Protocol of Jaguar Survey and Monitoring Techniques and Methodologies

Total Page:16

File Type:pdf, Size:1020Kb

Protocol of Jaguar Survey and Monitoring Techniques and Methodologies Protocol of Jaguar Survey and Monitoring Techniques and Methodologies A Submission to the U.S. Fish and Wildlife Service in Partial Fulfillment of Contract F13PX01563 16 October 2014 © Daniel Alarcon John Polisar, Sean M. Matthews, Rahel Sollman, Marcella J. Kelly, Jon P. Beckmann, Eric W. Sanderson, Kim Fisher, Melanie Culver, Rodrigo Núñez, Octavio C. Rosas Rosas, Carlos A. López González, Bart J. Harmsen, Tim G. O’Brien, Carlos De Angelo, and Fernando C. C. Azevedo TABLE OF CONTENTS Table of Contents ........................................................................................................................... i Table of Tables ............................................................................................................................. iv Table of Figures............................................................................................................................. v Executive Summary ...................................................................................................................... 1 Monitoring and Jaguar Conservation ......................................................................................... 4 Jaguars Across the Northwestern Recovery Unit ...................................................................... 7 Jaguars in the Americas............................................................................................................... 7 Range Retraction on the Limits of Jaguar Range ........................................................................ 7 Jaguar Conservation 1973 to Present .......................................................................................... 8 Jaguars in Mexico........................................................................................................................ 9 Monitoring Jaguars in the NRU and Range Wide..................................................................... 10 Jaguar Status and Habitats in the NRU ..................................................................................... 10 Borderlands Secondary Area ................................................................................................. 11 Sonora Core Area ................................................................................................................. 14 Sinaloa Secondary Area......................................................................................................... 17 Jalisco Core Area ................................................................................................................... 18 Presence-Absence and Occupancy ............................................................................................ 22 Practical Considerations ............................................................................................................ 22 Survey Protocol for Monitoring Jaguar Occupancy .................................................................. 24 Defining and Choosing Sample Units ................................................................................... 25 Spatial Coverage of the Sample Unit .................................................................................... 26 Sampling Duration ................................................................................................................. 26 Setting Cameras ..................................................................................................................... 27 Data Recording ...................................................................................................................... 29 Data Analysis ......................................................................................................................... 31 Equipment and Costs ............................................................................................................. 31 Logistical Challenges ............................................................................................................ 32 Occupancy Modeling ................................................................................................................ 33 Types of Occupancy Models ................................................................................................. 33 Pilot Data ............................................................................................................................... 35 Measuring Trends in Occupancy ........................................................................................... 35 Power Analysis ...................................................................................................................... 36 i Occupancy Modeling for Prey Species ................................................................................. 37 Sign-based Occupancy Sampling for Jaguars ....................................................................... 39 Conclusion ................................................................................................................................. 40 Abundance and Density .............................................................................................................. 42 Practical Considerations ............................................................................................................ 44 Survey Protocol for Monitoring Jaguar Abundance and Density ............................................. 47 Abundance/Density Estimation Field Techniques ................................................................ 47 Choosing Sampling Sites ....................................................................................................... 47 Trap Distance, Camera Numbers, and Spatial Extent ........................................................... 48 Genetic Sampling for Abundance and Density ..................................................................... 49 Sampling Duration ................................................................................................................. 50 Setting and Checking Cameras .............................................................................................. 51 Surveying with Scat-Detection Dogs .................................................................................... 52 Data Recording ...................................................................................................................... 52 Data Analysis ......................................................................................................................... 55 Equipment and Costs ............................................................................................................. 56 Logistical Challenges ............................................................................................................ 58 Capture-Recapture Modeling for Abundance and Density Estimation ..................................... 58 Types of Abundance/Density Models ................................................................................... 58 Pilot Data ............................................................................................................................... 61 Measuring Trends in Abundance/Density ............................................................................. 61 Conclusion ................................................................................................................................. 62 Population Genetics .................................................................................................................... 64 Jaguar Scat Collection ............................................................................................................... 65 Opportunistic Searches .......................................................................................................... 65 Scat Collection ....................................................................................................................... 65 Sampling Using Scat-Detection Dogs ................................................................................... 67 Equipment and Costs ............................................................................................................. 68 Laboratory Genetic Methods ..................................................................................................... 68 DNA Isolation From Scat ...................................................................................................... 68 Species Identification ............................................................................................................ 69 Individual Identification ........................................................................................................ 70 Costs ...................................................................................................................................... 70 Analysis of Jaguar Scat Genetic Data ....................................................................................... 70 ii Species Identification ............................................................................................................ 70 Individual Identification and Population Genetics ................................................................ 70 Demographic Parameters and Spatial Ecology ........................................................................ 71 Dispersal and Long-Distance Movements ...............................................................................
