Internal Characteristics of Magnetic Clouds and Interplanetary Coronal Mass Ejections
Total Page:16
File Type:pdf, Size:1020Kb
INTERNAL CHARACTERISTICS OF MAGNETIC CLOUDS AND INTERPLANETARY CORONAL MASS EJECTIONS Von der Fakultät für Physik und Geowissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr.rer.nat.) genehmigte D i s s e r t a t i o n von Luciano Rodriguez Romboli Aus Mendoza / Argentinien Bibliografische Information Der Deutschen Bibliothek Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar. 1. Referent: Prof. Dr. Karl-Heinz Glaßmeier 2. Referent: Prof. Dr. Rainer Schwenn eingereicht am: 24.02.2005 mündlichen Prüfung (Disputation) am: 10.05.2005 Copyright © Copernicus GmbH 2005 ISBN 3-936586-41-1 Copernicus GmbH, Katlenburg-Lindau Druck: Schaltungdienst Lange, Berlin Printed in Germany Vorveröffentlichungen der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Gemeinsamen Naturwissenschaftlichen Fakultät, vertreten durch den Mentor oder den Betreuer der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Publikationen · Rodriguez L. and G. Stenborg, El clima espacial: satélites y astronautas en peligro?, Ciencia Hoy, 13(74), 10–22, 2003. · Rodriguez L., J. Woch, N. Krupp, M. Fränz, R. von Steiger, R. Forsyth, D. Reisenfeld, and K.-H. Glaßmeier, A statistical study of oxygen freezing-in temperature and energetic particles inside magnetic clouds observed by Ulysses, J. Geophys. Res., 109, A01108, doi:10.1029/2003JA010156, 2004. · Rodriguez L., J. Woch, N. Krupp, M. Fränz, R. von Steiger, C. Cid, R. Forsyth, K.-H. Glaßmeier, Bidirectional proton flows and comparison of freezing-in temperatures in ICMEs and magnetic clouds, Proc. IAU Symposium 226 on Coronal and Stellar Mass Ejections, Beijing, China, 2004 (submitted). · Wimmer-Schweingruber R.F. et al., In-situ Solar Wind and Field Signatures of Interplanetary Coronal Mass Ejections, Report of Working Group B, Space Science Reviews, in press, 2004. (ISSI CME book). · Gazis P. et al., Interplanetary Coronal Mass Ejections in the Outer Heliosphere and at High Latitudes, Report of Working Group H, Space Science Reviews, in press, 2004. (ISSI CME book). Tagungsbeiträge · Rodriguez L., J. Woch, N. Krupp, M. Fränz, R. von Steiger, R. Forsyth, Multi- Instrument study of Interplanetary Coronal Mass Ejections (ICMEs), (poster), EGS- AGU-EUG Joint Assembly, Nice, France, April 2003. · Rodriguez L., J. Woch, N. Krupp, K.-H Glassmeier, Characterization of Interplanetary Coronal Mass Ejections (ICMEs) seen by Ulysses, (oral), IMPRS seminar at MPS, Katlenburg-Lindau, Germany, May 2003. · Rodriguez L., J. Woch, N. Krupp, K.-H Glassmeier, Coronal Mass Ejections seen in interplanetary space, (oral) Seminar of the Institut für Geophysik und Meteorologie, TU Braunschweig, Braunschweig, Germany, December 2003. · Rodriguez L., J. Woch, N. Krupp, K.-H Glassmeier, Signatures of Magnetic Clouds in the solar wind, (oral), IMPRS seminar at MPS, Katlenburg-Lindau, Germany, February 2004. · Rodriguez L., J. Woch, N. Krupp, and M. Fränz, Eyecciones coronales de masa vistas en el espacio interplanetario, (oral), Universidad de Alcalá, Madrid, Spain, January 2004. · Rodriguez L., J. Woch, N. Krupp, M. Fränz, R. von Steiger, and K. H. Glassmeier, A statistical study of oxygen freezing-in temperature and energetic particles inside magnetic clouds observed by Ulysses, (poster), European Geosciences Union, Nice, France, April 2004. · Rodriguez L., J. Woch, N. Krupp, M. Fränz, R. von Steiger, C. Cid, R. Forsyth and K. H. Glassmeier, Internal structure of magnetic clouds seen by Ulysses, (oral), COSPAR, Paris, France, July 2004. · Rodriguez L., J. Woch, N. Krupp, M. Fränz, R. von Steiger, C. Cid, R. Forsyth and K. H. Glassmeier, Topology and internal structure of magnetic clouds inferred from Ulysses measurements, (oral), IAU Symposium 226 on Coronal and Stellar Mass Ejections, Beijing, China, September 2004. To my family… Abstract Coronal Mass Ejections (CMEs) are extremely dynamical and huge events in which the solar plasma, initially contained in closed coronal magnetic field lines, is ejected into interplanetary space. When a CME is detected in-situ by a spacecraft located in the interplanetary medium, it is then termed Interplanetary CME (ICME). A set of signatures in plasma and magnetic field data is used to identify it. Among ICMEs, Magnetic Clouds (MCs) represent a special kind of ICME in which the internal magnetic field configuration resembles that of a flux rope (a twisted helical magnetic filament). Using in-situ data provided by instruments onboard the heliospheric mission Ulysses, 40 magnetic clouds have been identified out of 147 ICMEs in the time period between 1992 and 2002. These events constitute the database