A. Paul Alivisatos Charles M. Lieber Associate Editors

Total Page:16

File Type:pdf, Size:1020Kb

A. Paul Alivisatos Charles M. Lieber Associate Editors CO-EDITORS: A. PAUL ALIVISATOS Department of Chemistry, University of California, Berkeley CHARLES M. LIEBER Department of Chemistry and Chemical Biology, Harvard University ASSOCIATE EDITORS Uri Banin Daniel Kohane Eran Rabani The Hebrew University of Jerusalem Boston Children’s Hospital University of California, Berkeley Yi Cui Chun Ning (Jeanie) Lau Angel Rubio Stanford University The Ohio State University Max Planck Institute for the Structure Klaus Ensslin Delia Milliron ETH Zürich The University of Texas at Austin and Dynamics of Matter Julia Greer Colin Nuckolls Joachim P. Spatz California Institute of Technology Columbia University Max Planck Institute for Metals Research Naomi J. Halas Hongkun Park and University of Heidelberg Rice University Harvard University Philip Kim Jiwoong Park Younan Xia Harvard University The University of Chicago Georgia Institute of Technology COORDINATING EDITOR MANAGING EDITOR EDITORIAL ASSISTANT Nicole S. Alivisatos Laura E. Fernandez Kathleen Ledyard [email protected] [email protected] [email protected] EDITORIAL ADVISORY BOARD Sangeeta Bhatia Robert S. Langer Nadrian C. Seeman Massachusetts Institute of Technology Massachusetts Institute of Technology New York University Edwin A. Chandross Helmuth Möhwald Samuel I. Stupp MaterialsChemistry LLC Max-Planck-Institut für Kolloid Northwestern University Jinwoo Cheon und Grenzflächenforschung Shouheng Sun Yonsei University Catherine J. Murphy Brown University Harold G. Craighead University of Illinois at Urbana-Champaign Cornell University David Norris Edwin L. Thomas Rice University Jennifer Dionne ETH Zürich Stanford University Teri W. Odom David B. Warheit Kazunari Domen Northwestern University DuPont Haskell Laboratory The University of Tokyo Reginald M. Penner Emily Weiss Alexander L. Efros University of California, Irvine Northwestern University Naval Research Laboratory Albert Polman Horst Weller Sanjiv Gambhir FOM Institute for Atomic and Universität Hamburg, Germany Stanford University School of Medicine Molecular Physics (AMOLF) Itamar Willner Silvija Gradečak Richie Robinson Hebrew University of Jerusalem Massachusetts Institute of Technology Cornell University Ulrike Woggon Henry Hess Frances M. Ross Columbia University IBM Technische Universität Berlin, Germany Cherie R. Kagan Lars Samuelson Peidong Yang University of Pennsylvania Lund University University of California, Berkeley EARLY CAREER BOARD Sarah Brittman Benjamin Isaacoff Jingshan Luo FOM Institute AMOLF The University of Michigan École Polytechnique Fédérale de Lausanne Keith A. Brown Katherine Jungjohann Matthew McDowell Boston University Sandia National Laboratory Georgia Institute of Technology Umberto Celano Betty Kim Haotian Wang imec Mayo Clinic Rowland Institute at Harvard University.
Recommended publications
  • Our Choice from the Recent Literature
    research highlights OPTICAL CLOAKING layer that increases the overall reflectivity of rather than by the Stark effect. It is, in A phase compensation trick their metasurface. This design, which can in fact, known that in charged nanocrystals, Science 349, 1310–1314 (2015) principle be scaled up, works for incoming the recombination of electrons and holes light within 30° angles with respect to the happens primarily through a non-radiative perpendicular direction. AM phenomenon known as the Auger effect. Delehanty and colleagues also simulated NANOCRYSTALS a realistic neuron firing event by applying Getting on your nerves to the device an electric voltage pulse Nano Lett. 15, 6848–6854 (2015) recorded independently from a murine cortical neuron. The intensity of the Semiconductor nanocrystals could luminescence followed the voltage profile potentially be used to study the electrical accurately, with a total variation of up to 5% activity of neurons by monitoring their in luminescence. FP luminescence during a firing event. The basic principle is that an electric field affects CONTRAST AGENTS AAAS the spatial separation of electrons and holes Nanobubbles that don’t pop in nanocrystals (a phenomenon known as Angew. Chem. Int. Ed. http://doi.org/f3ggns (2015) A cloak is a device that makes objects the quantum confined Stark effect) and, invisible to an external observer. The first therefore, affects the time it takes for these Microbubbles, which are typically made cloaks that could work with visible light charges to recombine and ultimately the up of a lipid or protein shell and contain air used bulky containers with special optical intensity of the luminescence emitted.