Recommended publications
  • The Red and Gray Fox
    The Red and Gray Fox There are five species of foxes found in North America but only two, the red (Vulpes vulpes), And the gray (Urocyon cinereoargentus) live in towns or cities. Fox are canids and close relatives of coyotes, wolves and domestic dogs. Foxes are not large animals, The red fox is the larger of the two typically weighing 7 to 5 pounds, and reaching as much as 3 feet in length (not including the tail, which can be as long as 1 to 1 and a half feet in length). Gray foxes rarely exceed 11 or 12 pounds and are often much smaller. Coloration among fox greatly varies, and it is not always a sure bet that a red colored fox is indeed a “red fox” and a gray colored fox is indeed a “gray fox. The one sure way to tell them apart is the white tip of a red fox’s tail. Gray Fox (Urocyon cinereoargentus) Red Fox (Vulpes vulpes) Regardless of which fox both prefer diverse habitats, including fields, woods, shrubby cover, farmland or other. Both species readily adapt to urban and suburban areas. Foxes are primarily nocturnal in urban areas but this is more an accommodation in avoiding other wildlife and humans. Just because you may see it during the day doesn’t necessarily mean it’s sick. Sometimes red fox will exhibit a brazenness that is so overt as to be disarming. A homeowner hanging laundry may watch a fox walk through the yard, going about its business, seemingly oblivious to the human nearby.
    [Show full text]
  • Vulpes Vulpes) Evolved Throughout History?
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Environmental Studies Undergraduate Student Theses Environmental Studies Program 2020 TO WHAT EXTENT HAS THE RELATIONSHIP BETWEEN HUMANS AND RED FOXES (VULPES VULPES) EVOLVED THROUGHOUT HISTORY? Abigail Misfeldt University of Nebraska-Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/envstudtheses Part of the Environmental Education Commons, Natural Resources and Conservation Commons, and the Sustainability Commons Disclaimer: The following thesis was produced in the Environmental Studies Program as a student senior capstone project. Misfeldt, Abigail, "TO WHAT EXTENT HAS THE RELATIONSHIP BETWEEN HUMANS AND RED FOXES (VULPES VULPES) EVOLVED THROUGHOUT HISTORY?" (2020). Environmental Studies Undergraduate Student Theses. 283. https://digitalcommons.unl.edu/envstudtheses/283 This Article is brought to you for free and open access by the Environmental Studies Program at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Environmental Studies Undergraduate Student Theses by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. TO WHAT EXTENT HAS THE RELATIONSHIP BETWEEN HUMANS AND RED FOXES (VULPES VULPES) EVOLVED THROUGHOUT HISTORY? By Abigail Misfeldt A THESIS Presented to the Faculty of The University of Nebraska-Lincoln In Partial Fulfillment of Requirements For the Degree of Bachelor of Science Major: Environmental Studies Under the Supervision of Dr. David Gosselin Lincoln, Nebraska November 2020 Abstract Red foxes are one of the few creatures able to adapt to living alongside humans as we have evolved. All humans and wildlife have some id of relationship, be it a friendly one or one of mutual hatred, or simply a neutral one. Through a systematic research review of legends, books, and journal articles, I mapped how humans and foxes have evolved together.
