Annals of Glaciology 43 2006 49 Climatic and atmospheric circulation pattern variability from ice-core isotope/geochemistry records (Altai, Tien Shan and Tibet) Vladimir B. AIZEN,1 Elena M. AIZEN,1 Daniel R. JOSWIAK,1 Koji FUJITA,2 Nozomu TAKEUCHI,3 Stanislav A. NIKITIN4 1College of Science, University of Idaho, PO Box 443025, Moscow, ID 83844, USA E-mail:
[email protected] 2Hydrospheric Atmospheric Research Center, Nagoya University, Nagoya 464-8601, Japan 3Research Institute for Humanity and Nature, Takashima-cho 335, Kyoto 602-0878, Japan 4Department of Glacio-Climatology, Tomsk State University, 634050 Tomsk, Russia ABSTRACT. Several firn/ice cores were recovered from the Siberian Altai (Belukha plateau), central Tien Shan (Inilchek glacier) and the Tibetan Plateau (Zuoqiupu glacier, Bomi) from 1998 to 2003. The comparison analyses of stable-isotope/geochemistry records obtained from these firn/ice cores identified the physical links controlling the climate-related signals at the seasonal-scale variability. The core data related to physical stratigraphy, meteorology and synoptic atmospheric dynamics were the basis for calibration, validation and clustering of the relationships between the firn-/ice-core isotope/ geochemistry and snow accumulation, air temperature and precipitation origin. The mean annual accumulation (in water equivalent) was 106 g cm–2 a–1 at Inilchek glacier, 69 g cm–2 a–1 at Belukha and 196gcm–2 a–1 at Zuoqiupu. The slopes in regression lines between the d18O ice-core records and air temperature were found to be positive for the Tien Shan and Altai glaciers and negative for southeastern Tibet, where heavy amounts of isotopically depleted precipitation occur during summer monsoons.