    [Show full text]
  • Goessmann, Lindsey, Chamberlain, Peters, and Mcewen, Research Symposium
    GOE SSMANNgazette A Publication of the Chemistry Department University of Massachusetts Amherst www.chem.umass.edu VOLUME 44 – SPRING 2015 INSIDE Alumni News ............................2 by David Adams Points of Pride ...........................4 Chemistry Loses a Dear Friend Lab Notes .................................5 Dissertation Seminars .............21 On April 14th one of the towering figures of the Chemistry Seminar Program ....................20 Department, Professor George R. Richason, Jr. passed away Senior Awards Dinner .............22 at Cooley Dickinson Hospital in Northampton. Alongside Degrees Awarded ...................22 Goessmann, Lindsey, Chamberlain, Peters, and McEwen, Research Symposium ..............23 George takes his place among the chemists who shaped Friends of Chemistry ...............26 and propelled the department to national and international Letter from Head ....................28 quality and recognition. In George’s case, he was part of EVENTS for 2015 the Chemistry Department for 82 of its 146 year history! His contributions to the department and the university Five College Seminar were profound, widespread, and legendary. In many Prof. Phil Baran Scripps Institute respects he truly was “Mr. UMass.” March 10, 2015 In the early 1930s, George, born in the Riverside Marvin Rausch Lectureship Prof. Karl Wieghardt section of Turner’s Falls on April 3, 1916, participated in Max-Planck-Institut-Mülheim basketball tournaments on the Amherst campus of the then April 9, 2015 Massachusetts Agricultural College (MAC). MAC became Senior Awards Dinner Massachusetts State College in 1931, and George April 29, 2015 matriculated at MSC in the fall of 1933. Early in his undergraduate career the basketball coach Getting to Know Our Newest Alumni Reunion 2015 June 6, 2015 encouraged him to join the State basketball team Faculty Members after watching him play in Curry Hicks Cage.
    [Show full text]
  • “Highly Crystalline Multimetallic Nanoframes with Three
    Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces Chen Chen et al. Science 343, 1339 (2014); DOI: 10.1126/science.1249061 This copy is for your personal, non-commercial use only. If you wish to distribute this article to others, you can order high-quality copies for your colleagues, clients, or customers by clicking here. Permission to republish or repurpose articles or portions of articles can be obtained by following the guidelines here. The following resources related to this article are available online at www.sciencemag.org (this information is current as of June 10, 2014 ): Updated information and services, including high-resolution figures, can be found in the online on June 10, 2014 version of this article at: http://www.sciencemag.org/content/343/6177/1339.full.html Supporting Online Material can be found at: http://www.sciencemag.org/content/suppl/2014/02/26/science.1249061.DC1.html A list of selected additional articles on the Science Web sites related to this article can be found at: http://www.sciencemag.org/content/343/6177/1339.full.html#related www.sciencemag.org This article cites 38 articles, 9 of which can be accessed free: http://www.sciencemag.org/content/343/6177/1339.full.html#ref-list-1 This article has been cited by 1 articles hosted by HighWire Press; see: http://www.sciencemag.org/content/343/6177/1339.full.html#related-urls This article appears in the following subject collections: Chemistry http://www.sciencemag.org/cgi/collection/chemistry Downloaded from Science (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005.
    [Show full text]
  • Integration of Colloidal Nanocrystals Into Lithographically Patterned
    NANO LETTERS 2004 Integration of Colloidal Nanocrystals Vol. 4, No. 6 into Lithographically Patterned Devices 1093-1098 Yi Cui,†,‡ Mikael T. Bjo1rk,‡ J. Alexander Liddle,‡ Carsten So1nnichsen,‡ Benjamin Boussert,† and A. Paul Alivisatos*,†,‡ Department of Chemistry, UniVersity of California, Berkeley, California 94720, and Materials Sciences DiVision, Lawrence Berkeley National Laboratory, Berkeley, California 94720 Received April 5, 2004 ABSTRACT We report a facile method for reproducibly fabricating large-scale device arrays, suitable for nanoelectronics or nanophotonics, that incorporate a controlled number of sub-50-nm-diameter nanocrystals at lithographically defined precise locations on a chip and within a circuit. The interfacial capillary force present during the evaporation of a nanocrystal suspension forms the basis of the assembly mechnism. Our results demonstrate for the first time that macromolecule size particles down to 2-nm diameter and complex nanostructures such as nanotetrapods can be effectively organized by the capillary interaction. This approach integrates the merits of bottom-up solution-processed nanostructures with top-down lithographically prepared devices and has the potential to be scaled up to wafer size for a large number of functional nanoelectronics and nanophotonics applications. Colloidal nanostructures such as metal nanocrystals1,2 and silica particles have been successfully organized into litho- semiconductor quantum dots,3,4 nanorods,5 and nanotetra- graphically patterned templates18 by the capillary force, pods6 with precisely controlled sizes in the range of 1 to forming highly ordered structures, although the diameters 100 nm exhibit a range of behaviors distinct from those of of the particles are typically submicrometer. nanostructures fabricated by vacuum deposition or lithog- It is not obvious whether this approach can be effectively raphy and are promising building units for nanotechnology.