    [Show full text]
  • Asiatic Golden Cat in Thailand Population & Habitat Viability Assessment
    Asiatic Golden Cat in Thailand Population & Habitat Viability Assessment Chonburi, Thailand 5 - 7 September 2005 FINAL REPORT Photos courtesy of Ron Tilson, Sumatran Tiger Conservation Program (golden cat) and Kathy Traylor-Holzer, CBSG (habitat). A contribution of the IUCN/SSC Conservation Breeding Specialist Group. Traylor-Holzer, K., D. Reed, L. Tumbelaka, N. Andayani, C. Yeong, D. Ngoprasert, and P. Duengkae (eds.). 2005. Asiatic Golden Cat in Thailand Population and Habitat Viability Assessment: Final Report. IUCN/SSC Conservation Breeding Specialist Group, Apple Valley, MN. IUCN encourages meetings, workshops and other fora for the consideration and analysis of issues related to conservation, and believes that reports of these meetings are most useful when broadly disseminated. The opinions and views expressed by the authors may not necessarily reflect the formal policies of IUCN, its Commissions, its Secretariat or its members. The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. © Copyright CBSG 2005 Additional copies of Asiatic Golden Cat of Thailand Population and Habitat Viability Assessment can be ordered through the IUCN/SSC Conservation Breeding Specialist Group, 12101 Johnny Cake Ridge Road, Apple Valley, MN 55124, USA (www.cbsg.org). The CBSG Conservation Council These generous contributors make the work of CBSG possible Providers $50,000 and above Paignton Zoo Emporia Zoo Parco Natura Viva - Italy Laurie Bingaman Lackey Chicago Zoological Society Perth Zoo Lee Richardson Zoo -Chairman Sponsor Philadelphia Zoo Montgomery Zoo SeaWorld, Inc.
    [Show full text]
  • Assessing the Distribution and Habitat Use of Four Felid Species in Bukit Barisan Selatan National Park, Sumatra, Indonesia
    Global Ecology and Conservation 3 (2015) 210–221 Contents lists available at ScienceDirect Global Ecology and Conservation journal homepage: www.elsevier.com/locate/gecco Original research article Assessing the distribution and habitat use of four felid species in Bukit Barisan Selatan National Park, Sumatra, Indonesia Jennifer L. McCarthy a,∗, Hariyo T. Wibisono b,c, Kyle P. McCarthy b, Todd K. Fuller a, Noviar Andayani c a Department of Environmental Conservation, University of Massachusetts Amherst, 160 Holdsworth Way, Amherst, MA 01003, USA b Department of Entomology and Wildlife Ecology, University of Delaware, 248B Townsend Hall, Newark, DE 19716, USA c Wildlife Conservation Society—Indonesia Program, Jalan Atletik No. 8, Tanah Sareal, Bogor 16161, Indonesia article info a b s t r a c t Article history: There have been few targeted studies of small felids in Sumatra and there is little in- Received 24 October 2014 formation on their ecology. As a result there are no specific management plans for the Received in revised form 17 November species on Sumatra. We examined data from a long-term camera trapping effort, and used 2014 Maximum Entropy Modeling to assess the habitat use and distribution of Sunda clouded Accepted 17 November 2014 leopards (Neofelis diardi), Asiatic golden cats (Pardofelis temminckii), leopard cats (Pri- Available online 21 November 2014 onailurus bengalensis), and marbled cats (Pardofelis marmorata) in Bukit Barisan Sela- tan National Park. Over a period of 34,166 trap nights there were low photo rates (photo Keywords: Species distribution modeling events/100 trap nights) for all species; 0.30 for golden cats, 0.15 for clouded leopards, 0.10 Neofelis diardi for marbled cats, and 0.08 for leopard cats.
