The Muscular Dystrophies Victor Dubowitz Department Ofpaediatrics and Neonatal Medicine, Royal Postgraduate Medical School, Hammersmith Hospital, London W12 ONN, UK

Total Page:16

File Type:pdf, Size:1020Kb

The Muscular Dystrophies Victor Dubowitz Department Ofpaediatrics and Neonatal Medicine, Royal Postgraduate Medical School, Hammersmith Hospital, London W12 ONN, UK Postgrad Med J: first published as 10.1136/pgmj.68.801.500 on 1 July 1992. Downloaded from Postgrad Med J (1992) 68, 500- 506 © The Fellowship of Postgraduate Medicine, 1992 The muscular dystrophies Victor Dubowitz Department ofPaediatrics and Neonatal Medicine, Royal Postgraduate Medical School, Hammersmith Hospital, London W12 ONN, UK Introduction In 1879 William Gowers, the eminent British The main breakthrough has been in Duchenne neurologist, painted a remarkably lucid word pic- and Becker muscular dystrophy, or the Xp2l ture of Duchenne muscular dystrophy in his series dystrophies as some would now have us call them. of lectures on pseudohypertrophic muscular The location of the gene for the X-linked paralysis, published in the Lancet.' This disease, he Emery-Dreifuss muscular dystrophy on the long said, is one of the most interesting, and at the same arm of the X chromosome at Xq28 was discovered time most sad, of all those with which we have to a few years back3 but there has as yet been no deal; interesting because ofits peculiar features and further progress in its resolution. The locus for the mysterious nature; sad on account of our dominantly inherited facioscapulohumeral dyst- powerlessness to influence its course. rophy on the long arm of chromosome 4 has only Almost exactly a century later Duchenne dys- recently been found4 and other dystrophies such as trophy found itself at the centre of one of the most the autosomal recessive congenital dystrophy and exciting breakthroughs in the modern science of limb girdle dystrophy will undoubtedly follow suit molecular genetics. It was the first genetic disorder once sufficient collaborative clinical and laboratory in which a previously unknown biochemical abnor- effort is concentrated on them. copyright. mality was resolved by the process of reversed genetics, with initial location, isolation and cloning of the gene and then identifying the protein it The Duchenne dystrophy story encodes. Moreover, we now seem to be on the verge of treating the disease by one or other of the Locating the gene potential routes of gene therapy. This would cer- tainly have delighted Gowers. At the same time The discovery of the gene locus for Duchenne molecular genetics has generated a most complex dystrophy at Xp2l came, almost simultaneously, http://pmj.bmj.com/ and almost totally incomprehensible newjargon of from three sources. Through the application of the its own, which must surely have turned Gowers in new techniques of molecular genetics it became his grave. possible to isolate DNA sequences from cloned The muscular dystrophies, a term first coined by fragments derived from the human X chromosome Erb in 1891, are a group of genetically determined and to determine their exact location. Duchenne disorders characterized by degeneration of skeletal dystrophy was the first disease to be localized in this muscle and no associated structural abnormality in way by linkage with these restriction fragment on September 30, 2021 by guest. Protected the central or peripheral nervous system. They have length polymorphisms (RFLPs).5 Secondly, a been subdivided into various clinical types on the number of documented females with Duchenne basis of the clinical distribution and severity of dystrophy associated with an X:autosomal trans- muscle weakness, and the mode ofinheritance. The location all had the breakpoint on the X rate of progression of the disease is also variable chromosome at this locus. Thirdly, a number of and some, such as congenital muscular dystrophy, cases of Duchenne dystrophy with associated X- may remain relatively static or even show func- linked disorders, such as chronic granulomatous tional improvement over time. Some of the animal disease, retinitis pigmentosa and McLeod's synd- models of the dystrophies may be devoid of any rome were found to have a cytogenetically visible clinical weakness as may some of the milder deletion at the same site.6 Linkage studies in cases variants of, for example, Becker dystrophy, which of Becker dystrophy pointed to the same locus, can present solely with cramps on exercise.1'2 confirming that the two conditions are allelic and due to abnormalities in the same gene. This fits in with the clinical observation that Becker dystrophy has a similar clinical pattern to Duchenne apart Correspondence: Professor V. Dubowitz, M.D., Ph.D., from its later onset and milder course and that there F.R.C.P., D.C.H. is an overlap of cases between the two.' Postgrad Med J: first published as 10.1136/pgmj.68.801.500 on 1 July 1992. Downloaded from THE MUSCULAR DYSTROPHIES 501 The clinical phenotype of cDNA probes covering the whole dystrophin gene. This enables one (in a blood sample) to detect Although it can be argued that all cases ofmuscular