Part 14: Pediatric Advanced Life Support 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care

Total Page:16

File Type:pdf, Size:1020Kb

Part 14: Pediatric Advanced Life Support 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Part 14: Pediatric Advanced Life Support 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Monica E. Kleinman, Chair; Leon Chameides; Stephen M. Schexnayder; Ricardo A. Samson; Mary Fran Hazinski; Dianne L. Atkins; Marc D. Berg; Allan R. de Caen; Ericka L. Fink; Eugene B. Freid; Robert W. Hickey; Bradley S. Marino; Vinay M. Nadkarni; Lester T. Proctor; Faiqa A. Qureshi; Kennith Sartorelli; Alexis Topjian; Elise W. van der Jagt; Arno L. Zaritsky n contrast to adults, cardiac arrest in infants and children emergency response system for a deteriorating inpatient has Idoes not usually result from a primary cardiac cause. More been shown to significantly decrease the incidence of cardiac often it is the terminal result of progressive respiratory failure and respiratory arrests, as well as hospital mortality rates in or shock, also called an asphyxial arrest. Asphyxia begins some large children’s hospitals.18–21 Such teams, often con- with a variable period of systemic hypoxemia, hypercapnea, sisting of providers with expertise in assessment and initial and acidosis, progresses to bradycardia and hypotension, and management of acutely ill patients (critical-care nurses, culminates with cardiac arrest.1 respiratory therapists, and critical-care physicians), decreased Another mechanism of cardiac arrest, ventricular fibrilla- the number of cardiac and respiratory arrests by as much as tion (VF) or pulseless ventricular tachycardia (VT), is the 72%18 and hospital mortality by as much as 35% in institu- initial cardiac rhythm in approximately 5% to 15% of tions where the effect was studied.19 Although it is possible 2–9 pediatric in-hospital and out-of-hospital cardiac arrests; it that most of the impact is due to a decrease in respiratory is reported in up to 27% of pediatric in-hospital arrests at arrests, this cannot be confirmed by the available published 6 some point during the resuscitation. The incidence of VF/ data. Implementation of a pediatric MET/RRT may be 2,4 pulseless VT cardiac arrest rises with age. Increasing beneficial in facilities where children with high risk illnesses evidence suggests that sudden unexpected death in young Downloaded from http://ahajournals.org by on April 3, 2019 are present on general inpatient units (Class IIa, LOE B). people can be associated with genetic abnormalities in myo- Despite the improved outcome of in-hospital CPR, a cyte ion channels resulting in abnormalities in ion flow (see majority of children with in-hospital cardiac arrest and an “Sudden Unexplained Deaths,” below). even larger percentage of children with out-of-hospital car- Since 2010 marks the 50th anniversary of the introduction diac arrest do not survive, or they are severely incapacitated of cardiopulmonary resuscitation (CPR),10 it seems appropri- if they do. Several studies, discussed later in this document, ate to review the progressive improvement in outcome of showed that the presence of family members during resusci- pediatric resuscitation from cardiac arrest. Survival from in-hospital cardiac arrest in infants and children in the 1980s tation has helped them deal with the inevitable trauma and was around 9%.11,12 Approximately 20 years later, that figure grief following the death of a child. Therefore, whenever had increased to 17%,13,14 and by 2006, to 27%.15–17 In possible, provide family members with the option of being contrast to those favorable results from in-hospital cardiac present during resuscitation of an infant or child (Class I, arrest, overall survival to discharge from out-of-hospital LOE B). cardiac arrest in infants and children has not changed sub- stantially in 20 years and remains at about 6% (3% for infants BLS Considerations During PALS and 9% for children and adolescents).7,9 Pediatric advanced life support (PALS) usually takes place It is unclear why the improvement in outcome from in the setting of an organized response in an advanced in-hospital cardiac arrest has occurred, although earlier rec- healthcare environment. In these circumstances, multiple ognition and management of at-risk patients on general responders are rapidly mobilized and are capable of simulta- inpatient units and more aggressive implementation of neous coordinated action. Resuscitation teams may also evidence-based resuscitation guidelines may have played a have access to invasive patient monitoring that may role. Implementation of a formal pediatric medical emer- provide additional information during the performance of gency team (MET) or rapid response team (RRT) as part of an basic life support (BLS). The American Heart Association requests that this document be cited as follows: Kleinman ME, Chameides L, Schexnayder SM, Samson RA, Hazinski MF, Atkins DL, Berg MD, de Caen AR, Fink EL, Freid EB, Hickey RW, Marino BS, Nadkarni VM, Proctor LT, Qureshi FA, Sartorelli K, Topjian A, van der Jagt EW, Zaritsky AL. Part 14: pediatric advanced life support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2010;122(suppl 3):S876–S908. (Circulation. 