    [Show full text]
  • Rusty-Spotted Cat (Prionailurus Rubiginosus)
    12/02/2019 Rusty-spotted cat factsheet on Arkive - Prionailurus rubiginosus Rusty-spotted cat (Prionailurus rubiginosus) Synonyms: Felis rubiginosa French: Chat Rougeâtre, Chat Rubigineux, Chat-léopard De L'Inde Spanish: Gato Rojizo, Gato Rubiginosa Kingdom Animalia Phylum Chordata Class Mammalia Order Carnivora Family Felidae Genus Prionailurus (1) Size Head-body length: 35 – 48 cm (2) Tail length: 15 - 29 cm (3) Weight 0.8 – 1.6 kg (2) The rusty-spotted cat is classified as Near Threatened on the IUCN Red List (1). The Indian population is listed on Appendix I of CITES and the Sri Lankan population is listed on Appendix II (4). One of the smallest cat species in the world, the rusty-spotted cat (Prionailurus rubiginosus) has been called the hummingbird of the cat family, due to its small size, agility and activeness (2). About half the size of a domestic cat (2), the rusty-spotted cat has a short, soft, fawn-grey coat with a rufous tinge, covered with lines of small rusty-brown spots that form solid stripes along the back of the head (5), flanks and back (3). The underparts are white, marked with large spots and bars (2). The face has two dark streaks on each cheek, and four dark stripes that extend from the eyes, back between the ears to the shoulders (2). Its ears are small and rounded, and the tail is faintly marked with dark rings (5). Occurring in India and Sri Lanka, most records of the rusty-spotted cat are from southern India, but there are increasing reports from central and northern India (3) (5) and more recently in southwestern Nepal (6).
    [Show full text]
  • Sierra Nevada Red Fox (Vulpes Vulpes Necator): a Conservation Assessment
    Sierra Nevada Red Fox (Vulpes vulpes necator): A Conservation Assessment John D. Perrine * Environmental Science, Policy and Management Department and Museum of Vertebrate Zoology University of California, Berkeley Lori A. Campbell** USDA Forest Service Pacific Southwest Research Station Sierra Nevada Research Center Davis, California Gregory A. Green Tetra Tech EC Bothell, Washington Current address and contact information: *Primary Author: J. Perrine, Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407-0401 [email protected] **L. Campbell, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616 Perrine, Campbell and Green R5-FR-010 August 2010 NOTES IN PROOF • Genetic analyses by B. Sacks and others 2010 (Conservation Genetics 11:1523-1539) indicate that the Sacramento Valley red fox population is native to California and is closely related to the Sierra Nevada red fox. They designated the Sacramento Valley red fox as a new subspecies, V. v. patwin. • In August 2010, as this document was going to press, biologists on the Humboldt-Toiyabe National Forest detected a red fox at an automatic camera station near the Sonora Pass along the border of Tuolomne and Mono Counties. Preliminary genetic analyses conducted at UC Davis indicate that the fox was a Sierra Nevada red fox. Further surveys and analyses are planned. • The California Department of Fish and Game Region 1 Timber Harvest Program has established a Sierra Nevada red fox information portal, where many management-relevant documents can be downloaded as PDFs. See: https://r1.dfg.ca.gov/Portal/SierraNevadaRedFox/tabid/618/Default.aspx Sierra Nevada Red Fox Conservation Assessment EXECUTIVE SUMMARY This conservation assessment provides a science-based, comprehensive assessment of the status of the Sierra Nevada red fox (Vulpes vulpes necator) and its habitat.