exon deletions within the gene, which occur in dystrophy associated with the Xp2l gene form a about 50-60% of all Duchenne as well as Becker continuous clinical spectrum of a single disease, it cases. This has considerably increased the diagnos- would be helpful to have some degree of interna- tic potential in carrier detection and antenatal tional consensus on the definition of the different diagnosis (with chorionic villus biopsy in early grades of severity of Xp21 disease, in order to at pregnancy), and also the accurate diagnosis of least be able to compare data from one laboratory isolated cases particularly of Becker dystrophy with those from another. It is of course also which may have been misdiagnosed as spinal important from the point ofview ofthe patient and muscular atrophy on the misinterpretation of his family to be able to give some form ofprognosis atrophic fibres in the muscle biopsy, or as and appropriate supportive therapy. autosomal limb girdle dystrophy. It has also helped The vast majority of boys with Duchenne mus- to confirm the diagnosis of Becker dystrophy in cular dystrophy lose the ability to walk cases presenting with cramps on exercise, a com- independently by the age of 12 years. If one defines mon and well-recognized presenting symptom.' Becker dystrophy as maintaining independent Some ofthese cases have no detectable weakness or ambulation beyond the 16th birthday, this clearly disability but have a grossly elevated creatine separates the two phenotypes and also recognizes kinase and a dystrophic muscle biopsy. cases of intermediate severity which bridge the gap Contrary to early speculations, neither the size of between the two and lose ambulation between 13 the deletion nor the location-bears any consistent and 16 years. One can then dispense with ill-defined relation to the severity ofthe clinical condition. In a terms such as 'outliers' or 'mild Duchenne' or review of 218 of our patients with Duchenne, 'severe Becker'. There is of course considerable Becker or intermediate phenotypes, 124 had dele- variability within the Becker group with some cases tions with the cDNA probes.' Seventy-four remaining ambulant and practically free of separate deletions were found,with 55 being unique disability into late adult life and others having to one patient and the remaining 19 occurring in at copyright. considerable disability already in their late teens. least two unrelated patients. Some deletions such as Similarly within the Duchenne group some cases of exons 33-34 and 33-35 occurred only with may already be unable to walk by 6 or 7 years of Becker patients and of exons 3-7 in four patients age. with intermediate severity and one Becker. We also found no correlation of associated mental retarda- tion with any selective deletions. Isolating, cloning and characterizing the gene In order to explain the varying clinical severity, Monaco et al." postulated that in Duchenne http://pmj.bmj.com/ The isolation of the gene was achieved by Kunkel dystrophy the deletion, irrespective of size, leads to and his colleagues by an ingenious approach of a frame shift of the triplet codons for amino acids preparing a library ofcloned sequences correspond- resulting in a severely truncated non-functional ing to the DNA deleted in a patient with Duchenne protein, whereas in Becker dystrophy the dystrophy, chronic granulomatous disease, nucleotides remain in frame, and can produce a retinitis pigmentosa and McLeod's syndrome and a functional protein, although reduced in size. Over visible deletion in the Xp2l region.7 This was 90% of cases with deletions conform to this on September 30, 2021 by guest. Protected followed within a comparatively short period of hypothesis. There have, however, been some excep- time by the complete cloning of the gene,8 and the tions. Thus Malhotra et al.'2 demonstrated a 3-7 discovery of the protein product of the gene, which exon deletion, with disruption of the translational they named dystrophin.9 The gene is a gigantic size, frame, in six Becker, five intermediate and two encompassing over 2,000 kilobases (2 million base Duchenne cases, and postulated mechanisms that pairs), with over 60 exons spanning the gene. might compensate for the effects of the frame shift Dystrophin is a correspondingly large protein of in the milder cases. over 400 kilodalton in size, but with very low abundance, comprising only about 0.002% oftotal Dystrophin in muscle biopsies striated muscle protein. In their initial biochemical studies of dystrophin in relation to Duchenne and Becker muscular dyst- Clinical applications rophies and other neuromuscular disorders, Hoffman et al.'3 concluded that dystrophin was Gene deletions absent in severe Duchenne dystrophy, was present Kunkel's group have produced, and made but of abnormal molecular size in mild Becker available to genetic laboratories worldwide, a series muscular dystrophy, and was present in normal Postgrad Med J: first published as 10.1136/pgmj.68.801.500 on 1 July 1992. Downloaded from 502 V. DUBOWITZ amounts and size in other forms of muscular In addition to the original Hoffman antibodies, dystrophy.
