventilation system was applied. Temperature and rain sensors Vehicle ventilation This is an open access article under the CC BY-SA license. Corresponding Author: Roslina Mohamad, Faculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.
    [Show full text]
  • Solar Based Smart Garbage Monitoring System Using IOT
    IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-ISSN: 2278-1676,p-ISSN: 2320-3331, Volume 14, Issue 2 Ver. I (Mar-Apr. 2019), PP 85-88 www.iosrjournals.org Solar Based Smart Garbage Monitoring System Using IOT 1 2 Pravash Ranjan Tripathy , Subhendu Kumar Behera 1(Department of Electronics & Communication Engineering, Gandhi Engineering College, India) 2(Department of Electronics & Communication Engineering, Gandhi Engineering College, India) Abstract: The Clean India scheme emphasizes maintenance of the city premises free from household and industrial waste. India being a heavily populous country generates a huge amount hold wastes in residential area due to the FMCG packaging material. The collection and proper disposal of such wastes are essential for maintaining the ambience clean. The Municipal Corporation has number of garbage collection units for collection of garbage from different areas with in the municipal corporation. The project proposes a solar based self-sustaining garbage collection unit which connects to the municipal server through a Esp. 8266 Wi-Fi module. The system provides the municipal system with the necessary data such as garbage level in the collection unit. Key words: Angular JS, Ionic Framework ,HTML 5,Cordova. I. Introduction The Clean India scheme emphasizes maintenance of the city premises free from household the system has an android application for displaying the status of the collection units. The android application will provide intimation in the form of colored visuals in the app UI. The systems IOT unit is powered by a 12V/500ma Solar Panel. Thus the system will provide an efficient and smart way for monitoring the garbage level in a waste collection units and industrial waste.
    [Show full text]
  • Desarrollo De Un Sistema De Adquisición, Transmisión Y Monitoreo Para Una Red De Sensores De Precipitación
    Universidad de La Salle Ciencia Unisalle Ingeniería en Automatización Facultad de Ingeniería 1-9-2020 Desarrollo de un sistema de adquisición, transmisión y monitoreo para una red de sensores de precipitación Edgar Felipe Zapata Diaz Universidad de La Salle, Bogotá Jhon Alejandro Angel Rodriguez Universidad de La Salle, Bogotá Follow this and additional works at: https://ciencia.lasalle.edu.co/ing_automatizacion Part of the Other Engineering Commons Citación recomendada Zapata Diaz, E. F., & Angel Rodriguez, J. A. (2020). Desarrollo de un sistema de adquisición, transmisión y monitoreo para una red de sensores de precipitación. Retrieved from https://ciencia.lasalle.edu.co/ ing_automatizacion/275 This Trabajo de grado - Pregrado is brought to you for free and open access by the Facultad de Ingeniería at Ciencia Unisalle. It has been accepted for inclusion in Ingeniería en Automatización by an authorized administrator of Ciencia Unisalle. For more information, please contact [email protected]. DESARROLLO DE UN SISTEMA DE ADQUISICIÓN, TRANSMISIÓN Y MONITOREO PARA UNA RED DE SENSORES DE PRECIPITACIÓN. EDGAR FELIPE ZAPATA DIAZ JHON ALEJANDRO ANGEL RODRÍGUEZ UNIVERSIDAD DE LA SALLE FACULTAD DE INGENIERÍA PROGRAMA INGENIERÍA EN AUTOMATIZACIÓN 2020 1 EDGAR FELIPE ZAPATA DIAZ JHON ALEJANDRO ANGEL RODRÍGUEZ TRABAJO DE GRADO ING. PHD MAXIMILIANO BUENO LÓPEZ UNIVERSIDAD DE LA SALLE FACULTAD DE INGENIERÍA PROGRAMA INGENIERÍA EN AUTOMATIZACIÓN 2020 2 NOTA DE ACEPTACIÓN _________________________________ _________________________________ _________________________________
    [Show full text]
  • An Intelligent Way of Smart Irrigation System on Web Using Internet of Things
    Vol 10, Issue 12, DEC/ 2019 ISSN NO: 0377-9254 AN INTELLIGENT WAY OF SMART IRRIGATION SYSTEM ON WEB USING INTERNET OF THINGS 1Tanukula Yesu Raju, 2Manikonda Santhi 1M.Tech Scholar, Dept. of ECE, Novas Institute of Technology, Eluru, Andhra Pradesh – 534 005 2Assistant Professor, Dept. of ECE, Novas Institute of Technology, Eluru, Andhra Pradesh – 534 005 Abstract- An automated irrigation system was developed to yield as compared to population growth. Irrigation is mostly optimize water use for agricultural crops. The system has a done using canal systems in which water is pumped into fields distributed wireless network of soil-moisture and temperature after regular interval of time without any feedback of water level sensors placed in the root zone of the plants. In addition, a in field. This type of irrigation affects crop health and produces a gateway unit handles sensor information, triggers actuators, and poor yield because some crops are too sensitive to water content transmits data to a web application. An algorithm was developed in soil. with threshold values of temperature and soil moisture that was programmed into a microcontroller-based gateway to control Agriculture is the major source of income for the largest water quantity. Problems about agriculture have been population in India and is major contributor to Indian economy. continuously delaying the growth of the country. The lone However, technological involvement and its usability have to be answer to this difficult is modern agriculture and technology for grown still and cultivated for agro sector in India. Although few sustainable use of water by updating the present old-style initiatives have also been taken by the Indian Government for methods of farming.