    [Show full text]
  • Notes on the Biology of the Tibetan Fox (Vulpes Ferrilata)
    Harris et al. Biology of Tibetan fox Canid News Copyright © 2008 by the IUCN/SSC Canid Specialist Group. ISSN 1478-2677 The following is the established format for referencing this article: Harris et al. 2008. Notes on the biology of the Tibetan fox. Canid News 11.1 [online] URL: http://www.canids.org/canidnews/11/ Biology_of_Tibetan_fox.pdf. Research Report Notes on the biology of the Tibetan fox Richard B. Harris1*, Wang Zhenghuan2, Zhou Jiake1, and Liu Qunxiu2 1 Department of Ecosystem and Conservation Sciences, College of Forestry and Conservation, Univer- sity of Montana, Missoula, Montana, USA. 2 School of Life Science, East China Normal University, Shanghai, People’s Republic of China. * Correspondence author. Email: [email protected] Keywords: body size; brown bear; China; mating; Ursus arctos; Vulpes ferrilata; whelping Abstract Introduction We report on three aspects of the biology of Until recently, biological data on the Tibetan Tibetan foxes Vulpes ferrilata for which existing fox was gained mostly from anecdotal reports, literature is either absent or misleading. Our observations of their sign, or hunting records two field studies in western China each in- (e.g. Gong and Hu 2003; Schaller and Gisnberg volved capture (and subsequent radio- 2004; Wang et al. 2003, 2004, 2007). Because marking) of foxes, allowing us to refine exist- Tibetan foxes live in remote, mountainous en- ing information on body size and mass. Ti- vironments and are rarely observed in the betan foxes we captured were somewhat lar- wild, some aspects of their biology have been ger and heavier than the current literature difficult to document.
    [Show full text]
  • Hybrid Cats’ Position Statement, Hybrid Cats Dated January 2010
    NEWS & VIEWS AAFP Position Statement This Position Statement by the AAFP supersedes the AAFP’s earlier ‘Hybrid cats’ Position Statement, Hybrid cats dated January 2010. The American Association of Feline Practitioners (AAFP) strongly opposes the breeding of non-domestic cats to domestic cats and discourages ownership of early generation hybrid cats, due to concerns for public safety and animal welfare issues. Unnatural breeding between intended mates can make The AAFP strongly opposes breeding difficult. the unnatural breeding of non- Domestic cats have 38 domestic to domestic cats. This chromosomes, and most commonly includes both natural breeding bred non-domestic cats have 36 and artificial insemination. chromosomes. This chromosomal The AAFP opposes the discrepancy leads to difficulties unlicensed ownership of non- in producing live births. Gestation domestic cats (see AAFP’s periods often differ, so those ‘Ownership of non-domestic felids’ kittens may be born premature statement at catvets.com). The and undersized, if they even AAFP recognizes that the offspring survive. A domestic cat foster of cats bred between domestic mother is sometimes required cats and non-domestic (wild) cats to rear hybrid kittens because are gaining in popularity due to wild females may reject premature their novelty and beauty. or undersized kittens. Early There are two commonly seen generation males are usually hybrid cats. The Bengal (Figure 1), sterile, as are some females. with its spotted coat, is perhaps The first generation (F1) female the most popular hybrid, having its offspring of a domestic cat bred to origins in the 1960s. The Bengal a wild cat must then be mated back is a cross between the domestic to a domestic male (producing F2), cat and the Asian Leopard Cat.