Recommended publications
  • Mcleod Neuroacanthocytosis Syndrome
    NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health. Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993- 2017. McLeod Neuroacanthocytosis Syndrome Hans H Jung, MD Department of Neurology University Hospital Zurich Zurich, Switzerland [email protected] Adrian Danek, MD Neurologische Klinik Ludwig-Maximilians-Universität München, Germany ed.uml@kenad Ruth H Walker, MD, MBBS, PhD Department of Neurology Veterans Affairs Medical Center Bronx, New York [email protected] Beat M Frey, MD Blood Transfusion Service Swiss Red Cross Schlieren/Zürich, Switzerland [email protected] Christoph Gassner, PhD Blood Transfusion Service Swiss Red Cross Schlieren/Zürich, Switzerland [email protected] Initial Posting: December 3, 2004; Last Update: May 17, 2012. Summary Clinical characteristics. McLeod neuroacanthocytosis syndrome (designated as MLS throughout this review) is a multisystem disorder with central nervous system (CNS), neuromuscular, and hematologic manifestations in males. CNS manifestations are a neurodegenerative basal ganglia disease including (1) movement disorders, (2) cognitive alterations, and (3) psychiatric symptoms. Neuromuscular manifestations include a (mostly subclinical) sensorimotor axonopathy and muscle weakness or atrophy of different degrees. Hematologically, MLS is defined as a specific blood group phenotype (named after the first proband, Hugh McLeod) that results from absent expression of the Kx erythrocyte antigen and weakened expression of Kell blood group antigens. The hematologic manifestations are red blood cell acanthocytosis and compensated hemolysis. Allo-antibodies in the Kell and Kx blood group system can cause strong reactions to transfusions of incompatible blood and severe anemia in newborns of Kell-negative mothers.
    [Show full text]
  • Peripheral Neuropathy in Complex Inherited Diseases: an Approach To
    PERIPHERAL NEUROPATHY IN COMPLEX INHERITED DISEASES: AN APPROACH TO DIAGNOSIS Rossor AM1*, Carr AS1*, Devine H1, Chandrashekar H2, Pelayo-Negro AL1, Pareyson D3, Shy ME4, Scherer SS5, Reilly MM1. 1. MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, UK. 2. Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, UK. 3. Unit of Neurological Rare Diseases of Adulthood, Carlo Besta Neurological Institute IRCCS Foundation, Milan, Italy. 4. Department of Neurology, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA 5. Department of Neurology, University of Pennsylvania, Philadelphia, PA 19014, USA. * These authors contributed equally to this work Corresponding author: Mary M Reilly Address: MRC Centre for Neuromuscular Diseases, 8-11 Queen Square, London, WC1N 3BG, UK. Email: [email protected] Telephone: 0044 (0) 203 456 7890 Word count: 4825 ABSTRACT Peripheral neuropathy is a common finding in patients with complex inherited neurological diseases and may be subclinical or a major component of the phenotype. This review aims to provide a clinical approach to the diagnosis of this complex group of patients by addressing key questions including the predominant neurological syndrome associated with the neuropathy e.g. spasticity, the type of neuropathy, and the other neurological and non- neurological features of the syndrome. Priority is given to the diagnosis of treatable conditions. Using this approach, we associated neuropathy with one of three major syndromic categories - 1) ataxia, 2) spasticity, and 3) global neurodevelopmental impairment. Syndromes that do not fall easily into one of these three categories can be grouped according to the predominant system involved in addition to the neuropathy e.g.
