Pesticide Toxicity Profile: Neonicotinoid Pesticides1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Specific Target Organ Systemic Toxicity (Tost) Following Repeated Exposure
Chapter 13: SPECIFIC TARGET ORGAN SYSTEMIC TOXICITY (TOST) FOLLOWING REPEATED EXPOSURE DEFINITIONS 1. Classification identifies the chemical substance as being a specific target organ/systemic toxicant and, as such, it may present a potential for adverse health impact to people who are exposed to it. 2. Classification depends upon the availability of reliable evidence that repeated exposure to the substance has produced a consistent and identifiable toxic effect in humans, or, in experimental animals, toxicologically significant changes which have affected the function or morphology of a tissue/organ, or has produced serious changes to the biochemistry or haematology of the organism and these changes are relevant for human health. 3. Assessment of specific target organ/systemic toxicity should take into consideration not only significant changes in a single organ or biological system but also generalised changes of a less severe nature involving several organs. CONSIDERATIONS 4. The purpose of this document is to provide a means of classifying substances that produce specific target organ/systemic toxicity arising from repeated exposure that is not specifically addressed elsewhere in the harmonised classification system (GHS). All significant health effects that can impair function, both reversible and irreversible, following repeated or long-term exposure, are included. Other specific toxic effects, such as acute lethality/toxicity, eye and skin corrosivity/irritation, skin and respiratory sensitisation, carcinogenicity, mutagenicity and reproductive toxicity are assessed separately in the GHS and consequently are not included in the present proposal. 5. Non-lethal toxic effects observed after a single-event exposure are classified elsewhere in the GHS as a separate chapter and, therefore, are excluded from the present chapter. -
2017 Spray Bulletin for Commercial Tree Fruit Growers Virginia, West Virginia, and University of Maryland Extension
Publication 456-419 2017 Spray Bulletin for Commercial Tree Fruit Growers Virginia, West Virginia, and University of Maryland Extension West Virginia University Table of Incompatibilities abamectin (Abba, Agri-Mek, Temprano) abamectin + thiamethoxam (Agri-Flex) acequinocyl (Kanemite) azadirachtin (Aza-Direct, Neemazad, Neemix) Topsin-M bifenazate (Acramite) Bt Bordeaux Mixture buprofezin (Centaur) captan carbaryl (Sevin) chlorantraniliprole (Altacor) Compatible; safe and effective chlorothalonil (Bravo) chlorpyrifos (Lorsban, Nufos, Yuma) if used as recommended. clofentezine, hexythiazox (Apollo, Onager, Savey) CM virus (Carpovirusine, Cyd-X, Madex) Not compatible; unsafe, one copper cyantraniliprole (Exirel) or both materials ineffective. cyflumetofen (Nealta) diazinon Caution - not always safe or dichloran (Botran) effective. See text. diflubenzuron (Dimilin) dinotefuran (Scorpion, Venom) dodine (Syllit) Information lacking or mixture emamectin benzoate (Proclaim) not probable. etoxazole (eal) fenarimol (Rubigan) fenbutatin (Vendex) Use wettable powder fenpyroximate (Portal) formulation only. ferbam flonicamid (Beleaf) fluazinam (Omega) flubendiamide (Belt) flubendiamide + buprofezin (Tourismo) flupyradifurone (Sivanto)) formetanate hydrochl. (Carzol) imidacloprid + beta-cyfluthrin (Leverage) indoxacarb (Avaunt) iprodione (Rovral) kaolin (Surround) lambda-cyhalothrin + chlorantraniliprole (Voliam Xpress), lambda-cyhalothrin + thiamethoxam (Endigo) lime malathion mancozeb, iram methidathion (Supracide) methomyl (Lannate) methoxyfenozide -
The Impact of the Nation's Most Widely Used Insecticides on Birds