    [Show full text]
  • SEMINAR Peidong Yang
    Institute for Collaborative Biotechnologies SEMINAR Tuesday, May 22, 2007 3:00 pm / Refreshments at 2:45 pm 1001 Engineering Science Building Peidong Yang Associate Professor, Department of Chemistry and Materials Science and Engineering, University of California, Berkeley Nanowire Photonics The manipulation of optical energy in structures smaller than the wavelength of light is key to the development of integrated photonic devices for computing, communications and sensing. Wide band gap semiconductor nanostructures with near-cylindrical geometry and large dielectric constants exhibit two- dimensional ultraviolet and visible photonic confinement (i.e. waveguiding). Combined with optical gain, the waveguiding behavior facilitates highly directional lasing at room temperature in controlled-growth nanowires with suitable resonant feedback. We have further explored the properties and functions of individual ultralong crystalline oxide nanoribbons that act as subwavelength optical waveguides, nonlinear frequency converter and assess their applicability as nanoscale photonic elements and scanning probes. Semiconductor nanowires offer a versatile photonic platform due to the ability to specify material size, shape, and composition. The integration of multiple unique materials with distinct thermal, optoelectronic, and mechanical properties promises to enable advances for several applications ranging from information processing to biochemical sensing. Biography Professor Peidong Yang received a B.S. in chemistry from University of Science and Technology of China in 1993 and a Ph.D. in chemistry from Harvard University in 1997 for work on flux line pinning in the laboratory of Professor Charles Lieber. He then did postdoctoral research in the area of mesoporous materials with Professor Galen Stucky at University of California, Santa Barbara. He began his faculty appointment in the Department of Chemistry at the University of California, Berkeley on July 1, 1999.
    [Show full text]
  • A Day of Rage in Greece As Debt Worries Mount
    O C V ΓΡΑΦΕΙ ΤΗΝ ΙΣΤΟΡΙΑ Bringing the news ΤΟΥ ΕΛΛΗΝΙΣΜΟΥ to generations of ΑΠΟ ΤΟ 1915 The National Herald Greek Americans c v A wEEkly GREEk AMERICAN PuBlICATION www.thenationalherald.com VOL. 14, ISSUE 698 February 26-March 4 , 2011 $1.50 A Day of Rage in Greece as Debt Worries Mount Back to the Drach? Some Analysts Say Restructuring Inevitable, Is Coming ATHENS – Pumped up by up - loans over three years to keep risings in other countries, more the country from going bank - than 30,000 protesters furious rupt. Prime Minister George Pa - over government-imposed pay pandreou has acknowledged cuts for public workers, tax that generations of profligate hikes and an international cadre overspending by different gov - of lenders who have nearly ernment administrations has taken control of the country’s fi - created the crisis he said left nances, clashed with riot police him no chance but to seek in - on Feb. 23 during a day-long ternational help, but at a price general strike that shut down many citizens said is too heavy businesses, services and trans - and has exempted the rich and portation. Graffiti calling for a politicians they blame for the “Day of Rage,” the calling cry of dilemma. Protesters chanting demonstrators who overthrew “Don’t obey the rich — Fight the Egyptian government and back!” marched to Parliament set off a spate of uprisings in as the city center was heavily Yemen and Libya and unease in policed. northern Africa and the ISLANDS NOT FOR SALE Mideast, was sprawled on walls The assault on Parliament, in the capital
    [Show full text]
  • Library Director and University Librarian
    LIBRARY DIRECTOR AND UNIVERSITY LIBRARIAN The University of Chicago invites applications and nominations for the position of Library Director and University Librarian. Reporting to the Provost, the Library Director is a critical partner in, and facilitator of, the rigorous intellectual engagement that characterizes the University of Chicago. The new Library Director will have a tremendous opportunity to work across the entire university, building upon the Library’s exceptional service-oriented culture in order to further the rigorous academic goals of the University. Working with a team of approximately 200 talented and dedicated library staff, the new Library Director will lead the process of developing and implementing a comprehensive strategic vision for the future of the Library, in terms of both its role within the University ecosystem and its relationship to the fast-changing world of information management. The new Library Director will be an experienced and effective leader who will be a champion for the centrality of the library in an academic research university. The new Library Director should bring a creative, intellectual, and collaborative spirit to the challenge of making a library that is already well respected and beloved for the depth of its collections and prominence both on- and off-campus even more central to the University of Chicago’s mission and even more recognized around the nation and world. The Joseph Regenstein Library University of Chicago, Library Director and University Librarian Page 2 ABOUT THE UNIVERSITY The University of Chicago is a research university in a dynamic urban setting that has driven new ways of thinking since 1890.