    [Show full text]
  • Assessment of a Targeted Gene Panel for Identification of Genes Associated with Movement Disorders
    Supplementary Online Content Montaut S, Tranchant C, Drouot N, et al; French Parkinson’s and Movement Disorders Consortium. Assessment of a targeted gene panel for identification of genes associated with movement disorders. JAMA Neurol. Published online June 18, 2018. doi:10.1001/jamaneurol.2018.1478 eMethods. Supplemental methods. eTable 1. Name, phenotype and inheritance of the genes included in the panel. eTable 2. Probable pathogenic variants identified in a cohort of 23 patients with cerebellar ataxia using WES analysis. eTable 3. Negative cases in a cohort of 23 patients with cerebellar ataxia studied using WES analysis. eTable 4. Variants of unknown significance (VUSs) identified in the cohort. eFigure 1. Examples of pedigrees of cases with identified causative variants. eFigure 2. Pedigrees suggesting mendelian inheritance in negative cases. eFigure 3. Examples of pedigrees of cases with identified VUSs. eResults. Supplemental results. This supplementary material has been provided by the authors to give readers additional information about their work. © 2018 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 10/02/2021 eMethods. Supplemental methods Patients selection In the multicentric, prospective study, patients were selected from 25 French, 1 Luxembourg and 1 Algerian tertiary MDs centers between September 2014 and July 2016. Inclusion criteria were patients (1) who had developed one or several chronic MDs (2) with an age of onset below 40 years and/or presence of a family history of MDs. Patients suffering from essential tremor, tic or Gilles de la Tourette syndrome, pure cerebellar ataxia or with clinical/paraclinical findings suggestive of an acquired cause were excluded.
    [Show full text]
  • Ruth H. Walker, MB., Ch.B., Ph.D. Departments of Neurology, James J
    A flow chart for the evaluation of chorea Ruth H. Walker, MB., Ch.B., Ph.D. Departments of Neurology, James J. Peters Veterans Affairs Medical Center, Bronx, NY, and Mount Sinai School of Medicine, New York, NY [email protected] Patient with chorea Streptococcal? Age of Infant/child +ve Autosomal recessive/sporadic sore throat, rheumatic Sydenham's chorea Onset? heart disease ASO, anti-DNAse Lesch-Nyhan syndrome B titers Confirm with gene test Tardive dyskinesia Autosomal Adult X-linked Inheritance? Normal recessive Delayed Autosomal Medication- Yes Direct Check Yes Childhood onset, dominant Time course? gouty arthritis, MRI; normal induced? Immediate or side effect uric acid self-mutilation? Fe in basal dose related Calcium Acute infarct in ganglia ? deposition posterior limb of in basal internal capsule. ganglia. Diffusion- No No Pantothenate Phospholipase-associated CT scan weighted MRI Normal neurodegeneration kinase-associated Yes No Infantile bilateral neurodegeneration striatal necrosis •Mix blood 1:1 with 0.9% NaCl containing 10IU/ml heparin Yes Structural lesion; •Incubate at room temperature for 30-120 min on a shaker •Childhood onset PKAN: T2 weighted MRI Stroke, tumor •Take 5+ microphotographs from each wet preparation •Occasional later onset Yes Leigh’s syndrome, (phase-contrast microscope) •Pigmentary retinopathy MRI arteriovenous malformation, Lactate/ •Count cells with spicules: normal value < 6.3 % •Dystonia PANK2 Normal PLA2G6 other mitochrondial? Lubag •10% have acanthocytosis Ceruloplasmin? calcification (IBG1?), etc pyruvate No No Yes mutation? No mutation? Confirm with gene test Acanthocytosis? Filipino? Confirm with gene test Basal ganglia No No Typical phenotype = dystonia- necrosis? parkinsonism, but should be Other neurodegeneration considered in any Filipino with an Yes with brain iron unexplained movement disorder, Caudate Yes including women Yes Recent Post-infectious Accumulation disorder… nucleus FAHN, MPAN, BPAN… Yes infection? striatal necrosis •Full panel of 23 Kell abs usually available atrophy? Courtesy of Dr Hans H.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2010/0210567 A1 Bevec (43) Pub