2010;122[suppl 3]:S876–S908.) © 2010 American Heart Association, Inc. Circulation is available at http://circ.ahajournals.org DOI: 10.1161/CIRCULATIONAHA.110.971101 S876 Kleinman et al Part 14: Pediatric Advanced Life Support S877 Simultaneous Actions ● An increased respiratory rate, particularly with signs of BLS (whether for a child or adult) is presented as a series of distress (eg, increased respiratory effort including nasal sequential events with the assumption that there is only one flaring, retractions, seesaw breathing, or grunting) responder, but PALS usually takes place in an environment ● An inadequate respiratory rate, effort, or chest excursion where many rescuers are rapidly mobilized and actions are (eg, diminished breath sounds or gasping), especially if performed simultaneously. The challenge is to organize the mental status is depressed rescuers into an efficient team. Important considerations for ● Cyanosis with abnormal breathing despite supplementary the greatest chance of a successful resuscitation from cardiac oxygen arrest include the following: Shock ● Chest compressions should be immediately started by one Shock results from inadequate blood flow and oxygen deliv- rescuer, while a second rescuer prepares to start ventila- ery to meet tissue metabolic demands. The most common tions with a bag and mask. Ventilation is extremely type of shock in children is hypovolemic, including shock due important in pediatrics because of the large percentage of to hemorrhage. Distributive, cardiogenic, and obstructive asphyxial arrests in which best results are obtained by a shock occur less frequently. Shock progresses over a contin- combination of chest compressions and ventilations.8 Un- uum of severity, from a compensated to a decompensated fortunately ventilations are sometimes delayed because state. Compensatory mechanisms include tachycardia and equipment (bag, mask, oxygen, airway) must be mobilized. increased systemic vascular resistance (vasoconstriction) in Chest compressions require only the hands of a willing an effort to maintain cardiac output and perfusion pressure rescuer. Therefore, start CPR with chest compressions respectively. Decompensation occurs when compensatory immediately, while a second rescuer prepares to provide mechanisms fail and results in hypotensive shock. ventilations (Class I, LOE C). ● The effectiveness of PALS is dependent on high-quality Typical signs of compensated shock include CPR, which requires an adequate compression rate (at least ● Tachycardia 100 compressions/min), an adequate compression depth (at ● Cool and pale distal extremities least one third of the AP diameter of the chest or approx- ● Prolonged (Ͼ2 seconds) capillary refill (despite warm 1 imately 1 ⁄2 inches [4 cm] in infants and approximately 2 ambient temperature) inches [5 cm] in children), allowing complete recoil of the ● Weak peripheral pulses compared with central pulses Downloaded from http://ahajournals.org by on April 3, 2019 chest after each compression, minimizing interruptions in ● Normal systolic blood pressure compressions, and avoiding excessive ventilation. Reasons for not performing high-quality CPR include rescuer inat- As compensatory mechanisms fail, signs of inadequate tention to detail, rescuer fatigue, and long or frequent end-organ perfusion develop. In addition to the above, these interruptions to secure the airway, check the heart rhythm, signs include and move the patient.22 Optimal chest compressions are best delivered with the victim on a firm surface.23,24 ● Depressed mental status ● While one rescuer performs chest compressions and an- ● Decreased urine output other performs ventilations, other rescuers should obtain a ● Metabolic acidosis monitor/defibrillator, establish vascular access, and calcu- ● Tachypnea late and prepare the anticipated medications. ● Weak central pulses ● Deterioration in color (eg, mottling, see below) Monitored Patients Many in-hospital patients, especially if they are in an ICU, are Decompensated shock is characterized by signs and symp- monitored and some have an advanced airway and are toms consistent with inadequate delivery of oxygen to tissues receiving mechanical ventilation. If the patient has an in- (pallor, peripheral cyanosis, tachypnea, mottling of the skin, dwelling arterial catheter, use the waveform as feedback to decreased urine output, metabolic
Recommended publications
  • Specific Target Organ Systemic Toxicity (Tost) Following Repeated Exposure
