Iot Based Smart Garden Monitoring System Using Nodemcu Microcontroller

Total Page:16

File Type:pdf, Size:1020Kb

Iot Based Smart Garden Monitoring System Using Nodemcu Microcontroller International Journal of Advanced and Applied Sciences, 7(8) 2020, Pages: 117-124 Contents lists available at Science-Gate International Journal of Advanced and Applied Sciences Journal homepage: http://www.science-gate.com/IJAAS.html IoT based smart garden monitoring system using NodeMCU microcontroller Mubashir Ali 1, *, Nosheen Kanwal 2, Aamir Hussain 3, Fouzia Samiullah 1, Aqsa Iftikhar 4, Mehreen Qamar 4 1Department of Software Engineering, Lahore Garrison University, Lahore, Pakistan 2Department of Computer Science, Bahauddin Zakariya University, Multan, Pakistan 3Department of Computer Science, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan 4Department of Computer Science, Lahore Garrison University, Lahore, Pakistan ARTICLE INFO ABSTRACT Article history: Technology brings a remarkable advancement in every field of life, whether Received 18 January 2020 its industry or agriculture. Our lives are essentially dependent on agricultural Received in revised form development. Researchers are working to integrate modern technologies in 2 May 2020 agriculture to develop new practices for the enhancement of healthy Accepted 6 May 2020 agriculture and production. Internet of things is a domain of computer science that provides mechanisms and techniques to interconnect a wide Keywords: range of digital devices to automate the real-life systems. In big cities, Smart garden peoples facing problems in their homegrown gardens regarding the NodeMCU maintenance and availability of proper gardeners. This research paper has Internet of things (IoT) proposed an IoT based approach for smart garden monitoring using Sensors NodeMCU microcontroller that helps the users in identifying current Mobile computing parameters of temperature, moisture, and humidity of their homegrown plants and gardens. A prototype has been implemented to show the real illustration of the proposed approach. An android mobile application has been developed to display the real-time profiles of environmental factors like temperature, moisture, and humidity. With the help of this system, users will be able to treat their gardens in a better way in terms of plant health and growth. This research work replaces the need for gardeners and issues faced during the maintenance of gardens in big cities. The purpose of this research is to introduce and prosper the IoT innovation towards smart cities in our society. © 2020 The Authors. Published by IASE. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 1. Introduction automation of specific tasks. Data exchange is the key factor for IoT. The standards of our lives will be *In the current technological era, automation rules nourished by the practice of using automation for all over the world and holds the key to radically simple things (Albishi et al., 2017). We are living in empowering several sectors of Pakistan’s economy. the fourth industrial revolution in which systems are From manufacturing, agriculture to services and moving from manual to automatic process (Trotta logistics, technology can enhance the capacities, and Garengo, 2018). It brings the concept of the efficiencies, and production quality of every human smart industry and opens many research directions activity (Yeo et al., 2014). Internet of things is a (Zhou et al., 2015). Those Peoples who prefer to technique of using computers, mobile phones, or grow gardens and other small fruit plants in their digital devices in monitoring and controlling the homes often get cautious during the early stages of simple parameters of day to day life (Dorsemaine et maintenance. As a result, the garden gets destroyed al., 2015). Using IoT concepts and knowledge, new due to a lack of care. There are also weather systems will be developed based upon sensors, conditions that can render the gardens lifetime software, and communication protocols for short, as some crops/plants can die due to lack of moisture, severe heat, and humidity, etc. (Biswal et al., 2015). People hire the gardeners to maintain * Corresponding Author. Email Address: [email protected] (M. Ali) their homegrown small gardens. Most plants often https://doi.org/10.21833/ijaas.2020.08.012 get damaged due to environmental conditions and Corresponding author's