Duda, T.F., Jr., Kohn, A.J., Matheny, A.M. 2009. Cryptic Species

Total Page:16

File Type:pdf, Size:1020Kb

Duda, T.F., Jr., Kohn, A.J., Matheny, A.M. 2009. Cryptic Species Reference: Biol. Bull. 217: 292–305. (December 2009) © 2009 Marine Biological Laboratory Cryptic Species Differentiated in Conus ebraeus, a Widespread Tropical Marine Gastropod THOMAS F. DUDA, JR.1,2*, ALAN J. KOHN3 AND AMBER M. MATHENY3† 1Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, 1109 Geddes Avenue, Ann Arbor, Michigan 48109; 2Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Anco´n, Republic of Panama; and 3Department of Biology, Box 351800, University of Washington, Seattle, Washington 98195 Abstract. Anomalous mitochondrial and nuclear gene radular tooth characters relative to those of the shell. More- sequences in individuals of the widely distributed tropical over, cryptic species could well be important components of marine gastropod Conus ebraeus that were not distinguish- species richness in Conus specifically and marine molluscan able by shell shape and color pattern characters suggested biodiversity more generally. the presence of a second, cryptic species. We tested this hypothesis by genetic, morphological, and ecological com- Introduction parisons of additional individuals from the site in Okinawa where the two forms co-occurred. Radular tooth size and With some 550 recognized valid extant species, Conus is shape, prey type in nature, and microhabitats utilized dif- likely the largest genus of animals in the sea. In addition to fered markedly between the two forms. Adults with typical contributing substantially to marine biodiversity, this cir- C. ebraeus DNA and radular teeth preyed primarily on cumtropical gastropod genus is important ecologically—up errant polychaetes (Eunicidae); those with anomalous DNA to 36 species co-occur on a single coral reef platform (Kohn, and teeth ate mainly sedentary capitellids. Juveniles (shell 2001); evolutionarily—its net diversification rate is the length Ͻ13 mm) had more similar teeth and ate primarily highest among gastropods (Stanley 2007); and neurobio- syllids. Radular teeth of the anomalous form agreed with logically and medically—because of the many highly spe- those of Conus judaeus, distinguished from C. ebraeus by cific and potent neuropeptides in its venom (Olivera, 2006). Rudolph Bergh in 1895 solely on tooth characters of one Conus ebraeus Linnaeus, the most widely distributed specimen from the Philippines. Samples from other widely species of this hyperdiverse genus, occurs in varied shallow- scattered Pacific localities revealed only typical C. ebraeus water habitats throughout the tropical Indian and Pacific Oceans, its range spanning more than one-fourth of the gene sequences. Both forms occurred in Seychelles (western world’s entire ocean area (Ro¨ckel et al., 1995). It is one of Indian Ocean), where their radular teeth and diets were only three of the more than 300 Indo-West Pacific Conus consistent with the data from Okinawa, but DNA of avail- species that extend to the eastern Pacific region. This un- able material was degraded. Although C. judaeus was long usually broad distribution makes C. ebraeus an excellent dismissed as an aberrant specimen and junior synonym of C. subject for examining patterns of genetic connectivity of ebraeus, our results support its validity as a distinct species. populations and patterns of diversification in the broad These results highlight the importance of molecular and Indo-West Pacific marine realm. In a study to interpret patterns of gene flow, Duda and Received 18 May 2009; accepted 14 September 2009. Lessios (2009) demonstrated a general absence of genetic * To whom correspondence should be addressed, at 1109 Geddes Ave- structure in western and central Pacific populations of C. nue, Ann Arbor, Michigan 48109. E-mail: [email protected] ebraeus by using mitochondrial gene sequences at eight †Current address: Benaroya Research Institute, 1201 9th Avenue, Seat- tle, Washington 98101. widespread locations, from Hawaii west to the Philippines Abbreviations: DFA, discriminant function analysis; PCA, principal and from Okinawa south to American Samoa. Also, in a components analysis; SL, shell length; TL, tooth length. study of the evolution of conotoxins, the small peptides 292 CRYPTIC CONUS SPECIES DIFFERENTIATED 293 expressed in Conus venoms and utilized in prey capture, yses. The specimens from Okinawa are preserved in the Duda and Remigio (2008) obtained mRNA sequences from University of Michigan Museum of Zoology. C. ebraeus to determine conotoxin expression patterns The strikingly distinct mitochondrial and venom geno- among a set of closely related Conus. These two studies led types occurred at Okinawa and the Philippines of the eight to the serendipitous discovery that some individuals from Pacific C. ebraeus populations examined by Duda and Les- Okinawa, Japan, that were identified as C. ebraeus from sios (2009). Because of the lack of Indian Ocean represen- shell characters, possessed very different mitochondrial and tatives in these studies, we also examined samples of puta- conotoxin gene sequences. While the sequences from one tive C. ebraeus from Republic of Seychelles and its group agreed with those obtained from C. ebraeus popula- dependencies, collected by AJK during the Yale Seychelles tions at Okinawa and elsewhere, sequences of the other Expedition in 1957–1958 for a comparative ecological were unique, differing strikingly from other C. ebraeus and study of Conus (Kohn, unpubl). from all of the more than 200 other Conus species whose genes have been sequenced. We determined