    Chapter 13: SPECIFIC TARGET ORGAN SYSTEMIC TOXICITY (TOST) FOLLOWING REPEATED EXPOSURE DEFINITIONS 1. Classification identifies the chemical substance as being a specific target organ/systemic toxicant and, as such, it may present a potential for adverse health impact to people who are exposed to it. 2. Classification depends upon the availability of reliable evidence that repeated exposure to the substance has produced a consistent and identifiable toxic effect in humans, or, in experimental animals, toxicologically significant changes which have affected the function or morphology of a tissue/organ, or has produced serious changes to the biochemistry or haematology of the organism and these changes are relevant for human health. 3. Assessment of specific target organ/systemic toxicity should take into consideration not only significant changes in a single organ or biological system but also generalised changes of a less severe nature involving several organs. CONSIDERATIONS 4. The purpose of this document is to provide a means of classifying substances that produce specific target organ/systemic toxicity arising from repeated exposure that is not specifically addressed elsewhere in the harmonised classification system (GHS). All significant health effects that can impair function, both reversible and irreversible, following repeated or long-term exposure, are included. Other specific toxic effects, such as acute lethality/toxicity, eye and skin corrosivity/irritation, skin and respiratory sensitisation, carcinogenicity, mutagenicity and reproductive toxicity are assessed separately in the GHS and consequently are not included in the present proposal. 5. Non-lethal toxic effects observed after a single-event exposure are classified elsewhere in the GHS as a separate chapter and, therefore, are excluded from the present chapter.
    [Show full text]
  • 2017 Spray Bulletin for Commercial Tree Fruit Growers Virginia, West Virginia, and University of Maryland Extension
    Publication 456-419 2017 Spray Bulletin for Commercial Tree Fruit Growers Virginia, West Virginia, and University of Maryland Extension West Virginia University Table of Incompatibilities abamectin (Abba, Agri-Mek, Temprano) abamectin + thiamethoxam (Agri-Flex) acequinocyl (Kanemite) azadirachtin (Aza-Direct, Neemazad, Neemix) Topsin-M bifenazate (Acramite) Bt Bordeaux Mixture buprofezin (Centaur) captan carbaryl (Sevin) chlorantraniliprole (Altacor) Compatible; safe and effective chlorothalonil (Bravo) chlorpyrifos (Lorsban, Nufos, Yuma) if used as recommended. clofentezine, hexythiazox (Apollo, Onager, Savey) CM virus (Carpovirusine, Cyd-X, Madex) Not compatible; unsafe, one copper cyantraniliprole (Exirel) or both materials ineffective. cyflumetofen (Nealta) diazinon Caution - not always safe or dichloran (Botran) effective. See text. diflubenzuron (Dimilin) dinotefuran (Scorpion, Venom) dodine (Syllit) Information lacking or mixture emamectin benzoate (Proclaim) not probable. etoxazole (eal) fenarimol (Rubigan) fenbutatin (Vendex) Use wettable powder fenpyroximate (Portal) formulation only. ferbam flonicamid (Beleaf) fluazinam (Omega) flubendiamide (Belt) flubendiamide + buprofezin (Tourismo) flupyradifurone (Sivanto)) formetanate hydrochl. (Carzol) imidacloprid + beta-cyfluthrin (Leverage) indoxacarb (Avaunt) iprodione (Rovral) kaolin (Surround) lambda-cyhalothrin + chlorantraniliprole (Voliam Xpress), lambda-cyhalothrin + thiamethoxam (Endigo) lime malathion mancozeb, iram methidathion (Supracide) methomyl (Lannate) methoxyfenozide
    [Show full text]
  • Oecd Guideline for the Testing of Chemicals
    Paris 28 November 2008 [email protected] OECD GUIDELINE FOR THE TESTING OF CHEMICALS DRAFT PROPOSAL FOR A NEW GUIDELINE: 436 Acute Inhalation Toxicity - Acute Toxic Class (ATC) Method INTRODUCTION 1. OECD Guidelines for the Testing of Chemicals are periodically reviewed in the light of scientific progress, changing regulatory needs and animal welfare considerations. The first acute inhalation Test Guideline 403 was adopted in 1981, and has since been revised (1). Development of an Inhalation Acute Toxic Class (ATC) method (2)(3)(4) was considered appropriate following the adoption of the revised oral ATC method (TG 423)(5) in December 2001. A retrospective validation study of the acute toxic class testing method for acute inhalation toxicity showed that the method is suitable for being used for Classification and Labelling purposes (6). The inhalation ATC Guideline will allow the use of serial steps of fixed target concentrations to provide a ranking of test article toxicity. Lethality is used as key endpoint. However, animals in severe pain or distress, suffering or impending death should be humanely killed to minimize suffering. Guidance on humane endpoints is available in the OECD Guidance Document No. 19 (7). 2. Guidance on the conduct and interpretation of the TG 436 can be found in the Guidance Document on Acute Inhalation Toxicity Testing (8). 3. Definitions used in the context of this Guideline are provided in Annex 1. 4. The method provides information on the hazardous properties and allows the substance to be ranked and classified according to the United Nations (UN) Globally Harmonized System of Classification and Labelling of Chemicals (GHS) for the classification of chemicals that cause acute toxicity (9).