ORCID profile: lack of proper care. This is where the idea of an https://orcid.org/0000-0002-9430-9919 automated garden monitoring system takes place 2313-626X/© 2020 The Authors. Published by IASE. This is an open access article under the CC BY-NC-ND license with the internet of things to overcome above- (http://creativecommons.org/licenses/by-nc-nd/4.0/) 117 Ali et al/International Journal of Advanced and Applied Sciences, 7(8) 2020, Pages: 117-124 mentioned problems. The proposed system computing and embedded system development. integrates all sensors and components for real-time However, these approaches cannot address the statistics. Communication is done with wireless challenges of IoT based systems. Kumar et al. (2016) sensor networks. Mobile computing is an efficient have introduced an integrated methodology to tackle technology to support the internet of things for the challenges of IoT. Zhou et al. (2017) highlighted developing real-life systems (Kavitha et al., 2020). the current IoT concerns and issues very precisely. Already, there are mobile applications that help Guinard et al. (2011) briefed the concept of the web farmers in their crop maintenance. Similar IoT based of Things and their implication in real-life systems. systems are designed for garden maintenance that is The Internet of things completes the dream of costly and often used one task, only temperature connecting the physical things with the virtual reading or water pouring mechanism. Our country is world, which can be remotely controlled and based upon the agriculture sector, and it needs to managed. Atlam et al. (2017) emphasized the cloud achieve higher benefits from agriculture like India things architecture that integrates cloud computing (Khan and Khan, 2018). Thamaraimanalan et al. and the internet of things. Khan and Salah (2018) (2018) have proposed a system that analyzes the have technically reviewed and categorized the environmental parameters of the garden to security issues of IoT by mapping those issues on automate the watering process of plants. A mobile three-layer architecture. Furthermore, security application is developed to check the status of the requirements for IoT Systems are highlighted, and garden for watering. This system senses the the state of the art solution is presented. temperature and moisture with temperature and The paper is divided into five sections, and every moisture sensors for big gardens. Soil and other section elaborates on the aspect of this research. supporting sensors are integrated over Arduino that Section 2 discusses the proposed system design, gathers the values of soil and transfer the along with hardware and software development. information to firebase by using built-in WIFI Section 3 shows the implementation of the proposed facility. Suma et al. (2017) presented a watering garden monitoring system with hardware system for gardens according to six seasonal components, software, tools, and communication environmental factors of their country. The protocols. Section 4 discusses the experimental temperature sensor, humidity sensor, and pump results with sufficient details and supporting figures. controller are integrated to develop the prototype. Lastly, section 5 concludes the research and briefs The system senses the moisture and humidity level the future direction. of plants and provides water accordingly. Another home garden watering system based upon single- 2. Proposed system design board raspberry pi computer is developed by Ishak et al. (2017). This system is highly efficient in terms We use NodeMCU (ESP 8266) microcontroller to of hardware, development, and implementation cost. integrate the entire module where sensors are IR sensor, soil moisture sensor, ultrasonic sensor, connected to it, and data is transferred via a Wi-Fi LDR, and the gas sensor is integrated over raspberry module that is available in the microcontroller. The pi. This system senses the environmental factors and device is portable and requires charging after some alerts with proper time to feed the plants. A time. The data is transferred directly to the theoretical model of intelligent garden monitoring is application. Fig. 1 proposed system diagram is a presented by Biswal et al. (2015) to help the pictorial representation which shows how every developers and researchers to build intelligent component plays a certain role in it. In this diagram, systems. Another