<<

PAMELAPAMELA SpaceSpace MissionMission FirstFirst ResultsResults inin CosmicCosmic RaysRays

Piergiorgio Picozza INFN & University of Rome “ Tor Vergata” , Italy

Virtual Institute of Astroparticle Physics

June 20, 2008 Robert L. Golden ANTIMATTERANTIMATTER

Antimatter Lumps Trapped in our Galaxy antiparticles Antimatter and Dark Matter Research

Wizard Collaboration -- BESS (93, 95, 97, 98, 2000) - MASS – 1,2 (89,91) - - Heat (94, 95, 2000)

--TrampSI (93) - IMAX (96)

-CAPRICE (94, 97, 98) - BESS LDF (2004, 2007)

- ATIC (2001, 2003, 2005)

- AMS-01 (98)

AntimatterAntimatter

“We must regard it rather an accident that the Earth and presumably the whole contains a preponderance of negative and positive . It is quite possible that for some of the it is the other way about”

P. Dirac, Nobel lecture (1933) 4% 23% 73%

Signal (supersymmetry)…

… and background (GLAST AMS-02) + ISMCR +→ + + pppppp + + + CR pp ISM μπ→→→+ e 0 γγπ→→→ ee −+ Another possible scenario: KK Dark Matter Lightest Kaluza-Klein Particle (LKP): B(1) Bosonic Dark Matter: fermionic final states no longer helicity suppressed. e+e- final states directly produced.

As in the neutralino case there are 1-loop processes that produces monoenergetic γγin the final state. P

Secondary production (upper and lower limits) Simon et al. ApJ 499 (1998) 250.

from χχ Secondary annihilation production (Primary Bergström et production al. ApJ 526 m(c) = 964 (1999) 215 GeV) Ullio : astro- ph/9904086 AntiprotonAntiproton--ProtonProton RatioRatio

Potgieter at al. arXiv:0804.0220v1 [astro-ph]

WhatWhat dodo wewe needneed??

„ MeasurementsMeasurements atat higherhigher energiesenergies

„ BetterBetter knowledgeknowledge ofof backgroundbackground

„ HighHigh statisticsstatistics

„ ContinuousContinuous monitoringmonitoring ofof solarsolar modulationmodulation

LongLong DurationDuration FlightsFlights AntimatterAntimatter DarkDark MatterMatter

SpaceSpace MissionsMissions PAMELA BESS 15-06-2006 2007

AMS-02 2009

PEBS-DbarSUSY 2011-2013 GAPS 2013 GammaGamma SpaceSpace ExperimentsExperiments

AGILE 11-06-2008 23-04-2007 PAMELAPAMELA Payload for Antimatter Matter Exploration and Light Nuclei Astrophysics PAMELAPAMELA CollaborationCollaboration

Italy: Bari Florence Frascati Naples Rome Trieste CNR, Florence Russia:

Moscow St. Petersburg

Germany: Sweden: Siegen KTH, Stockholm Pamela as a Space Observatory at 1AU

Search for dark matter annihilation

Search for antihelium (primordial antimatter)

Search for new Matter in the Universe (?) Study of cosmic-ray propagation

Study of and solar modulation

Study of terrestrial

Study of high energy spectrum (local sources?) - + e- p e p (He,...)

Trigger, ToF, dE/dx

- + Sign of charge, rigidity, dE/dx

Electron energy, dE/dx, lepton-hadron separation GF ~21.5 cm2sr Mass: 470 kg Size: 130x70x70 cm3 DesignDesign performanceperformance Energy range Antiproton flux 80 MeV - 190 GeV Positron flux 50 MeV – 270 GeV Electron/positron flux up to 2 TeV (from calorimeter)

Electron flux up to 400 GeV flux up to 700 GeV Light nuclei (up to Z=6) up to 200 GeV/n He/Be/C: -8 Antinuclei search Sensitivity of O(10 ) in He-bar/He

• Unprecedented statistics and new energy range for cosmic ray physics • Simultaneous measurements of many species

ResursResurs--DK1DK1 satellitesatellite

ƒ Main task: multi-spectral remote sensing of earth’s surface ƒ Built by TsSKB Progress in Samara, Russia

ƒ Lifetime >3 years (assisted) ƒ Data transmitted to ground via high-speed radio downlink

ƒ PAMELA mounted inside a pressurized container

Mass: 6.7 tonnes Height: 7.4 m Solar array area: 36 m2 PAMELAPAMELA

LaunchLaunch 15/06/15/06/0606

16 Gigabytes trasmitted daily to Ground NTsOMZ Moscow OrbitOrbit CharacteristicsCharacteristics

350 km SAA

70ο

610 km • Low-earth elliptical orbit • 350 – 610 km • Quasi- (70o inclination) • Lifetime >3 years (assisted) PAMELA Orbit