    US 2010O2.10567A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0210567 A1 Bevec (43) Pub. Date: Aug. 19, 2010 (54) USE OF ATUFTSINASATHERAPEUTIC Publication Classification AGENT (51) Int. Cl. A638/07 (2006.01) (76) Inventor: Dorian Bevec, Germering (DE) C07K 5/103 (2006.01) A6IP35/00 (2006.01) Correspondence Address: A6IPL/I6 (2006.01) WINSTEAD PC A6IP3L/20 (2006.01) i. 2O1 US (52) U.S. Cl. ........................................... 514/18: 530/330 9 (US) (57) ABSTRACT (21) Appl. No.: 12/677,311 The present invention is directed to the use of the peptide compound Thr-Lys-Pro-Arg-OH as a therapeutic agent for (22) PCT Filed: Sep. 9, 2008 the prophylaxis and/or treatment of cancer, autoimmune dis eases, fibrotic diseases, inflammatory diseases, neurodegen (86). PCT No.: PCT/EP2008/007470 erative diseases, infectious diseases, lung diseases, heart and vascular diseases and metabolic diseases. Moreover the S371 (c)(1), present invention relates to pharmaceutical compositions (2), (4) Date: Mar. 10, 2010 preferably inform of a lyophilisate or liquid buffersolution or artificial mother milk formulation or mother milk substitute (30) Foreign Application Priority Data containing the peptide Thr-Lys-Pro-Arg-OH optionally together with at least one pharmaceutically acceptable car Sep. 11, 2007 (EP) .................................. O7017754.8 rier, cryoprotectant, lyoprotectant, excipient and/or diluent. US 2010/0210567 A1 Aug. 19, 2010 USE OF ATUFTSNASATHERAPEUTIC ment of Hepatitis BVirus infection, diseases caused by Hepa AGENT titis B Virus infection, acute hepatitis, chronic hepatitis, full minant liver failure, liver cirrhosis, cancer associated with Hepatitis B Virus infection. 0001. The present invention is directed to the use of the Cancer, Tumors, Proliferative Diseases, Malignancies and peptide compound Thr-Lys-Pro-Arg-OH (Tuftsin) as a thera their Metastases peutic agent for the prophylaxis and/or treatment of cancer, 0008.
    [Show full text]
  • Contiguous Gene Deletion of Chromosome Xp in Three Families
    Case Report iMedPub Journals Journal of Rare Disorders: Diagnosis & Therapy 2015 http://wwwimedpub.com ISSN 2380-7245 Vol. 1 No. 1:3 DOI: 10.21767/2380-7245.100003 Contiguous Gene Deletion of Shailly Jain-Ghai1,5, Stephanie Skinner1, Chromosome Xp in Three Families Jessica Hartley2,3, Encompassing OTC, RPGR and Stephanie Fox4, TSPAN7 Genes Daniela Buhas4, Cheryl Rockman- Greenberg2,3 and Alicia Chan1,5 Abstract Ornithine transcarbamylase deficiency (OTCD) is the most common urea cycle 1 Medical Genetics Clinic, Stollery disorder. The classic presentation in males is hyperammonemic encephalopathy Children's Hospital, Edmonton, Alberta, in the early neonatal period. Given the X-linked inheritance of OTCD, presentation Canada in females is highly variable. We present three families with different contiguous 2 Program in Genetics and Metabolism, Winnipeg Regional Health Authority gene deletions on chromosome Xp. Deletion ofRPGR , OTC and TSPAN7 is common and University of Manitoba, Winnipeg, to all three families in our series. These cases highlight the variable phenotype Manitoba, Canada in manifesting OTCD female carriers, the complexity of OTCD management and 3 Department of Biochemistry and complex issues surrounding the option of liver transplantation when multiple Medical Genetics, University of other genetic factors play a role. Manitoba, Winnipeg, Manitoba, Canada 4 Department of Medical Genetics, Keywords: Ornithine transcarbamylase; Ornithine transcarbamylase deficiency; Montreal Children’s Hospital, McGill Contiguous gene deletion;
    [Show full text]
  • Wo 2009/033784 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date (10) International Publication Number 19 March 2009 (19.03.2009) PCT WO 2009/033784 A2 (51) International Patent Classification: (74) Agent: ARTH, Hans-Lothar; ABK Patent Attorneys, Jas- A61K 38/17 (2006.01) A61P 11/00 (2006.01) minweg 9, 14052 Berlin (DE). A61K 38/01 (2006.01) A61P 25/28 (2006.01) A61P 31/18 (2006.01) A61P 31/00 (2006.01) (81) Designated States (unless otherwise indicated, for every A61P 3/00 (2006.01) A61P 35/00 (2006.01) kind of national protection available): AE, AG, AL, AM, A61P 9/00 (2006.01) A61P 37/00 (2006.01) AO, AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, (21) International Application Number: EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, PCT/EP2008/007968 IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, (22) International Filing Date: MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, 9 September 2008 (09.09.2008) RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (25) Filing Language: English ZW (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (30) Priority Data: GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, 07017766.2 11 September 2007 (11.09.2007) EP ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT,BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, (71) Applicant (for all designated States except US): MONDO- FR, GB, GR, HR, HU, IE, IS, IT, LT,LU, LV,MC, MT, NL, BIOTECH LABORATORIES AG [LLLI]; Herrengasse NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, 21, FL-9490 Vaduz (LI).