implementation for remote the device is depicted in the center with various monitoring of environmental soil properties is components. The network part is an access point presented by Na et al. (2016). allotted for operating the device. Internet of things is the future of current Temperature sensors are used to detect the technology, and there will be 20 billion-plus digital current status of heat and soil of air that can be devices interconnected over the internet in 2020. useful for analyzing the heat effect on garden plants. Internet of things bringing a revolution in our lives Similarly, the YL-69 sensor displays the current by providing automatic solutions of manufacturing moisture levels of soil and humidity sensor detect (Paracha et al., 2020) to monitoring systems (Ali and the percentage of water
Recommended publications
  • Home Automation System Using Google Assistant
    © 2021 JETIR June 2021, Volume 8, Issue 6 www.jetir.org (ISSN-2349-5162) HOME AUTOMATION SYSTEM USING GOOGLE ASSISTANT MUDASIR M, NEHA V, NIHAAL THATHIR K, PAVAN YADAV M, POLLARPU SREERAMULU, SMITHA PATIL B.Tech. Student, Department of Computer Science and Engineering, Presidency University, Bangalore, India B.Tech. Student, Department of Computer Science and Engineering, Presidency University, Bangalore, India B.Tech. Student, Department of Computer Science and Engineering, Presidency University, Bangalore, India B.Tech. Student, Department of Computer Science and Engineering, Presidency University, Bangalore, India B.Tech. Student, Department of Computer Science and Engineering, Presidency University, Bangalore, India Assistant Professor, Department of Computer Science and Engineering, Presidency University, Bangalore, India Abstract: Nowadays Technology keeps on upgrading. The idea behind Google assistant-controlled Home automation is to control home devices with voice. On the market there are many devices available to do that, but making our own is awesome. In this project, the Google assistant requires voice commands. Adafruit account which is a cloud based free IoT web server used to create virtual switches, is linking to IFTTT website abbreviated as “If This Than That” which is used to create if else conditional statements. The voice commands for Google assistant have been added through IFTTT website. In this home automation, as the user gives commands to the Google assistant, Home appliances like Bulb, Fan and Motor etc., can be controlled accordingly. The commands given through the Google assistant are decoded and then sent to the microcontroller, the microcontroller in turn control the relays connected to it. The device connected to the respective relay can be turned ON or OFF as per the users request to the Google Assistant.
    [Show full text]
  • A18xji2iiis.Pdf
    1 2 Control LED by programming NODE MCU ESP8266-12E sing Arduino IDE NodeMCU Dev Board is based on widely explored esp8266 System on Chip from Express if. It combined features of WIFI access point and station + microcontroller and uses simple LUA based programming language. ESP8266 NodeMCU offers- Arduino-like hardware IO Event-driven API for network applications 10 GPIOs D0-D10, PWM functionality, IIC and SPI communication, 1-Wire and ADC A0 etc. all in one board Wi-Fi networking (can be uses as access point and/or station, host a webserver), connect to internet to fetch or upload data. Excellent system on board for Internet of Things (IOT) projects 3 Specifications SDIO 2.0, SPI, UART 32-pin QFN package Integrated RF switch,24dBm PA, DCXO, and PMU Integrated RISC processor, on-chip memory and external memory interfaces Integrated MAC/baseband processors Quality of Service management I2S interface for high fidelity audio applications On-chip low-dropout linear regulators for all internal supplies Proprietary spurious-free clock generation architecture Integrated WEP, TKIP, AES, and WAPI engines Hardware Required 4 NODE MCU ESP8266-12E – 1 Arduino DUE cable – 1 Mini Breadboard 160 points – 1 LED pack Jumper wires(male to male) - 20 pieces each Software Required Arduino IDE ((Programmable platform for Arduino boards) You can download it from this link: https://www.arduino.cc/en/Main/Software) Pin Description ESP8266-12E ESP8266EX offers a complete and self-contained Wi-Fi networking solution; it can be used to host the application or to offload Wi-Fi networking functions from another application processor.