morphological and ecological correlates DNA sequences of the genetic differences between the two forms at Oki- We extracted DNA from about 25 mg of foot tissue with nawa, and we show that these support the hypothesis that a the E.Z.N.A Mollusc DNA Kit (Omega Bio-Tek, Inc.) ac- co-occurring cryptic species had been misidentified as C. cording to manufacturers’ recommendations, except that we ebraeus. Moreover, analysis of radular tooth morphology slightly modified the protocol by extending centrifugation supports the hypothesis that the cryptic species masquerad- of precipitated DNA to 10 min and reducing the volume of ing as C. ebraeus was described more than a century ago, elution buffer to 40 ␮l to increase DNA concentration. We solely on the basis of its radular tooth characteristics. Thus amplified a region of the mitochondrial 16S rRNA gene an available name exists for it in the literature, in contrast to with universal 16S primers (Palumbi et al., 1991) as de- cryptic species identified in recent years from DNA se- scribed previously (Duda and Kohn, 2005). These primers quence differences in other taxa. We also examined indi- amplify about 500 basepairs (bp) of the 16S gene. PCR viduals from additional Indo-West Pacific locations in an products were cleaned with a QIAquick Multiwell PCR effort to better understand the distributions of the two spe- Purification kit (Qiagen), and sequencing was performed in cies. both directions. We examined the chromatograms with Se- quencher 4.8 (Gene Codes Corporation), aligned sequences Materials and Methods by eye, and constructed a haplotype network using TCS 1.21 (Clement et al., 2000). The sequences recovered com- Definitions prised two distinct sets of haplotypes that exhibited a fixed Cryptic species are “reproductively isolated species that difference within a BamHI restriction site. Thus we per- resemble one another closely and, thus, sometimes remain formed restriction digests on amplification products of ad- unrecognized” (Avise, 2006), “two or more distinct but ditional specimens to infer haplotype identity. morphologically similar species that were classified as a For the large sample collected at Okinawa in 2004, we single species” (Pfenninger and Schwenk, 2007), or “two or followed a double-blind protocol in analyzing DNA se- more distinct species that are erroneously classified (and quences and radular tooth morphometry. AJK numbered hidden) under one species name (Bickford et al., 2007). We each specimen and sent numbered foot tissue slices to TFD, use the term in the sense of these essentially similar recent who extracted and sequenced the DNA at the University of definitions. Michigan. AJK prepared and analyzed the similarly num- bered radular teeth at the University of Washington. After completing the analyses, we exchanged the resulting data. Specimens Most specimens were collected from intertidal habitats in Radular tooth morphometry Okinawa, Japan. AJK collected 21 specimens from various sites in 1981 in a study of habitats and diets in nature. The Morphometric methods generally followed Nishi and initial DNA analyses were carried out on specimens col- Kohn (1999), except that data on continuously varying lected at Sesoko Island, Okinawa, near the Sesoko Station radular tooth characters were initially subjected to principal of the Tropical Biosphere Research Center, University of components analysis (PCA), because individual specimens the Ryukyus (26°38.0ЈN, 127°52.4ЈE) in 2001. Following were not preclassified to species prior to discriminant func- the discovery of disparate 16S sequences in that material, tion analysis (DFA). See Table 2 for a list of the characters AJK revisited Sesoko in July 2004 to obtain a larger sample used. All ratios were arcsin transformed prior to PCA and for ecological, morphological, and molecular genetic anal- DFA. 294 T. F. DUDA, JR., ET AL. Table 1 Microhabitats of Conus ebraeus and C. judaeus in Okinawa and Seychelles Okinawa Seychelles Microhabitat Type C. ebraeus C. judaeus C. ebraeus
Recommended publications
  • The Cone Collector N°23
    THE CONE COLLECTOR #23 October 2013 THE Note from CONE the Editor COLLECTOR Dear friends, Editor The Cone scene is moving fast, with new papers being pub- António Monteiro lished on a regular basis, many of them containing descrip- tions of new species or studies of complex groups of species that Layout have baffled us for many years. A couple of books are also in André Poremski the making and they should prove of great interest to anyone Contributors interested in Cones. David P. Berschauer Pierre Escoubas Our bulletin aims at keeping everybody informed of the latest William J. Fenzan developments in the area, keeping a record of newly published R. Michael Filmer taxa and presenting our readers a wide range of articles with Michel Jolivet much and often exciting information. As always, I thank our Bernardino Monteiro many friends who contribute with texts, photos, information, Leo G. Ros comments, etc., helping us to make each new number so inter- Benito José Muñoz Sánchez David Touitou esting and valuable. Allan Vargas Jordy Wendriks The 3rd International Cone Meeting is also on the move. Do Alessandro Zanzi remember to mark it in your diaries for September 2014 (defi- nite date still to be announced) and to plan your trip to Ma- drid. This new event will undoubtedly be a huge success, just like the two former meetings in Stuttgart and La Rochelle. You will enjoy it and of course your presence is indispensable! For now, enjoy the new issue of TCC and be sure to let us have your opinions, views, comments, criticism… and even praise, if you feel so inclined.