for this thesis. The ionization level of the solar wind plasma serves as a robust tool to characterize the different types of solar wind. Charge states of heavy ions have been used in this work to infer the temperatures in the source region of ICMEs. MCs show increased temperatures with respect to non-cloud ICMEs and surrounding solar wind. By combining these data with a magnetic field model, insights into the internal structure of magnetic clouds are provided. Zones of increased temperatures are found to be confined to the flux rope region. Different elements provide information on the temperature at different heights in the solar corona. The temperature obtained from oxygen ions shows larger differences with the surrounding solar wind when compared with the temperatures from carbon and iron. In this way, oxygen ions are the best tracers for magnetic clouds in the solar wind. Energetic particles can be used to study the ICME topology, internal structure and magnetic connectivity to the Sun. The intensity response of protons and helium ions to a magnetic cloud passage depends heavily on the energetic background, governed by the conditions in which each event is immersed. The elemental composition of the population contained in magnetic clouds has been used in this thesis to identify the mechanism by which these particles are accelerated. The abundance ratios found are consistent with those for gradual solar energetic particle events (SEPs). In this mechanism, interplanetary shocks (simultaneous, abrupt jumps in the magnetic field, speed, density, and temperature of the plasma) accelerate particles from the solar wind suprathermal population up to the MeV range. Directional anisotropies of the energetic particles are used to infer magnetic topology of the MCs. The energetic protons within magnetic clouds are found to be predominantly bidirectional, pointing towards closed magnetic structures, probably with one or both foot points connected back to the Sun. CONTENTS Chapter 1 Introduction 1 1.1 The Dynamic Sun and the Heliosphere .......................................................................................2 1.1.1 Structure of the Sun ............................................................................................................2 1.1.2 The corona and solar wind..................................................................................................3 1.1.3 The solar cycle and the coronal magnetic field...................................................................6 1.1.4 The interplanetary magnetic field.......................................................................................6 1.2 Solar disturbances and ejections of solar mass............................................................................8 1.2.1 Flares and Coronal Mass Ejections (CMEs).......................................................................8 1.2.2 Interplanetary Coronal Mass Ejections (ICMEs)..............................................................10 1.2.3 Magnetic Clouds (MCs) ...................................................................................................13 1.3 Energetic particles in the heliosphere ........................................................................................15 1.3.1 Sources and populations ...................................................................................................16 1.3.2 Interplanetary shocks as a mechanism for particle acceleration .......................................18 1.4 Open questions and objectives...................................................................................................19 Chapter 2 Instrumentation 22 2.1 The Ulysses spacecraft ..............................................................................................................22 2.1.1 Trajectory, solar and heliospheric conditions ...................................................................22 2.1.2 Science payload ................................................................................................................27 2.2 The Energetic Particle Composition Experiment (EPAC).........................................................29 2.2.1 Design and measurement principle...................................................................................29 2.2.2 Directional information ....................................................................................................32 2.2.3 Data and calibration..........................................................................................................33 2.3 The Solar Wind Ion Composition Spectrometer (SWICS)........................................................36 2.3.1 Design and measurement