    [Show full text]
  • Smart Garbage Monitoring System Using
    SMART GARBAGE MONITORING SYSTEM USING IOT Y.Himanth1, B.V.Pavan Kumar2, M.Lalitha Bhavani 3 1,2,3Asst.Professor, ECE Department, SASI Institute of Technology & Engineering, Tadepalligudem, India Abstract Helps in maintaining the surrounding of In the recent years, there was a rapid growth dustbins clean. in population which leads to more waste The statistics can be used to estimate area disposal. So, a proper waste management wise quantity of waste which in turn used system is necessary to avoid spreading some to rank areas. deadly diseases. But due to lack of resources, In our system, the Smart dust bins are ineffective groundwork, some waste is not connected to the internet to get the real time collected which poses serious health hazard to information of the smart dustbins. These the surrounding environment. The dustbins are interfaced with Arduino based government of India announced smart cities system with ultrasonic sensors and weight and the key to smart cities is cleanliness. In sensors and Node MCU. Where the ultrasonic support of clean city we design a dustbin sensor detects the level of the dust in dustbin and which can interact with the cloud (free cloud sends the signals to Node MCU the same signal for demonstration) and push its filling percent is encoded and send to the application and it is at regular intervals (say every 1 hour or its received. The data has been received, analyzed status set to full). If the status of the dustbin is and processed in the database, which displays the filled, a message is pushed to the municipal status of the Garbage in the dustbin on the person who is responsible to empty the bin.
    [Show full text]
  • Wireless Car Using WIFI – Iot - Bluetooth
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072 Wireless Car Using WIFI – IoT - Bluetooth Dhruv Ketan Kotecha1 1Department of Electronics Engineering, K. J. Somaiya College of Engineering (Autonomous), (Affiliated to University of Mumbai), Mumbai, India ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - A working prototype has been designed to Existing technologies related to the development of the control a car Wirelessly using an Android Application. This is project were studied. These technologies even used arduino done with the help of Arduino, a microcontroller, interfacing it as a backbone of the entire prototype and leveraged the with Bluetooth module and wifi module for better connectivity. efficiency of the controlling system using the Arduino Android application is used by the User to send data wirelessly NodeMCU module. This ensured a wide range using the either by Bluetooth Connection or by connecting to the prototype.[1] This project differs from the studied Arduino using Wifi. This data is an input to the microcontroller system and the microcontroller uses it as the technologies as it also captures the real time video and controlling parameter to the underlying hardware. The provides user the privilege to view it using an online cloud prototype also captures the real time video using a video service that comes with the Camera module. Also the project camera interfaced with the arduino and the user can locate is developed such that it initiates the connection between the position of the device connecting to the cloud service three technologies: Wifi, Bluetooth and IOT provided for the captured real time video.
    [Show full text]
  • Iot Home with Voice Commands Using Google Assistants
    International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering (IJAREEIE) | e-ISSN: 2278 – 8875, p-ISSN: 2320 – 3765| www.ijareeie.com | Impact Factor: 7.122| ||Volume 9, Issue 6, June 2020|| IoT Home with Voice Commands Using Google Assistants Vivek Yadav1, Abhishek Yadav2, Anurag Tiwari3, Dr. Himani Mittal4 B.Tech. Student, Department of Electronics and Communication Engineering, RKGIT Ghaziabad, Uttar Pradesh, India1,2,3 Associate Professor, Department of Electronics & Communication Engineering, RKGIT Ghaziabad, Uttar Pradesh, India4 ABSTRACT: This paper presents a proposal for home automation using voice via Google Assistant. Home automation or domoticz a term for home automation coined by Jim Hill has been evolving drastically. We saw many home automation technologies introduced over these years from Zigbee automation to Amazon Echo, Google Home and Home from Apple. It has become a craze these days. Google Home price is around 150$ (USD) with an additional cost of the devices to be connected to, the total cost of the system reaches over 250$ (USD). Apple Home Kit too is pretty more expensive, over 100$ (USD) more than the Google Home just for a basic setup. Philips Hue, a smart light which is controlled by the Google Assistant, Amazon Echo and Siri, voice assistant by Apple is priced around 145$ (USD). Similarly, Belikin’s Wemo light is priced around 44$ (USD) per unit and this can be controlled both by Siri and Google Assistant. So, overall we can see here that to make our home smart we need to invest quite a lot, let’s say some 250$ (USD) for a basic setup.