    [Show full text]
  • Iot with Arduino Esp8266 & Nodemcu
    IOT WITH ARDUINO ESP8266 & NODEMCU INTERNET OF THINGS(IOT) Introduction to IoT lWhat is IoT? lIOT basics concepts lArchitecture of IOT lIOT in home automation lApplications and industry verticals Introduction to Embedded System lIntroduction to Embedded System lApplications & Scope of Embedded System in various industries Introduction to Arduino lIntroduction to Arduino lArduino Board Description lWhat is a Microcontroller lDifference between Microcontroller and Microprocessor lMicrocontroller architecture and Interfacing lBasics of Electronics. lSensors and Actuators. lThe Arduino Uno Introduction to Arduino IDE lWhat is ARDUINO IDE and Language? lFundamentals of C programming lWhat is Open Source Microcontroller Platform? l"Hello World" Example Decision Making and using Logic lFundamentals of C programming l"If" Statements l"While" Loops lFor Loops l"Switch" Cases lUsing Maths lCreating Functions Using inputs and outputs lOverview lProgram Structure lUsing Variables lBuilding Your First Circuit Using a Breadboard lDigital Input & Digital Output lAnalog Input & Analog Output lSerial Input & Serial Output lDisplaying Information Using the Serial Port Sensors Interfacing lWhat is Sensor & Actuator? lSensor Feature. lTypes of sensors lInterfacing Sensors with GPIO of Arduino. lReading from Sensors Interfacing of I/O devices lInterfacing of LED with Arduino lInterfacing of switch with Arduino lInterfacing of Buzzer with Arduino lInterfacing of LCD display with Arduino Libraries, Serial Data and Hardware lOverview lUsing and Including Libraries lUsing ADC lUSART / UART Protocol lUsing SPI lUsing I2C lInterrupts lArduino Shields Introduction to ESP8266 and NodeMCU lIntroduction about NodeMCU lPinouts lNODE MCU firmware lConnecting to Local Wi-Fi lGetting Static IP lIntroduction to Attention Commands for internet access Sensors Interfacing lWhat is Sensor & Actuator? lSensor Feature.
    [Show full text]
  • ESP8266 Arduino Core Documentation Release 2.4.0
    ESP8266 Arduino Core Documentation Release 2.4.0 Ivan Grokhotkov May 14, 2017 Contents: 1 Installing 1 1.1 Boards Manager.............................................1 1.2 Using git version.............................................2 2 Reference 5 2.1 Digital IO.................................................5 2.2 Analog input...............................................6 2.3 Analog output..............................................6 2.4 Timing and delays............................................6 2.5 Serial...................................................6 2.6 Progmem.................................................7 3 Libraries 9 3.1 WiFi(ESP8266WiFi library).......................................9 3.2 Ticker...................................................9 3.3 EEPROM.................................................9 3.4 I2C (Wire library)............................................ 10 3.5 SPI.................................................... 10 3.6 SoftwareSerial.............................................. 10 3.7 ESP-specific APIs............................................ 10 3.8 mDNS and DNS-SD responder (ESP8266mDNS library)........................ 11 3.9 SSDP responder (ESP8266SSDP).................................... 11 3.10 DNS server (DNSServer library)..................................... 11 3.11 Servo................................................... 12 3.12 Other libraries (not included with the IDE)............................... 12 4 Filesystem 15 4.1 Flash layout..............................................
    [Show full text]