    [Show full text]
  • Integrated Pest Management Strategies
    Table of Contents Introduction ................................................................................................................................................. 3 Responsibilities ........................................................................................................................................... 4 IPM Coordinator .......................................................................................................................................... 4 Pesticide Applications ................................................................................................................................ 6 Inspection and Monitoring ......................................................................................................................... 6 Integrated Pest Management Strategies ................................................................................................... 7 Exterior Entrance Points ............................................................................................................................ 7 Classrooms and Offices ............................................................................................................................ 7 Cafeterias and Kitchens ............................................................................................................................ 8 Restrooms ................................................................................................................................................. 9 Outside Areas
    [Show full text]
  • High Lethality and Minimal Variation After Acute Self-Poisoning with Carbamate Insecticides in Sri Lanka – Implications for Global Suicide Prevention
    Clinical Toxicology ISSN: 1556-3650 (Print) 1556-9519 (Online) Journal homepage: http://www.tandfonline.com/loi/ictx20 High lethality and minimal variation after acute self-poisoning with carbamate insecticides in Sri Lanka – implications for global suicide prevention Thomas Lamb, Liza R. Selvarajah, Fahim Mohamed, Shaluka Jayamanne, Indika Gawarammana, Ahmed Mostafa, Nicholas A. Buckley, Michael S. Roberts & Michael Eddleston To cite this article: Thomas Lamb, Liza R. Selvarajah, Fahim Mohamed, Shaluka Jayamanne, Indika Gawarammana, Ahmed Mostafa, Nicholas A. Buckley, Michael S. Roberts & Michael Eddleston (2016): High lethality and minimal variation after acute self-poisoning with carbamate insecticides in Sri Lanka – implications for global suicide prevention, Clinical Toxicology To link to this article: http://dx.doi.org/10.1080/15563650.2016.1187735 © 2016 The Authors. Published by Informa UK Limited, trading as Taylor & Francis Group. Published online: 02 Jun 2016. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ictx20 Download by: [The University of Edinburgh] Date: 02 June 2016, At: 05:24 CLINICAL TOXICOLOGY, 2016 http://dx.doi.org/10.1080/15563650.2016.1187735 CLINICAL RESEARCH High lethality and minimal variation after acute self-poisoning with carbamate insecticides in Sri Lanka – implications for global suicide prevention Thomas Lamba, Liza R. Selvarajaha, Fahim Mohamedb,c,
    [Show full text]
  • State of the Art Report on Mixture Toxicity