    [Show full text]
  • JETIR Research Journal
    © 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162) Heart-Rate Monitoring System Using Node MCU 1D.Swathi, 2V.S.D.Rekha 1Assistant Professor, 2Assistant Professor 1Electronics and Communication Engineering, 1P.V.P.Siddhartha Institute of Science & Technology, Vijayawada, India Abstract: This paper describes the design process of a low cost and portable microcontroller based heart-rate counting system for monitoring heart condition that can be implemented with off-the-shelf components. The raw heart-rate signals were collected from finger using IR TX-RX (Infrared Transmitter and Receiver pair) module which was amplified in order to convert them to an observable scale. Extending the concept we have replaced Arduino board with NODE MCU. In this extension we have used Thing Speak and created a private channel. In that channel updating of heart rate at regular intervals is done. If it crosses a particular limit or threshold limit it will be send to a concern doctor. This technique can be used in remote areas. The results obtained using the developed device when compared to those obtained from the manual test involving counting of heart rate was found satisfactory. The proposed system is applicable for family, hospital, clinic, community medical treatment, sports healthcare and other medical purposes. Index Terms – NodeMCU, Thing speak, Pulse Sensor I. INTRODUCTION Heart rate data can be really useful whether you’re designing an exercise routine, studying your activity or anxiety levels or just want your shirt to blink with your heart beat. Monitoring heart rate is very important for athletes, patients as it determines the condition of the heart (just heart rate).
    [Show full text]
  • Implementation of Vehicle Ventilation System Using Nodemcu ESP8266 for Remote Monitoring
    Bulletin of Electrical Engineering and Informatics Vol. 10, No. 1, February 2021, pp. 327~336 ISSN: 2302-9285, DOI: 10.11591/eei.v10i1.2669 327 Implementation of vehicle ventilation system using NodeMCU ESP8266 for remote monitoring Amirun Murtaza Abd Jalil1, Roslina Mohamad2, Nuzli Mohamad Anas3, Murizah Kassim4, Saiful Izwan Suliman5 1,2,4,5Faculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia 3Wireless Innovation, MIMOS Berhad, 57000 Kuala Lumpur, Wilayah Persekutuan, Malaysia Article Info ABSTRACT Article history: In this paper, an implementation of vehicle ventilation system using microcontroller NodeMCU is described, as an internet of things (IoT) Received Mar 24, 2020 platform. A low-cost wireless fidelity (Wi-Fi) microchip ESP8266 integrated Revised May 27, 2020 with NodeMCU provides full-stack transmission control protocol/internet Accepted Jul 11, 2020 protocol (TCP/IP) to communicate between mobile applications. This chip is capable to monitor and control sensor devices connected to the IoT platform. In this reserach, data was collected from a temperature sensor Keywords: integrated to the platform, which then monitored using Blynk application. The vehicle ventilation system was activated/deactivated through mobile Embedded controller application and controlled using ON/OFF commands sent to the connected Internet of things devices. From the results, the vehicle ventilation system built using NodeMCU NodeMCU ESP8266 microcontroller is capable to provide near real-time data monitoring for Remote monitoring temperature in the car before and after the ventilation system was applied. Temperature and rain sensors Vehicle ventilation This is an open access article under the CC BY-SA license. Corresponding Author: Roslina Mohamad, Faculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.
    [Show full text]
  • Solar Based Smart Garbage Monitoring System Using IOT
    IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-ISSN: 2278-1676,p-ISSN: 2320-3331, Volume 14, Issue 2 Ver. I (Mar-Apr. 2019), PP 85-88 www.iosrjournals.org Solar Based Smart Garbage Monitoring System Using IOT 1 2 Pravash Ranjan Tripathy , Subhendu Kumar Behera 1(Department of Electronics & Communication Engineering, Gandhi Engineering College, India) 2(Department of Electronics & Communication Engineering, Gandhi Engineering College, India) Abstract: The Clean India scheme emphasizes maintenance of the city premises free from household and industrial waste. India being a heavily populous country generates a huge amount hold wastes in residential area due to the FMCG packaging material. The collection and proper disposal of such wastes are essential for maintaining the ambience clean. The Municipal Corporation has number of garbage collection units for collection of garbage from different areas with in the municipal corporation. The project proposes a solar based self-sustaining garbage collection unit which connects to the municipal server through a Esp. 8266 Wi-Fi module. The system provides the municipal system with the necessary data such as garbage level in the collection unit. Key words: Angular JS, Ionic Framework ,HTML 5,Cordova. I. Introduction The Clean India scheme emphasizes maintenance of the city premises free from household the system has an android application for displaying the status of the collection units. The android application will provide intimation in the form of colored visuals in the app UI. The systems IOT unit is powered by a 12V/500ma Solar Panel. Thus the system will provide an efficient and smart way for monitoring the garbage level in a waste collection units and industrial waste.