The Impact of the Nation’s Most Widely Used Insecticides on Birds Neonicotinoid Insecticides and Birds The Impact of the Nation’s Most Widely Used Insecticides on Birds American Bird Conservancy, March 2013 Grasshopper Sparrow by Luke Seitz Cover photos: Horned Lark and chicks by Middleton Evans; Corn field, stock.xchng, sxc.hu; Calico Pennant dragonfly by David Cappaert, Michigan State University, Bugwood.org 1 Neonicotinoid Insecticides and Birds American Bird Conservancy would like to thank the Turner Foundation, Wallace Genetic Foundation, Jeff and Connie Woodman, Cornell Douglas Foundation and A.W. Berry Foundation for their ongoing support for American Bird Conservancy’s Pesticides Program. Written by Dr. Pierre Mineau and Cynthia Palmer Designed by Stephanie von Blackwood About the Authors Dr. Pierre Mineau began his long and distinguished scientific career studying the effects of persistent organochlorine compounds, like DDT and PCBs, on fish-eating birds. He then became responsible for the Canadian assessment of new and existing pesticides to determine their adverse impacts on wildlife. In 1994 he transitioned from regulatory reviews to full-time research on the environmental impacts of pesticides, achieving the rank of Senior Research Scientist at Environment Canada. Working with international collaborators and graduate students, he works on assessing globally the environmental footprint of pesticides. He also studies how birds are exposed to pesticides and how bird populations respond to pesticide use and agricultural practices. His work includes defining the ecological values of birds in cropland as well as estimating the incidental take of birds from various other human activities. He has written more than 100 peer-reviewed publications and has authored some 200 presentations. -
Oecd Guideline for the Testing of Chemicals
Paris 28 November 2008 [email protected] OECD GUIDELINE FOR THE TESTING OF CHEMICALS DRAFT PROPOSAL FOR A NEW GUIDELINE: 436 Acute Inhalation Toxicity - Acute Toxic Class (ATC) Method INTRODUCTION 1. OECD Guidelines for the Testing of Chemicals are periodically reviewed in the light of scientific progress, changing regulatory needs and animal welfare considerations. The first acute inhalation Test Guideline 403 was adopted in 1981, and has since been revised (1). Development of an Inhalation Acute Toxic Class (ATC) method (2)(3)(4) was considered appropriate following the adoption of the revised oral ATC method (TG 423)(5) in December 2001. A retrospective validation study of the acute toxic class testing method for acute inhalation toxicity showed that the method is suitable for being used for Classification and Labelling purposes (6). The inhalation ATC Guideline will allow the use of serial steps of fixed target concentrations to provide a ranking of test article toxicity. Lethality is used as key endpoint. However, animals in severe pain or distress, suffering or impending death should be humanely killed to minimize suffering. Guidance on humane endpoints is available in the OECD Guidance Document No. 19 (7). 2. Guidance on the conduct and interpretation of the TG 436 can be found in the Guidance Document on Acute Inhalation Toxicity Testing (8). 3. Definitions used in the context of this Guideline are provided in Annex 1. 4. The method provides information on the hazardous properties and allows the substance to be ranked and classified according to the United Nations (UN) Globally Harmonized System of Classification and Labelling of Chemicals (GHS) for the classification of chemicals that cause acute toxicity (9). -
Quantification of Neonicotinoid Pesticides in Six Cultivable Fish Species from the River Owena in Nigeria and a Template For
water Article Quantification of Neonicotinoid Pesticides in Six Cultivable Fish Species from the River Owena in Nigeria and a Template for Food Safety Assessment Ayodeji O. Adegun 1, Thompson A. Akinnifesi 1, Isaac A. Ololade 1 , Rosa Busquets 2 , Peter S. Hooda 3 , Philip C.W. Cheung 4, Adeniyi K. Aseperi 2 and James Barker 2,* 1 Department of Chemical Sciences, Adekunle Ajasin University, Akungba Akoko P.M.B. 001, Ondo State, Nigeria; [email protected] (A.O.A.); [email protected] (T.A.A.); [email protected] (I.A.O.) 2 School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston-upon-Thames KT1 2EE, UK; [email protected] (R.B.); [email protected] (A.K.A.) 3 School of Engineering and the Environment, Kingston University, Kingston-on-Thames KT1 2EE, UK; [email protected] 4 Department of Chemical Engineering, Imperial College, London SW7 2AZ, UK; [email protected] * Correspondence: [email protected] Received: 17 June 2020; Accepted: 24 August 2020; Published: 28 August 2020 Abstract: The Owena River Basin in Nigeria is an area of agricultural importance for the production of cocoa. To optimise crop yield, the cocoa trees require spraying with neonicotinoid insecticides (Imidacloprid, Thiacloprid Acetamiprid and Thiamethoxam). It is proposed that rainwater runoff from the treated area may pollute the Owena River and that these pesticides may thereby enter the human food chain via six species of fish (Clarias gariepinus, Clarias anguillaris, Sarotherodon galilaeus, Parachanna obscura, Oreochromis niloticus and Gymnarchus niloticus) which are cultured in the river mostly for local consumption. -