    [Show full text]
  • Unusual Muscle Pathology in Mcleod Syndrome
    J Neurol Neurosurg Psychiatry 2000;69:655–657 655 J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.69.5.655 on 1 November 2000. Downloaded from SHORT REPORT Unusual muscle pathology in McLeod syndrome M H Barnett, F Yang, H Iland, J D Pollard Abstract antigens, and the absence of the Kx antigen.4 Muscle pathology in McLeod syndrome is The responsible gene, XK, is located on chro- usually mild; patchy necrotic or regener- mosome Xp21, between the loci of chronic ating fibres, occasional internal nuclei, granulomatous disease and Duchenne muscu- and the absence of an inflammatory cell lar dystrophy5; rarely, these disorders may infiltrate are the usual findings. We report occur concurrently.67The muscle biopsy find- on a 29 year old man presenting with ings are variable, but usually subtle.2 We report chronic fatiguability and excessive sweat- on a patient with the McLeod phenotype and ing in whom an open quadriceps muscle striking atypical mononuclear cell infiltrates on biopsy demonstrated grouped necrotic muscle biopsy. fibres accompanied by striking patchy mononuclear cell infiltrates. The diagno- Case report sis of McLeod syndrome was made on the A 29 year old carpenter presented witha5year basis of red blood cell acanthocytosis, history of persistent fatigue and excessive raised serum creatine kinase, and weak sweating on minimal exertion, initially attrib- expression of Kell blood group antigens. uted to a febrile illness diagnosed as infectious The quadriceps muscle infiltrate con- mononucleosis. There were no classic night sisted principally of histologically typical sweats or weight loss, nor any myalgias or defi- copyright. macrophages.
    [Show full text]
  • Download CGT Exome V2.0
    CGT Exome version 2.
    [Show full text]
  • Genes Covered and Disorders Detected by X-HR Microarray
    UPMC Cytogenetics Laboratory X High Resolution Microarray GENES COVERED BY X-HR AND SYNDROMES DETECTED BY X-HR Gene Location Syndrome ABCB7 Xq12-q13 Anemia, sideroblastic, with ataxia ABCD1 Xq28 Adrenoleukodystrophy ACSL4 Xq22.3-q23 X-linked mental retardation AFF2 Xq28 Fragile X E (FRAXE) mental retardation AGTR2 Xq22-q23 Mental retardation, X-linked ALAS2 Xp11.21 Anemia, sideroblastic, X-linked AP1S2 Xp22.2 Mental retardation, X-linked AR Xq11.2-q12 Androgen insensitivity syndrome ARHGEF6 Xq26.3 Mental retardation, X-linked ARHGEF9 Xq11.1 X-linked mental retardation (XLMR)//Hyperekplexia and epilepsy ARSE Xp22.3 Chondrodysplasia punctata, X-linked recessive (CDPX) ARX Xp21 Infantile spasm syndrome, X-linked (ISSX), West, Proud, XLAG, Partington, multifocal epilepsy //Early infantile epileptic encephalopathy-1 (EIEE1)( X-linked infantile spasm syndrome-1-ISSX1) ATP6AP2 Xp11.4 Mental retardation, X-linked, with epilepsy (XMRE) ATP7A Xq13.2- Menkes disease (MNK) and occipital horn syndrome q13.3 ATRX Xq13.1- ATRX, XLMR-Hypotonic facies syndrome, ATR-X, and others q21.1 AVPR2 Xq28 Nephrogenic syndrome of inappropriate antidiuresis; NSI; Diabetes insipidus, nephrogenic BCOR Xp21.2- Microphthalmia syndromic (MCOPS2) p11.4 BMP15 Xp11.2 Ovarian dysgenesis 2 BRWD3 Xq21.1 Mental retardation, X-linked 93 BTK Xq21.33-q22 X-linked agammaglobulinemia CACNA1F Xp11.23 Aland Island eye disease CASK Xp11.4 X-linked mental retardation with microcephaly & disproportionate pontine and cerebellar hypoplasia (MICPCH) syndrome CD40LG Xq26 Immunodeficiency,
    [Show full text]
  • Female Carriers of Duchenne Muscular Dystrophy
