Western University Scholarship@Western Biology Publications Biology Department 2-24-2019 Incorporating temperature and precipitation extremes into process-based models of African Lepidoptera changes the predicted distribution under climate change Madeleine G. Barton Stellenbosch University John S. Terblanche Stellenbosch University Brent J. Sinclair Western University,
[email protected] Follow this and additional works at: https://ir.lib.uwo.ca/biologypub Part of the Biology Commons Citation of this paper: Barton, Madeleine G.; Terblanche, John S.; and Sinclair, Brent J., "Incorporating temperature and precipitation extremes into process-based models of African Lepidoptera changes the predicted distribution under climate change" (2019). Biology Publications. 102. https://ir.lib.uwo.ca/biologypub/102 1 Incorporating temperature and precipitation extremes into process-based models of 2 African Lepidoptera changes the predicted distribution under climate change 3 4 Madeleine G. Barton1, John S. Terblanche1 and Brent J. Sinclair2* 5 6 1 Department of Conservation Ecology and Entomology, Centre for Invasion Biology, 7 Stellenbosch University, Private Bag XI, Western Cape, South Africa 8 2 Department of Biology, University of Western Ontario, London, ON, Canada 9 10 *Author for Correspondence: email
[email protected], tel 519-661-2111x83138, fax 519-661- 11 3935 1 12 13 Abstract 14 Terrestrial insects are responding to ongoing climate change. While these responses 15 have been primarily linked to rising temperatures, insects are sensitive to desiccation, 16 and the impacts of altered precipitation regimes remain relatively unexplored. Here, 17 we develop a mechanistic model of survival and performance responses to both 18 temperature and desiccation stress, focussing on Lepidoptera in Africa, where a 19 general understanding of such responses to climate change is urgently required.