    State of the Art Report on Mixture Toxicity Final Report Executive Summary 22 December 2009 Study Contract Number 070307/2007/485103/ETU/D.1 Contractor The School of Pharmacy University of London (ULSOP) Sub-Contractors Göteborg University (UGOT) Faust & Backhaus Environmental Consulting GbR (FBEC) Responsible Scientists Prof. Dr. Andreas Kortenkamp (ULSOP) Assoc.-Prof. Dr. Thomas Backhaus (UGOT) Dr. Michael Faust (FBEC) 1 Disclaimer: Please note that this document was produced by a contractor in fulfillment of study contract No. 070307/2007/485103/ETU/D.1. The views expressed in the document are those of the contractor and do not represent the position of the Commission services. The Commission services do not accept any liability with regard to the contents of this document. State of the Art Report on Mixture Toxicity – Final Report, Executive Summary Table of contents 1. Terms of reference, scope, definitions ..................................................................... 3 2. The scientific state of the art of mixture toxicology ................................................. 5 3. The regulatory state of the art of mixture toxicology ............................................. 13 4. Recommendations................................................................................................... 17 2 State of the Art Report on Mixture Toxicity – Final Report, Executive Summary Executive Summary This report details the findings of a project on mixture toxicology and ecotoxicology commissioned by the European Commission, DG
    [Show full text]
  • MATERIAL SAFETY DATA SHEET Issued By: Arysta Lifescience South Africa Phone: 031 514 5600 Poisons Helpline 0861 555 777 Spillage Helpline (Spill Tech) 086 100 0366
    Product Name: Mitrus Page 1 of 5 SECTION 1 - PRODUCT & COMPANY IDENTIFICATION ARYSTA LifeScience South Africa (Pty) Ltd Tel: 031 514 5600 Co. Reg. No.: 2009/019713/07 Fax: 031 514 5611 7 Sunbury Office Park, Off Douglas Saunders Drive, La Lucia Ridge, South Africa, 4019 e-mail: [email protected] Web address: arystalifescience.co.za Substance: fenbutatin oxide (550 g/ℓ) Product Name: MITRUS Product Use: Insecticide Creation Date: August 2006 Revision Date: August 2019 24 Hr Emergency Number: In case of Poisoning: Poisons Helpline 0861 555 777 In case of Spillage: Spill Tech Oil & Chemical Pollution Control 086 100 0366 / 083 253 6618 SECTION 2 - COMPOSITION / INFORMATION ON INGREDIENTS Common name: FENBUTATIN OXIDE (550 g/ℓ) Chemical Name: Bis[tris(2-methyl-2-phenylpropyl)tin]oxide CAS No.: 13356-08-6 Chemical Family: Organotin Use: Contact acaricide for the control of mites. Formulation: Suspension concentrate Symbols: Xi, N Risk-phrase(s): R20/22, R36/37/38, R40, R43, R50/53 SECTION 3 - HAZARD IDENTIFICATION Toxicity class: Of low toxicity order. Slightly Toxic. Eye contact: May cause irritation. Causing redness, pain and blurred vision. Skin contact: Moderate irritation. Skin sensitization reaction may occur in some individuals. Avoid long-term contact with the material. Ingestion: Harmful. Large amounts ingested may cause nausea, vomiting, diarrhea, convulsions, incoordination, fatigue, hypothermia and respiratory paralysis. Neurotoxicity may be referable to carbon disulfide released in the acid environment of the stomach. Inhalation: Slightly toxic. Inhalation may cause mild inflammation and irritation of the respiratory tract. May cause sore throat, coughing, sneezing, shortness of breath, dizziness and dullness.