Toxicological Studies on Boric Acid, Imidacloprid And
TOXICOLOGICAL STUDIES ON BORIC ACID, IMIDACLOPRID AND FIPRONIL AND THEIR BINARY MIXTURES AS INSECTICIDES ON GERMAN COCKROACH Blattellagermanica (L.) (DICTYOPTERA: BLATTELLIDAE) By FATMA SHERIF AHMED B.Sc. Agric. Sci. (Pesticides), Fac. Agric., Cairo Univ., 2007 THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE In Agricultural Sciences (Pesticides) Department of Economic Entomology and Pesticides Faculty of Agriculture Cairo University EGYPT 2015 ١ INTRODUCTION The German cockroaches, Blattellagermanica (L.), (Dictyoptera, Blattellidae) are the most common indoor pests, especially in multiple-family housing and the most significant pest in many parts of the world (Goddard, 2003). German cockroaches prefer warm, wet locations with high humidity such as kitchens, bathrooms and laundry areas. These conditions are available in several places as homes, apartments, restaurants, supermarkets, hospitals and other buildings where food are stored. Cockroaches are not only corrupt food but also transfer pathogens such as Salmonella, Shigella, Escherichia coli, Staphylococcus aureus and Bacillus cereus (Baumholtz et al., 1997 and Tachbeleet al., 2006). Medically important parasites such as bacteria, fungi and molds, protozoans, viruses were isolated from external and internal surface of cockroach (Brenner, 1995). Cockroaches can also transfer both gram-positive and negative bacteria (El-Sherbini and El- Sherbini, 2011). A large number of neurotoxic and non-neurotoxic insecticides were used for German cockroach control, as this pest has a considerable ability to develop resistance to a variety of chemical insecticides(Cochran, 1989 and 1995a; Scott et al., 1990; Rust and Reierson, 1991; Rust et al., 1993; Holbrook et al., 1999; Espinosa-Islas et al., 2002 and Rahayuet al., 2012). -
Proposed Interim Registration Review Decision for Imidacloprid
Docket Number EPA-HQ-OPP-2008-0844 www.regulations.gov Imidacloprid Proposed Interim Registration Review Decision Case Number 7605 January 2020 Approved by: Elissa Reaves, Ph.D. Acting Director Pesticide Re-evaluation Division Date: __ 1-22-2020 __ Docket Number EPA-HQ-OPP-2008-0844 www.regulations.gov Table of Contents I. INTRODUCTION .................................................................................................................. 4 A. Summary of Imidacloprid Registration Review............................................................... 5 B. Summary of Public Comments on the Draft Risk Assessments and Agency Responses 7 II. USE AND USAGE ............................................................................................................... 14 III. SCIENTIFIC ASSESSMENTS ......................................................................................... 15 A. Human Health Risks....................................................................................................... 15 1. Risk Summary and Characterization .......................................................................... 15 2. Human Incidents and Epidemiology .......................................................................... 17 3. Tolerances ................................................................................................................... 18 4. Human Health Data Needs ......................................................................................... 18 B. Ecological Risks ............................................................................................................ -
Estimated Impact of Neonicotinoid Insecticides on Pest Management Practices and Costs for U.S