Outer radiation belt Download @orbit 3754 – 15/02/2007 07:35:00 MWT

NP SP S1

S2 S3 95 min

Inner EQ EQ radiation belt (SSA)

orbit 3751 orbit 3752 orbit 3753 Flight data: 0.171 GV positron

Flight data: 0.169 GV electron Flight data: 0.632 GeV/c antiproton annihilation Flight data: 84 GeV/c interacting antiproton Flight data: 92 GeV/c positron Flight data: 14.7 GV Interacting nucleus (Z = 8) PAMELAPAMELA StatusStatus

„ TillTill 2nd2nd ofof MarchMarch 20082008 PAMELAPAMELA hashas collectedcollected ~~ 8.8TB8.8TB ofof data,data, correspondingcorresponding toto ~~ 10109 triggerstriggers AntiprotonAntiproton--ProtonProton RatioRatio

preliminary AntiprotonAntiproton--ProtonProton RatioRatio

preliminary Cirelli, Franceschini, Strumia

arXiv:0802.3378v2 [hep-ph] PamelaPamela PositronsPositrons

th „ TillTill AugustAugust 3030th aboutabout 2000020000 positronspositrons fromfrom 200200 MeVMeV upup toto 200200 GeVGeV havehave beenbeen analyzedanalyzed

„ MoreMore thanthan 1500015000 positronspositrons overover 11 GeVGeV

„ OtherOther eighteight monthsmonths datadata toto bebe analyzedanalyzed PositronPositron -- ElectronElectron ratioratio Pre lim in ary PAMELA PositronPositron -- ElectronElectron ratioratio

PositronPositron -- ElectronElectron ratioratio

Pre lim in ary PositronsPositrons withwith HEATHEAT PositronsPositrons withwith HEATHEAT && PAMELAPAMELA

Pre lim in ary ProblemsProblems

9 BackgroundBackground calculationcalculation

9 SolarSolar ModulationModulation atat lowlow energiesenergies

9 ChargeCharge--signsign dependencedependence ofof solarsolar modulationmodulation DiffusionDiffusion HaloHalo ModelModel

SecondariesSecondaries // primariesprimaries i.e. Boron/ to constrain propagation parameters D. Maurin, F. Donato R. Taillet and P.Salati F. Donato et.al, ApJ, 563, 172, ApJ, 555, 585, 2001 [astro-ph/0101231] 2001 [astro-ph/0103150] B/C Ratio Antiproton flux

Astrophysic B/C constraints

Nuclear cross sections!! PreliminaryPreliminary ResultsResults B/CB/C Pre lim in ary HeliumHelium andand HydrogenHydrogen IsotopesIsotopes

SecondarySecondary toto PrimaryPrimary ratiosratios

Fluxsr s) (p/cm^2

Kinetic Energy (GeV) Proton flux July 2006

Pre GalacticGalactic HH andand HeHe spectraspectra lim in ary

!!! SolarSolar PhysicsPhysics withwith PAMELAPAMELA

SolarSolar ModulationModulation ofof galacticgalactic cosmiccosmic raysrays

„ Continuous monitoring Pamela AMS-01 of solar activity Caprice / Mass /TS93 BESS

„ Study of charge sign dependent effects „ Asaoka Y. et al. 2002, Phys. Rev. Lett. 88, 051101), „ Bieber, J.W., et al. Physi- cal Review Letters, 84, 674, 1999. J. Clem et al. 30th ICRC

2007 AntiprotonAntiproton fluxesfluxes

A range of minimal (R-parity conserving) SUSY predictions of Galactic antiprotons spectrum, with neutralino masses 45-700 GeV Proton fluxes at TOA Annual Variation of P spectrum ) -1 GeV -1 s -1 sr -2 P flux (m

Kinetic Energy (GeV) p/p ratio

Time variation of p/p ratio at Observed data by BESS Charge dependent model prediction(Bieber et al.) Bieber, J.W., et al. Phys. Rev. Letters, 84, 674, 1999. AntiprotonAntiproton--ProtonProton RatioRatio

preliminary Pre lim ProtonProton SpectraSpectra in ary !!! P/(cm^2 sr GeV s)

RED: JULY 2006 BLUE: AUGUST 2007 22 2 2 Primary spectrum =F Fis ( − )[(E+/ME φ) − M ]

July 2006 497±2 January 2007 481±2 Φ = August 2007 441±2

PositronPositron FractionFraction

Pre lim in ary

Mirko Boezio, INFN Trieste - Fermilab, 2008/05/02 Pamela

Clem at al. 30th ICRC 2007 ChargeCharge signsign dependencedependence ofof cosmiccosmic rayray modulationmodulation..

„ Two systematic deviations from reflection symmetry of the interplanetary :

„ 1) The Parker field has opposite magnetic polarity above and below the equator, but the spiral field lines themselves are mirror images of each other. This antisymmetry produces drift velocity fields that for positive particles converge on the heliospheric equator in the A+ state or diverge from it in A- state. Negatively charged particles behave in the opposite manner and the drift patterns interchange when the solar polarity diverge.