    [Show full text]
  • A BASIC TOXICITY CLASSIFICATION of RADIONUCLIDES the Following States Are Members of the International Atomic Energy Agency
    TECHNICAL REPORTS SERIES No. 15 I \ Basic • Toxicity Classification () f Radionuclides • REPORT OF JOINT STUDY OF A GROUP OF CONSULTANTS TO THE INTERNATIONAL ATOMIC ENERGY AGENCY INTERNATIONAL ATOMIC ENERGY AGENCY - VIENNA 1963 A BASIC TOXICITY CLASSIFICATION OF RADIONUCLIDES The following States are Members of the International Atomic Energy Agency: AFGHANISTAN ITALY ALBANIA JAPAN ARGENTINA REPUBLIC OF KOREA AUSTRALIA LEBANON AUSTRIA LIBERIA BELGIUM LUXEMBOURG BOLIVIA MALI BRAZIL MEXICO BULGARIA MONACO BURMA MOROCCO BYELORUSSIAN SOVIET SOCIALIST REPUBLIC NETHERLANDS CAMBODIA NEW ZEALAND CANADA NICARAGUA CEYLON NORWAY CHILE PAKISTAN CHINA PARAGUAY COLOMBIA PERU CONGO (LÊOPOLDVILLE). PHILIPPINES CUBA POLAND CZECHOSLOVAK SOCIALIST REPUBLIC PORTUGAL DENMARK ROMANIA DOMINICAN REPUBLIC SAUDI ARABIA ECUADOR SENEGAL EL SALVADOR SOUTH AFRICA ETHIOPIA SPAIN FINLAND SUDAN FRANCE SWEDEN FEDERAL REPUBLIC OF GERMANY SWITZERLAND GHANA THAILAND GREECE TUNISIA GUATEMALA TURKEY HAITI UKRAINIAN SOVIET SOCIALIST REPUBLIC HOLY SEE UNION OF SOVIET SOCIALIST REPUBLICS HONDURAS UNITED ARAB REPUBLIC HUNGARY UNITED KINGDOM OF GREAT BRITAIN AND ICELAND NORTHERN IRELAND INDIA UNITED STATES OF AMERICA INDONESIA URUGUAY IRAN VENEZUELA IRAQ VIET-NAM ISRAEL YUGOSLAVIA The Agency's Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna. Its principal objective is "to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world". © IAEA, 1963 Permission to reproduce or translate the information contained in this publication may be obtained by writing to the International Atomic Energy Agency, Kárntner Ring 11, Vienna I, Austria.
    [Show full text]
  • F:\Myfiles\Web\Pest. Prod.Symptoms.Wpd
    ENVIRONMENTAL PROTECTION AGENCY REGION 8 WORKER PROTECTION STANDARDS SYMPTOMS OF EXPOSURE TO PESTICIDE PRODUCTS USED ON MINOR COLORADO CROPS TABLE OF CONTENTS THE PESTICIDE LABEL ......................................................1 RECOGNIZING COMMON PESTICIDE POISONINGS ...............................3 FUNGICIDES USED ON MINOR COLORADO CROPS ..............................5 HERBICIDES USED ON MINOR COLORADO CROPS .............................17 INSECTICIDES USED ON MINOR COLORADO CROPS ..........................26 WORKER PROTECTION STANDARDS RESOURCE MATERIALS. 37 There is general agreement that prevention of pesticide poisoning remains a much surer path to safety and health than reliance on treatment. Clinical management decisions have to be made promptly and, as often as not, on the basis of limited scientific or medical inform ation. This manual puts together important information about the health effects of pesticides used in Colorado. This information has been compiled from a variety of sources (see pages 37-38 ) for the use of growers, health care workers, and other interested parties. THE PESTICIDE LABEL The pesticide label is your guide to using pesticides safely and effectively. It contains pertinent information that you should read and understand before you use a pesticide product. A pesticide is any substance or mixture of substances designed to prevent, destroy, repel, or mitigate any pest. Pests can be insects, mice and other animals, unwanted plants (weeds), fungi, or microorganisms like bacteria and viruses. Any substance which is sold to control a pest is legally a pesticide and is subject to all state and federal regulations which apply to pesticides. Though often misunderstood to refer only to insecticides, the term pesticide also applies to herbicides, fungicides and various other substances used to control pests.
    [Show full text]
  • Pesticide Toxicity Profile: Neonicotinoid Pesticides1
    Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. PI-80 Pesticide Toxicity Profile: Neonicotinoid Pesticides1 Frederick M. Fishel2 This document provides a general overview of vegetables. Ready-to-use formulations are available human toxicity, provides a listing of laboratory in addition to wettable powders and water-dispersible animal and wildlife toxicities and a cross reference of granules. chemical, common and trade names of many neonicotinoid pesticides registered for use in Florida. Imidacloprid was first registered for use in the U.S. in 1992 and is possibly the most widely used General insecticide of the group. It has a wide range of target pests and sites, including soil, seed, structural, pets, The mode of action of neonicotinoid pesticides is and foliar treatments in cotton, rice, cereals, peanuts, modeled after the natural insecticide, nicotine. They potatoes, vegetables, pome fruits, pecans, and turf. It act on the central nervous system of insects. Their is a systemic with long residual activity and action causes excitation of the nerves and eventual particularly effective against sucking insects, soil paralysis which leads to death. Because they bind at a insects, whiteflies, termites, turf insects, and specific site (the postsynaptic nicotinic acetylcholine Colorado potato beetle. Products are available in receptor), they are not cross-resistant to the dusts, granules, seed dressings as flowable slurry carbamate, organophosphate, or synthetic pyrethroid concentrates, soluble concentrates, suspension insecticides, which was an impetus for their concentrates, and wettable powders. The application development. As a group, they are effective against rates for neonicotinoid insecticides are much lower sucking insects, but also chewing insects such as than older, traditionally used insecticides.