    [Show full text]
  • A. Paul Alivisatos to Receive 2011 Von Hippel Award for Colloidal
    SOCIETY NEWS of these quantum dots may enable new types of solar photovoltaic and solar A. Paul Alivisatos fuel generators. In the last decade, Alivisatos has to receive 2011 demonstrated the emergence of “arti¿ cial molecules,” where small numbers of col- Von Hippel Award loidal nanoparticles are joined together into speci¿ c “molecular” arrangements for colloidal nanoparticles with controlled symmetry and connectiv- ity. These new “molecular” systems have opened a new area of materials for discovery and innovation. An important breakthrough by Alivisatos he 2011 Von Hippel Award, the and growth, as well as the time scales in this area has been the demonstration TMaterial Research Society’s high- involved, and upon the concept of “size of the “plasmon ruler,” which, for ex- est honor, will be presented to A. Paul distribution focusing,” in which the ample, can measure the distance between Alivisatos, director of the Lawrence distribution of nanoparticle sizes is nar- two Au nanocrystals joined by DNA or Berkeley National Laboratory and Larry rowed when small particles grow faster peptides to measure dynamical distance and Diane Bock Professor of Nanotech- than large ones. Proof of the high quality changes in biological systems. nology, University of California–Berke- of nanocrystals is gleaned from studies Another important area Alivisatos ley. Alivisatos is being recognized for of optical properties, as well as from has pioneered is the study of chemical “the development of the fundamental studies of the structural transformations transformations of colloidal nanocrys- scienti¿ c basis for growing and utiliz- of nanoparticles under high pressure, tals. He has also demonstrated methods ing defect-free colloidal semiconductor demonstrating the absence of defects.
    [Show full text]
  • Public Lecture
    Queensland Micro- and Nanotechnology Centre PUBLIC LECTURE Speaker: Professor Peidong Yang Department of Chemistry and Department of Materials Science Engineering, University of California, Berkeley; Materials Science Division, Lawrence Berkeley National Lab, Berkeley CA, USA http://nanowires.berkeley.edu/ Date: Friday 15 December 2017 Time: 11:00 am – 12:00 pm Venue: Sir Samuel Griffith Centre (N78) Room 1.19, Griffith University, Nathan Campus Title: CO2 + H2O + Sunlight = Chemical Fuels + O2 Abstract Solar-to-chemical (STC) production using a fully integrated system is an attractive goal, but to-date there has yet to be a system that can demonstrate the required efficiency, durability, or be manufactured at a reasonable cost. One can learn a great deal from the natural photosynthesis where the conversion of carbon dioxide and water to carbohydrates is routinely carried out at a highly coordinated system level. There are several key features worth mentioning in these systems: spatial and directional arrangement of the light-harvesting components, charge separation and transport, as well as the desired chemical conversion at catalytic sites in compartmentalized spaces. In order to design an efficient artificial photosynthetic materials system, at the level of the individual components: better catalysts need to be developed, new light-absorbing semiconductor materials will need to be discovered, architectures will need to be designed for effective capture and conversion of sunlight, and more importantly, processes need to be developed for the efficient coupling and integration of the components into a complete artificial photosynthetic system. In this talk, I will begin by discussing the challenges associated with fixing CO2 through traditional chemical catalytic means, contrasted with the advantages and strategies that biology employs through enzymatic catalysts to produce more complex molecules at higher selectivity and efficiency.