    [Show full text]
  • Small Carnivores of Karnataka: Distribution and Sight Records1
    Journal of the Bombay Natural History Society, 104 (2), May-Aug 2007 155-162 SMALL CARNIVORES OF KARNATAKA SMALL CARNIVORES OF KARNATAKA: DISTRIBUTION AND SIGHT RECORDS1 H.N. KUMARA2,3 AND MEWA SINGH2,4 1Accepted November 2006 2 Biopsychology Laboratory, University of Mysore, Mysore 570 006, Karnataka, India. 3Email: [email protected] 4Email: [email protected] During a study from November 2001 to July 2004 on ecology and status of wild mammals in Karnataka, we sighted 143 animals belonging to 11 species of small carnivores of about 17 species that are expected to occur in the state of Karnataka. The sighted species included Leopard Cat, Rustyspotted Cat, Jungle Cat, Small Indian Civet, Asian Palm Civet, Brown Palm Civet, Common Mongoose, Ruddy Mongoose, Stripe-necked Mongoose and unidentified species of Otters. Malabar Civet, Fishing Cat, Brown Mongoose, Nilgiri Marten, and Ratel were not sighted during this study. The Western Ghats alone account for thirteen species of small carnivores of which six are endemic. The sighting of Rustyspotted Cat is the first report from Karnataka. Habitat loss and hunting are the major threats for the small carnivore survival in nature. The Small Indian Civet is exploited for commercial purpose. Hunting technique varies from guns to specially devised traps, and hunting of all the small carnivore species is common in the State. Key words: Felidae, Viverridae, Herpestidae, Mustelidae, Karnataka, threats INTRODUCTION (Mukherjee 1989; Mudappa 2001; Rajamani et al. 2003; Mukherjee et al. 2004). Other than these studies, most of the Mammals of the families Felidae, Viverridae, information on these animals comes from anecdotes or sight Herpestidae, Mustelidae and Procyonidae are generally records, which no doubt, have significantly contributed in called small carnivores.
    [Show full text]
  • Flat Headed Cat Andean Mountain Cat Discover the World's 33 Small
    Meet the Small Cats Discover the world’s 33 small cat species, found on 5 of the globe’s 7 continents. AMERICAS Weight Diet AFRICA Weight Diet 4kg; 8 lbs Andean Mountain Cat African Golden Cat 6-16 kg; 13-35 lbs Leopardus jacobita (single male) Caracal aurata Bobcat 4-18 kg; 9-39 lbs African Wildcat 2-7 kg; 4-15 lbs Lynx rufus Felis lybica Canadian Lynx 5-17 kg; 11-37 lbs Black Footed Cat 1-2 kg; 2-4 lbs Lynx canadensis Felis nigripes Georoys' Cat 3-7 kg; 7-15 lbs Caracal 7-26 kg; 16-57 lbs Leopardus georoyi Caracal caracal Güiña 2-3 kg; 4-6 lbs Sand Cat 2-3 kg; 4-6 lbs Leopardus guigna Felis margarita Jaguarundi 4-7 kg; 9-15 lbs Serval 6-18 kg; 13-39 lbs Herpailurus yagouaroundi Leptailurus serval Margay 3-4 kg; 7-9 lbs Leopardus wiedii EUROPE Weight Diet Ocelot 7-18 kg; 16-39 lbs Leopardus pardalis Eurasian Lynx 13-29 kg; 29-64 lbs Lynx lynx Oncilla 2-3 kg; 4-6 lbs Leopardus tigrinus European Wildcat 2-7 kg; 4-15 lbs Felis silvestris Pampas Cat 2-3 kg; 4-6 lbs Leopardus colocola Iberian Lynx 9-15 kg; 20-33 lbs Lynx pardinus Southern Tigrina 1-3 kg; 2-6 lbs Leopardus guttulus ASIA Weight Diet Weight Diet Asian Golden Cat 9-15 kg; 20-33 lbs Leopard Cat 1-7 kg; 2-15 lbs Catopuma temminckii Prionailurus bengalensis 2 kg; 4 lbs Bornean Bay Cat Marbled Cat 3-5 kg; 7-11 lbs Pardofelis badia (emaciated female) Pardofelis marmorata Chinese Mountain Cat 7-9 kg; 16-19 lbs Pallas's Cat 3-5 kg; 7-11 lbs Felis bieti Otocolobus manul Fishing Cat 6-16 kg; 14-35 lbs Rusty-Spotted Cat 1-2 kg; 2-4 lbs Prionailurus viverrinus Prionailurus rubiginosus Flat
    [Show full text]
  • 2019 Cat Specialist Group Report