    [Show full text]
  • Desarrollo De Un Sistema De Adquisición, Transmisión Y Monitoreo Para Una Red De Sensores De Precipitación
    Universidad de La Salle Ciencia Unisalle Ingeniería en Automatización Facultad de Ingeniería 1-9-2020 Desarrollo de un sistema de adquisición, transmisión y monitoreo para una red de sensores de precipitación Edgar Felipe Zapata Diaz Universidad de La Salle, Bogotá Jhon Alejandro Angel Rodriguez Universidad de La Salle, Bogotá Follow this and additional works at: https://ciencia.lasalle.edu.co/ing_automatizacion Part of the Other Engineering Commons Citación recomendada Zapata Diaz, E. F., & Angel Rodriguez, J. A. (2020). Desarrollo de un sistema de adquisición, transmisión y monitoreo para una red de sensores de precipitación. Retrieved from https://ciencia.lasalle.edu.co/ ing_automatizacion/275 This Trabajo de grado - Pregrado is brought to you for free and open access by the Facultad de Ingeniería at Ciencia Unisalle. It has been accepted for inclusion in Ingeniería en Automatización by an authorized administrator of Ciencia Unisalle. For more information, please contact [email protected]. DESARROLLO DE UN SISTEMA DE ADQUISICIÓN, TRANSMISIÓN Y MONITOREO PARA UNA RED DE SENSORES DE PRECIPITACIÓN. EDGAR FELIPE ZAPATA DIAZ JHON ALEJANDRO ANGEL RODRÍGUEZ UNIVERSIDAD DE LA SALLE FACULTAD DE INGENIERÍA PROGRAMA INGENIERÍA EN AUTOMATIZACIÓN 2020 1 EDGAR FELIPE ZAPATA DIAZ JHON ALEJANDRO ANGEL RODRÍGUEZ TRABAJO DE GRADO ING. PHD MAXIMILIANO BUENO LÓPEZ UNIVERSIDAD DE LA SALLE FACULTAD DE INGENIERÍA PROGRAMA INGENIERÍA EN AUTOMATIZACIÓN 2020 2 NOTA DE ACEPTACIÓN _________________________________ _________________________________ _________________________________
    [Show full text]
  • An Intelligent Way of Smart Irrigation System on Web Using Internet of Things
    Vol 10, Issue 12, DEC/ 2019 ISSN NO: 0377-9254 AN INTELLIGENT WAY OF SMART IRRIGATION SYSTEM ON WEB USING INTERNET OF THINGS 1Tanukula Yesu Raju, 2Manikonda Santhi 1M.Tech Scholar, Dept. of ECE, Novas Institute of Technology, Eluru, Andhra Pradesh – 534 005 2Assistant Professor, Dept. of ECE, Novas Institute of Technology, Eluru, Andhra Pradesh – 534 005 Abstract- An automated irrigation system was developed to yield as compared to population growth. Irrigation is mostly optimize water use for agricultural crops. The system has a done using canal systems in which water is pumped into fields distributed wireless network of soil-moisture and temperature after regular interval of time without any feedback of water level sensors placed in the root zone of the plants. In addition, a in field. This type of irrigation affects crop health and produces a gateway unit handles sensor information, triggers actuators, and poor yield because some crops are too sensitive to water content transmits data to a web application. An algorithm was developed in soil. with threshold values of temperature and soil moisture that was programmed into a microcontroller-based gateway to control Agriculture is the major source of income for the largest water quantity. Problems about agriculture have been population in India and is major contributor to Indian economy. continuously delaying the growth of the country. The lone However, technological involvement and its usability have to be answer to this difficult is modern agriculture and technology for grown still and cultivated for agro sector in India. Although few sustainable use of water by updating the present old-style initiatives have also been taken by the Indian Government for methods of farming.