„ 2) Systematic ordering of turbulent helicity can cause diffusion coefficients to depend directly on charge sign and polarity state. Bieber, J.W., et al. Phys. Rev. Letters, 84, 674, 1999. DecemberDecember 20062006 SolarSolar particleparticle eventsevents

Dec 13th largest CME since 2003, anomalous at sol min December 13th 2006 event

Preliminary! December 13th 2006 He differential spectrum

Preliminary! December 14th 2006 event X-rayX-ray

P,e-P,e-

Low energy tail of Dec 13th event

Arrival of event of Dec 14th MagneticMagneticFieldField

NeutronNeutronMonitorMonitor

Solar Quiet spectrum

BelowEndgalactic of eventspectrum: of Dec 14th Start of Forbush decrease

Decrease of primary spectrum

Arrival of magnetic cloud from CME of Dec 13th Shock 1774km/s (gopalswamy, 2007) Decrease of Neutron Monitor Flux

Preliminary! RadiationRadiation BeltsBelts

SouthSouth AtlanticAtlantic AnomalyAnomaly

SecondarySecondary productionproduction fromfrom CRCR interactioninteraction withwith atmosphereatmosphere PamelaPamela WorldWorld MapsMaps:: 350350 –– 650650 kmkm altalt

36 MeV p, 3.5 MeV e- PamelaPamela mapsmaps atat variousvarious altitudesaltitudes !!!! INARY PRELIM

Altitude scanning PrimaryPrimary andand AlbedoAlbedo (sub(sub--cutoffcutoff measurements)measurements) OtherOther ObjectivesObjectives

SearchSearch forfor thethe existenceexistence ofof AntimatterAntimatter inin thethe UniverseUniverse

PAMELA AMS AMS in Space

S ea e rc rs h ve fo ni r t U he he e f t xi o st in en g ce ori o e f Accelerators th an r ti fo Un h iv arc er e se S

The Big Bang origin of the Universe requires matter and antimatter to be equally abundant at the very hot beginning WhatWhat aboutabout heavyheavy antinuclei?antinuclei?

„ The discovery of one nucleus of antimatter (Z≥2) in the cosmic rays would have profound implications for both particle physics and astrophysics.

• For a Baryon Symmetric Universe Gamma rays limits put any domain of antimatter more than 100 Mpc away

(Steigman (1976) Ann Rev. Astr. Astrophys., 14, 339; Dudarerwicz and Wolfendale (1994) M.N.R.A. 268, 609, A.G. Cohen, A. De Rujula and S.L. Glashow, Astrophys. J. 495, 539, 1998) AntimatterAntimatter DirectDirect researchresearch

„ AntimatterAntimatter whichwhich hashas escapedescaped asas aa cosmiccosmic rayray fromfrom aa distantdistant antigalaxyantigalaxy Streitmatter, R. E., Nuovo Cimento, 19, 835 (1996)

„ AntimatterAntimatter fromfrom globularglobular clustersclusters ofof antistarsantistars inin ourour GalaxyGalaxy asas antistellarantistellar windwind oror antianti--supernovaesupernovae explosionexplosion K. M. Belotsky et al., Phys. Atom. Nucl. 63, 233 (2000), astro-ph/9807027 CosmicCosmic--rayray antimatterantimatter searchsearch

“We must regard it rather an accident that the Earth and presumably the whole Solar BESS combined (new) System contains a preponderance of negative electrons and positive protons. It is quite possible that for some of the stars expected it is the other way about”

P. Dirac, Nobel lecture (1933) HighHigh EnergyEnergy electronselectrons

„ The study of primary electrons is especially important because they give information on the nearest sources of cosmic rays

„ Electrons with energy above 100 MeV rapidly loss their energy due to synchrotron radiation and inverse Compton processes

„ The discovery of primary electrons with energy above 1012 eV will evidence the existence of cosmic ray sources in the nearby interstellar space (r≤300 pc) CALO SELF TRIGGER EVENT: 167*103 MIP RELEASED 279 MIP in S4 26 Neutrons in ND Search for New Matter in the Universe: An example is the search for “strangelets”.

There are six types of Quarks found in accelerators. All matter on Earth is made out of only two types of quarks. “Strangelets” are new types of matter composed of three types of quarks which should exist in the cosmos.

Carbon Nucleus i. A stable, single “super nucleon” d n d u p u d s s u d d s with three types of d u d u s d u u u s quarks u u u s u s d d d uu u d d d d u d s ii. “Neutron” stars may u u d d u d u d u d d s u d d d d d be one big d u u d s u uu us u u strangelet d uu d d

AMS courtesy ConclusionConclusion

„ PAMELA is the first space experiment which is measuring the Antiprotons and Positrons to the high energies (> 150GeV) with an unprecedented statistical precision

„ PAMELA is setting a new lower limit for finding Antihelium

„ PAMELA is looking for Dark Matter candidates

„ PAMELA is providing measurements on elemental spectra and low mass isotopes with an unprecedented statistical precision and is helping to improve the understanding of particle propagation in the interstellar medium

„ PAMELA is able to measure the high energy tail of solar particles. THANKSTHANKS

http://http:// pamela.roma2.infn.itpamela.roma2.infn.it