    IUCN SSC Cat Specialist Group 2019 Report Christine Breitenmoser Urs Breitenmoser Co-Chairs Mission statement Research activities: develop camera trapping Christine Breitenmoser (1) Cat Manifesto database which feeds into the Global Mammal Urs Breitenmoser (2) (www.catsg.org/index.php?id=44). Assessment and the IUCN SIS database. Technical advice: (1) develop Cat Monitoring Guidelines; (2) conservation of the Wild Cat Red List Authority Coordinator Projected impact for the 2017-2020 (Felis silvestris) in Scotland: review of the Tabea Lanz (1) quadrennium conservation status and assessment of conser- By 2020, we will have implemented the Assess- Location/Affiliation vation activities. Plan-Act (APA) approach for additional cat (1) Plan KORA, Muri b. Bern, Switzerland species. We envision improving the status (2) Planning: (1) revise the National Action Plan for FIWI/Universtiät Bern and KORA, Muri b. assessments and launching new conservation Asiatic Cheetah (Acinonyx jubatus venaticus) in Bern, Switzerland planning processes. These conservation initia- Iran; (2) participate in Javan Leopard (Panthera tives will be combined with communicational pardus melas) workshop; (3) facilitate lynx Number of members and educational programmes for people and workshop; (4) develop conservation strategy for 193 institutions living with these species. the Pallas’s Cat (Otocolobus manul); (5) plan- ning for the Leopard in Africa and Southeast Social networks Targets for the 2017-2020 quadrennium Asia; (6) updating and coordination for the Lion Facebook: IUCN SSC Cat Specialist Group Assess (Panthera leo) Conservation Strategy; (7) facil- Website: www.catsg.org Capacity building: attend and facilitate a work- itate a workshop to develop a conservation shop to develop recommendations for the strategy for the Jaguar (Panthera onca) in a conservation of the Persian Leopard (Panthera number of neglected countries in collaboration pardus tulliana) in July 2020.
    [Show full text]
  • Cougars, Puma Concolor, in Ontario: Additional Evidence
    Notes Cougars, Puma concolor, in Ontario: Additional Evidence FRANK F. M ALLORY 1, REBECCA A. C ARTER 1, JENNY L. F ORTIER 1, I. S TUART KENN 2, LINSAY WEIS 3, and B. N. W HITE 3 1Department of Biology, Laurentian University, Sudbury, Ontario P3E 2C6 Canada 2Ontario Puma Foundation, P.O. Box 580, 46 Tecumseth Street, Beeton, Ontario L0G 1A0 Canada 3Natural Resources DNA Profiling and Forensic Centre, Peterborough, Ontario K9J 7B8 Canada Mallory, Frank F., Rebecca A. Carter, Jenny L. Fortier, I. Stuart Kenn, Linsay Weis, and B. N. White . 2012. Cougars, Puma concolor, in Ontario: additional evidence. Canadian Field-Naturalist 126(4): 320–323. Recent evidence suggests that the Cougar ( Puma concolor ) has returned to New Brunswick, Quebec, Manitoba, and Ontario. An abundance of sightings have been reported for many decades throughout south-central Ontario, but genetic confirmation has been confounded by a lack of carcasses or DNA. In this paper, we identify (1) genetic evidence of a single Cougar in the wild of Ontario, (2) a gene (cytochrome b) and methodology to distinguish the Cougar from other mammals in Ontario using scats, hair follicles, and soft and hard tissue, and (3) a gene that can distinguish individual Cougars from each other and would distinguish populations of subspecies if they exist in Ontario. Potential Cougar scats and other tissue samples were collected from across Ontario, and hair snares baited with catnip and carnivore lure were placed in locations where Cougar sightings were frequent, near Sudbury, Ontario. We analyzed samples for mtDNA, and one scat sample from the Wainfleet Bog Conservation Area, Port Colborne, Ontario, was positive for Cougar.
    [Show full text]