    [Show full text]
  • Refuse to Use Chemlawn
    Why Lawn Care Pesticides are Dangerous to Your Children, Pets and the Environment TOXICS ACTION CENTER Why Lawn Care Pesticides are Dangerous to Your Children, Pets and the Environment Authors: Matthew Wilson and Jay Rasku Toxics Action Center TOXICS ACTION CENTER March, 2005 I Acknowledgements The authors express their gratitude to the following individuals who provided insight or information relevant to this report. Their perspectives helped us pull together this document that will be invaluable to residents concerned about the dangers of lawn pesticides. Beth Williamson, Ecopledge Martha Dansdill and the folks at HealthLink Tanya Brown, Pesticide Awareness Network of North America (PANNA) Shawnee Hoover and Jay Feldman, Beyond Pesticides Paul Burns, Vermont PIRG Gil Woolley Steve Seymour and Sue Phelan, Green Cape Joanna Glennon Chip Osborne Diane Carr Susan Abbott Toxics Action Center interns Ingrid Nelson, Jilienne Bishop, and Kara Kelly spent innumerable hours not only earning course credit, but researching and analyzing hundreds of documents on the public health and environmental impacts of lawn pesticides. We are grateful for their time and effort. We would like to thank Toxics Action Center members who support us financially. Thanks to The John Merck Fund and the Public Welfare Foundation which also supported this project. For 17 years, Toxics Action Center has assisted residents and neighborhood groups across New England address toxic pollution issues in their community. For more information on Toxics Action Center, please contact our main office at 617-292-4821 or visit www.toxicsaction.org Be Truly Green – Refuse to Use ChemLawn. Matthew Wilson and Jay Rasku, Authors Toxics Action Center March, 2005 For additional copies of the report, send $10 to: Toxics Action Center 44 Winter Street Boston, MA 02108 © Copyright 2005 II Table of Contents Acknowledgements……………………………………………………..
    [Show full text]
  • OECD Environment, Health and Safety Publications
    OECD Environment, Health and Safety Publications Series on Testing and Assessment No. 39 DRAFT GUIDANCE DOCUMENT ON ACUTE INHALATION TOXICITY TESTING Environment Directorate Organisation for Economic Co-operation and Development 28 November 2008 1 Also published in the Series on Testing and Assessment: No. 1, Guidance Document for the Development of OECD Guidelines for Testing of Chemicals (1993; reformatted 1995, revised 2006) No. 2, Detailed Review Paper on Biodegradability Testing (1995) No. 3, Guidance Document for Aquatic Effects Assessment (1995) No. 4, Report of the OECD Workshop on Environmental Hazard/Risk Assessment (1995) No. 5, Report of the SETAC/OECD Workshop on Avian Toxicity Testing (1996) No. 6, Report of the Final Ring-test of the Daphnia magna Reproduction Test (1997) No. 7, Guidance Document on Direct Phototransformation of Chemicals in Water (1997) No. 8, Report of the OECD Workshop on Sharing Information about New Industrial Chemicals Assessment (1997) No. 9, Guidance Document for the Conduct of Studies of Occupational Exposure to Pesticides during Agricultural Application (1997) No. 10, Report of the OECD Workshop on Statistical Analysis of Aquatic Toxicity Data (1998) No. 11, Detailed Review Paper on Aquatic Testing Methods for Pesticides and industrial Chemicals (1998) No. 12, Detailed Review Document on Classification Systems for Germ Cell Mutagenicity in OECD Member Countries (1998) No. 13, Detailed Review Document on Classification Systems for Sensitising Substances in OECD Member Countries 1998) No. 14, Detailed Review Document on Classification Systems for Eye Irritation/Corrosion in OECD Member Countries (1998) No. 15, Detailed Review Document on Classification Systems for Reproductive Toxicity in OECD Member Countries (1998) 2 No.
    [Show full text]