    Review Article Journal of J Genet Med 2013;10(2):94-98 JGM Genetic Medicine http://dx.doi.org/10.5734/JGM.2013.10.2.94 ISSN 1226-1769 (Print) 2233-9108 (Online) Female Carriers of Duchenne Muscular Dystrophy Yu Na Cho and Young-Chul Choi* Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea Dystrophinopathy, caused by mutations in the DMD gene, presents with variable clinical phenotypes ranging from the severe Duchenne muscular dystrophy (DMD) to the milder Becker muscular dystrophy(BMD) forms. DMD is a recessive X-linked form of muscular dystrophy. Two-thirds of mothers of affected males are thought to be DMD carriers. Approximately 2.5-7.8% of female DMD carriers have muscle weakness and are categorized as manifesting DMD carriers. The symptoms of female carriers of DMD range from mild muscle weakness to severe gait problems. The most commonly presented symptom is mild proximal muscle weakness, which is often asymmetric and progressive, but shows variable clinical spectrum with BMD of more severe DMD-like phenotype. Atypical presentations in manifesting carriers are myalgia or cramps without limb weakness, isolated cardiomyopathy and camptocormia. Multiplex PCR and MLPA analysis are common techniques to identify mutations in the DMD gene. Relationship between X-chromosome inactivation and clinical severity is not clear. Female carriers of DMD are not less common, and they have an important role of birth of a male DMD. Key words: Dystrophinopathy, Duchenne muscular dystrophy, Female carrier, Multiplex ligation-dependent probe amplification Introduction males are thought to be DMD carriers. Approximately 2.5-7.8% of female DMD carriers have muscle weakness and are categorized as manifesting DMD carriers.1, 2, 4) Therefore, here we reviewed Duchenne muscular dystrophy (DMD) is a recessive X-linked recent studies to meet the need for a better understanding about form of muscular dystrophy.
    [Show full text]
  • Mcleod Neuroacanthocytosis Syndrome
    McLeod neuroacanthocytosis syndrome Description McLeod neuroacanthocytosis syndrome is primarily a neurological disorder that occurs almost exclusively in boys and men. This disorder affects movement in many parts of the body. People with McLeod neuroacanthocytosis syndrome also have abnormal star- shaped red blood cells (acanthocytosis). This condition is one of a group of disorders called neuroacanthocytoses that involve neurological problems and abnormal red blood cells. McLeod neuroacanthocytosis syndrome affects the brain and spinal cord (central nervous system). Affected individuals have involuntary movements, including jerking motions (chorea), particularly of the arms and legs, and muscle tensing (dystonia) in the face and throat, which can cause grimacing and vocal tics (such as grunting and clicking noises). Dystonia of the tongue can lead to swallowing difficulties. Seizures occur in approximately half of all people with McLeod neuroacanthocytosis syndrome. Individuals with this condition may develop difficulty processing, learning, and remembering information (cognitive impairment). They may also develop psychiatric disorders, such as depression, bipolar disorder, psychosis, or obsessive-compulsive disorder. People with McLeod neuroacanthocytosis syndrome also have problems with their muscles, including muscle weakness (myopathy) and muscle degeneration (atrophy). Sometimes, nerves that connect to muscles atrophy (neurogenic atrophy), leading to loss of muscle mass and impaired movement. Individuals with McLeod neuroacanthocytosis
    [Show full text]