The Value of Neonicotinoids in North American Agriculture: AgInfomatics Estimated Impact of Neonicotinoid Insecticides on Pest Management Practices and Costs for U.S. Corn, Soybean, Wheat, Cotton and Sorghum Farmers 2014 This report series, researched and produced by AgInfomatics, LLC, is a comprehensive analysis of the economic and societal benefits of nitroguanidine neonicotinoid insecticides in North America. The research was sponsored by Bayer CropScience, Syngenta and Valent in support of regulatory review processes in the United States and Canada, with Mitsui providing additional support for the turf and ornamental studies. AgInfomatics, an agricultural consulting firm established in 1995 by professors from the University of Wisconsin-Madison and Washington State University, conducted independent analyses exploring the answer to the question: What would happen if neonicotinoids were no longer available? Comparing that answer to current product use revealed the value of neonicotinoids. Robust quantitative and qualitative study methods included econometrics modeling of insecticide use, crop yield data and market impacts; surveys of growers, professional applicators and consumers; regional listening panel sessions; and in-depth case studies. Active ingredients in the study included clothianidin, dinotefuran, imidacloprid and thiamethoxam. The Value of Neonicotinoids in North American The Value of Neonicotinoids in Turf and Agriculture Ornamentals Reports include: Reports include: Estimated Impact of Neonicotinoid Insecticides on Estimating the Economic Value of Neonicotinoid Pest Management Practices and Costs for U.S. Corn, Insecticides on Flowers, Shrubs, Home Lawns and Soybean, Wheat, Cotton and Sorghum Farmers Trees in the Homescape Methods and Assumptions for Estimating the The Value of Neonicotinoids to Turf and Ornamental Impact of Neonicotinoid Insecticides on Pest Professionals Management Practices and Costs for U.S. -
The Value of Neonicotinoids in Turf and Ornamentals: Aginfomatics
The Value of Neonicotinoids in Turf and Ornamentals: AgInfomatics A Case Study of Neonicotinoid Use for Controlling Chinch Bug in Florida St. Augustinegrass 2014 This report series, researched and produced by AgInfomatics, LLC, is a comprehensive analysis of the economic and societal benefits of nitroguanidine neonicotinoid insecticides in North America. The research was sponsored by Bayer CropScience, Syngenta and Valent in support of regulatory review processes in the United States and Canada, with Mitsui providing additional support for the turf and ornamental studies. AgInfomatics, an agricultural consulting firm established in 1995 by professors from the University of Wisconsin-Madison and Washington State University, conducted independent analyses exploring the answer to the question: What would happen if neonicotinoids were no longer available? Comparing that answer to current product use revealed the value of neonicotinoids. Robust quantitative and qualitative study methods included econometrics modeling of insecticide use, crop yield data and market impacts; surveys of growers, professional applicators and consumers; regional listening panel sessions; and in-depth case studies. Active ingredients in the study included clothianidin, dinotefuran, imidacloprid and thiamethoxam. The Value of Neonicotinoids in North American The Value of Neonicotinoids in Turf and Agriculture Ornamentals Reports include: Reports include: Estimated Impact of Neonicotinoid Insecticides on Estimating the Economic Value of Neonicotinoid Pest Management Practices and Costs for U.S. Corn, Insecticides on Flowers, Shrubs, Home Lawns and Soybean, Wheat, Cotton and Sorghum Farmers Trees in the Homescape Methods and Assumptions for Estimating the The Value of Neonicotinoids to Turf and Ornamental Impact of Neonicotinoid Insecticides on Pest Professionals Management Practices and Costs for U.S. -
Integrated Pest Management Strategies
Table of Contents Introduction ................................................................................................................................................. 3 Responsibilities ........................................................................................................................................... 4 IPM Coordinator .......................................................................................................................................... 4 Pesticide Applications ................................................................................................................................ 6 Inspection and Monitoring ......................................................................................................................... 6 Integrated Pest Management Strategies ................................................................................................... 7 Exterior Entrance Points ............................................................................................................................ 7 Classrooms and Offices ............................................................................................................................ 7 Cafeterias and Kitchens ............................................................................................................................ 8 Restrooms ................................................................................................................................................. 9 Outside Areas -