    [Show full text]
  • Iot with Arduino Esp8266 & Nodemcu
    IOT WITH ARDUINO ESP8266 & NODEMCU INTERNET OF THINGS(IOT) Introduction to IoT lWhat is IoT? lIOT basics concepts lArchitecture of IOT lIOT in home automation lApplications and industry verticals Introduction to Embedded System lIntroduction to Embedded System lApplications & Scope of Embedded System in various industries Introduction to Arduino lIntroduction to Arduino lArduino Board Description lWhat is a Microcontroller lDifference between Microcontroller and Microprocessor lMicrocontroller architecture and Interfacing lBasics of Electronics. lSensors and Actuators. lThe Arduino Uno Introduction to Arduino IDE lWhat is ARDUINO IDE and Language? lFundamentals of C programming lWhat is Open Source Microcontroller Platform? l"Hello World" Example Decision Making and using Logic lFundamentals of C programming l"If" Statements l"While" Loops lFor Loops l"Switch" Cases lUsing Maths lCreating Functions Using inputs and outputs lOverview lProgram Structure lUsing Variables lBuilding Your First Circuit Using a Breadboard lDigital Input & Digital Output lAnalog Input & Analog Output lSerial Input & Serial Output lDisplaying Information Using the Serial Port Sensors Interfacing lWhat is Sensor & Actuator? lSensor Feature. lTypes of sensors lInterfacing Sensors with GPIO of Arduino. lReading from Sensors Interfacing of I/O devices lInterfacing of LED with Arduino lInterfacing of switch with Arduino lInterfacing of Buzzer with Arduino lInterfacing of LCD display with Arduino Libraries, Serial Data and Hardware lOverview lUsing and Including Libraries lUsing ADC lUSART / UART Protocol lUsing SPI lUsing I2C lInterrupts lArduino Shields Introduction to ESP8266 and NodeMCU lIntroduction about NodeMCU lPinouts lNODE MCU firmware lConnecting to Local Wi-Fi lGetting Static IP lIntroduction to Attention Commands for internet access Sensors Interfacing lWhat is Sensor & Actuator? lSensor Feature.
    [Show full text]
  • ESP8266 Arduino Core Documentation Release 2.4.0
    ESP8266 Arduino Core Documentation Release 2.4.0 Ivan Grokhotkov May 14, 2017 Contents: 1 Installing 1 1.1 Boards Manager.............................................1 1.2 Using git version.............................................2 2 Reference 5 2.1 Digital IO.................................................5 2.2 Analog input...............................................6 2.3 Analog output..............................................6 2.4 Timing and delays............................................6 2.5 Serial...................................................6 2.6 Progmem.................................................7 3 Libraries 9 3.1 WiFi(ESP8266WiFi library).......................................9 3.2 Ticker...................................................9 3.3 EEPROM.................................................9 3.4 I2C (Wire library)............................................ 10 3.5 SPI.................................................... 10 3.6 SoftwareSerial.............................................. 10 3.7 ESP-specific APIs............................................ 10 3.8 mDNS and DNS-SD responder (ESP8266mDNS library)........................ 11 3.9 SSDP responder (ESP8266SSDP).................................... 11 3.10 DNS server (DNSServer library)..................................... 11 3.11 Servo................................................... 12 3.12 Other libraries (not included with the IDE)............................... 12 4 Filesystem 15 4.1 Flash layout..............................................
    [Show full text]