    [Show full text]
  • Artificial Photosynthesis for Sustainable Fuel and Chemical Production Dohyung Kim, Kelsey K
    Angewandte. Minireviews P. Yang et al. DOI: 10.1002/anie.201409116 Heterogeneous Catalysis Special Issue 150 Years of BASF Artificial Photosynthesis for Sustainable Fuel and Chemical Production Dohyung Kim, Kelsey K. Sakimoto, Dachao Hong, and Peidong Yang* artificial photosynthesis · carbon dioxide reduction · heterogeneous catalysis · sustainable chemistry · water splitting The apparent incongruity between the increasing consumption of fuels and chemicals and the finite amount of resources has led us to seek means to maintain the sustainability of our society. Artificial photo- synthesis, which utilizes sunlight to create high-value chemicals from abundant resources, is considered as the most promising and viable method. This Minireview describes the progress and challenges in the field of artificial photosynthesis in terms of its key components: developments in photoelectrochemical water splitting and recent progress in electrochemical CO2 reduction. Advances in catalysis, face require an efficient method to concerning the use of renewable hydrogen as a feedstock for major convert raw materials into useful fuels chemical production, are outlined to shed light on the ultimate role of and chemicals, to make the flow of energy and matter bidirectional, and artificial photosynthesis in achieving sustainable chemistry. help maintain a balance between pro- duction and consumption. For the efficient and sustainable 1. Introduction production of fuels and chemicals, the method to be developed has to utilize energy and resources that are In every aspect of our lives, we rely on fuels and chemicals, naturally abundant and easily renewable. Artificial photo- whose usefulness is typically exhausted once consumed. With synthesis uses solar power, which can provide up to 105 TW of the growing population and technological advances, this energy, to convert raw materials like water and CO2 to useful [3] unidirectional flow of energy and matter has grown signifi- chemicals, e.g., H2, CO, and hydrocarbons.
    [Show full text]
  • Nano and Energy: Powerful Things from a Tiny World
    and ENERGY POWERFUL Things from a TINY WORLD Think big. Really BIG. Think about all the people on Earth— over 7 billion of them and counting. Think about all the energy those people use every day: to light, heat, and cool homes, schools, and office buildings—to refrigerate and cook food—to power computers and communications—to fuel cars, buses, trains, and airplanes—to make fertilizer for increasing the yield of crops—and to manufacture products. Because of the promise of nanotechnology to improve lives and to contribute to economic growth and energy independence, the Federal Government is supporting research in nanotechnology through the guiding efforts of the U.S. National Nanotechnology Initiative (NNI). As a result of these efforts, the United States is a global leader in nanotechnology development. iStockphoto iStockphoto We use a LOT of energy, estimated to amount to over 1.3 quadrillion British Thermal Units (BTUs) or about 1.4 million terajoules per day from all sources. In the U.S. alone, energy costs run about $1 trillion per year, almost 10 percent of the Gross Domestic Product (GDP). Today, most energy comes from fossil fuels: crude oil, coal, and natural gas. Fossil fuels are refined into gasoline, diesel, or other fuels, or converted into other forms of energy such as electricity, which in turn power motors, lights, furnaces, air conditioners, vehicles, and manufacturing equipment. Projected Global Energy Demand 50 Renewables Nuclear 40 Coal Petroleum 30 Natural Gas 20 (Terawatts) Primary Power 10 0 2100 2090 2080 2070 2060 2050 2040 2030 2020 2010 2000 1990 Year Projected global energy demand through the year 2100 is based on scenarios developed by the International Panel on Climate Change.
    [Show full text]
  • Downloaded from Course at a University
    Lawrence Berkeley National Laboratory Recent Work Title Nanoscience — Potential and Threats Permalink https://escholarship.org/uc/item/1dg6c6xf Journal Molecular Frontiers Journal, 01(01) ISSN 2529-7325 Author Alivisatos, Paul Publication Date 2017-06-01 DOI 10.1142/s2529732517400077 Peer reviewed eScholarship.org Powered by the California Digital Library University of California MOLECULAR FRONTIERS JOURNAL Nanoscience — Potential and Threats* Paul Alivisatos1 As the world’s population continues to expand, scientists are working to address the energy needs and challenges that accompany growth with environmentally responsible approaches. Nanoscience is helping to provide solutions to energy and environmental concerns in a number of ways. Keywords : Nanoscience; Energy; Environment; Carbon Cycle 2.0 Initiative. It’s really fun to be part of a Molecular Frontiers Symposium. off. And so we will have greater and greater energy use by a This is where you can think about deeper questions that may- larger number of people and therefore we know that there’s be come up in your own discipline each day by joining with going to be a big crunch coming. And the question is how others and of course to interact with people who are early in can we also organize ourselves, as a science community, to their careers and try to get them interested. The title of my meet some of those demands. And I wear another hat as a talk which was given to me, seeks an explanation of nano- laboratory director with a laboratory that has a few thousand science, both its advantages and its potential problems, and people working at it, so many of them on energy and environ- to do this within the context of the energy and environment ment problems, and there too we have to think how we can problem.
    [Show full text]