Protecting the Use of Neonicotinoids for Forest Pest Control
P a g e | 1 NASF 2019-01 March 27, 2019 Protecting the Use of Neonicotinoids for Forest Pest Control A policy statement approved by the Executive Committee of the National Association of State Foresters National Association of State Foresters | 444 N. Capitol St NW, Suite 540 | Washington DC 20001 P: 202.624.5415 | F: 202.624.5407 | E: [email protected] | www.stateforesters.org P a g e | 2 Executive Summary The National Association of State Foresters opposes further restrictions of neonicotinoid pesticides for forest uses, as these pesticides are crucial to our endeavors to combat destructive invasive insects and preserve the health of North American forests. The purpose of this paper is to declare the NASF’s position to support the continued use of the neonicotinoid insecticide class for the protection of critically imperiled tree species despite increasing public demand for stricter regulations that reduce the use of neonicotinoid insecticides. Inappropriate use of neonicotinoid insecticides can negatively affect non-target organisms, such as insect pollinators. Strict adherence to the elements on the insecticide label is paramount for their protection. While pollinators are a critical component of all forest ecosystems, the protection of keystone tree species from invasive pests is vital to preserving forest health. Appropriate application of neonicotinoids to protect threatened forest resources poses little risk to pollinators. The National Association of State Foresters supports the continued use of these insecticides on critically imperiled tree species. Removing this management option, in the absence of effective alternatives, will have irreversible long- term impacts on North American forests. Protecting the Use of Neonicotinoids for Forest Pest Control Neonicotinoid insecticides are used globally to suppress a variety of tree, crop, and ornamental plant insect pests. -
Turfgrass Insects Department of Entomology
E-267-W Turfgrass Insects Department of Entomology PROTECTING POLLINATORS FROM INSECTICIDE APPLICATIONS IN TURFGRASS Douglas Richmond, Turfgrass Entomology Extension Specialist As evidence mounts, there is growing concern neonico- Ø Avoid treating these areas with any insecticide. This is tinioid insecticides may play a role in the declining health of consistent with most insecticide labels that advise against pollinators and other wildlife across North America. A string applications to blooming, nectar-producing plants that at- of unfortunate and widely publicized events, have placed this tract pollinators. class of insecticides at the center of the debate surrounding pollinator decline. This publication provides turfgrass man- Ø Remove weeds with herbicide (Fig. 4). Effective weed control agement professionals with suggestions aimed at minimizing should be a prerequisite for using insecticides in turfgrass. the potential negative impacts of neonicotinoids and other insecticides on pollinators. Ø Mow the turf immediately before spraying any insecticide. Mowing will remove ≥ 90% of the flowers and reduce Neonicotinoids are extremely toxic to bees and despite pollinator foraging. When neonicotinoids are used, mow the fact that turf and ornamental systems comprise only about frequently enough to keep these blooms from returning as 4% of neonicotinoid usage in the U.S., they are still the most neonicotinoids may be taken up from the soil and moved widely used insecticides in turfgrass systems (Table 1). Prod- systemically throughout the plant for an extended period ucts containing the neonicotinoids clothianidin, dinotefuran, of time. imidacloprid, and thiamethoxam represent a useful set of chemistries for controlling several key turfgrass insect pests. However, their breadth of use does carry with it some risk of pollinator exposure.