    [Show full text]
  • Cone Snail Case
    Cone Snail case Cone snail molecular phylogeny Cone snail video Snail Venom Yields Potent Painkiller, But Delivering The Drug Is Tricky Updated August 4, 201510:52 AM ETPublished August 3, 20153:30 PM ET http://www.npr.org/sections/health-shots/2015/08/03/428990755/snail-venom- yields-potent-painkiller-but-delivering-the-drug-is-tricky Magician’s cone (Conus magus) The magician’s cone, Conus magus, is a fish-hunting, or piscivorous cone snail found in the Western Pacific. It is so common in some of small Pacific islands, especially in the Philippines, that it is routinely sold in the market as food. The magician’s cone attacks its fish prey by sticking out its light yellowish proboscis, from which venom is pushed through a harpoon-like tooth. It hunts by the hook-and-line method and so will engulf its prey after it has been paralyzed. To learn more about hook-and-line hunters, click here. Scientists have analyzed the venom of the magician’s cone and one of its venom components was discovered to have a unique pharmacological activity by blocking a specific calcium channel (N-type). After this venom component was isolated and characterized in a laboratory, researchers realized that it had potential medical application. By blocking N-type calcium channels, the venom blocks channels that when open convey pain from nerve cells. If this is blocked, the brain cannot perceive these pain signals. It was developed as a pain management drug, and is now chemically synthesized and sold under the trade name Prialt. This drug is given to patients who have very severe pain that is not alliviated by morphine.
    [Show full text]
  • BAST1986050004005.Pdf
    BASTERIA, 50: 93-150, 1986 Alphabetical revision of the (sub)species in recent Conidae. 9. ebraeus to extraordinarius with the description of Conus elegans ramalhoi, nov. subspecies H.E. Coomans R.G. Moolenbeek& E. Wils Institute of Taxonomic Zoology (Zoological Museum) University of Amsterdam INTRODUCTION In this ninth part of the revision all names of recent Conus taxa beginning with the letter e are discussed. Amongst these are several nominal species of tent-cones with a C.of close-set lines, the shell a darker pattern consisting very giving appearance (e.g. C. C. The elisae, euetrios, eumitus). phenomenon was also mentioned for C. castaneo- fasciatus, C. cholmondeleyi and C. dactylosus in former issues. This occurs in populations where with normal also that consider them specimens a tent-pattern are found, so we as colour formae. The effect is known shells in which of white opposite too, areas are present, leaving 'islands' with the tent-pattern (e.g. C. bitleri, C. castrensis, C. concatenatus and C. episco- These colour formae. patus). are also art. Because of a change in the rules of the ICZN (3rd edition, 1985: 73-74), there has risen a disagreement about the concept of the "type series". In cases where a museum type-lot consists of more than one specimen, although the original author(s) did not indicate that more than one shell was used for the description, we will designate the single originally mentioned and/or figured specimen as the "lectotype". Never- theless a number of taxonomists will consider that "lectotype" as the holotype, and disregard the remaining shells in the lot as type material.
    [Show full text]
  • The Recent Molluscan Marine Fauna of the Islas Galápagos
    THE FESTIVUS ISSN 0738-9388 A publication of the San Diego Shell Club Volume XXIX December 4, 1997 Supplement The Recent Molluscan Marine Fauna of the Islas Galapagos Kirstie L. Kaiser Vol. XXIX: Supplement THE FESTIVUS Page i THE RECENT MOLLUSCAN MARINE FAUNA OF THE ISLAS GALApAGOS KIRSTIE L. KAISER Museum Associate, Los Angeles County Museum of Natural History, Los Angeles, California 90007, USA 4 December 1997 SiL jo Cover: Adapted from a painting by John Chancellor - H.M.S. Beagle in the Galapagos. “This reproduction is gifi from a Fine Art Limited Edition published by Alexander Gallery Publications Limited, Bristol, England.” Anon, QU Lf a - ‘S” / ^ ^ 1 Vol. XXIX Supplement THE FESTIVUS Page iii TABLE OF CONTENTS INTRODUCTION 1 MATERIALS AND METHODS 1 DISCUSSION 2 RESULTS 2 Table 1: Deep-Water Species 3 Table 2: Additions to the verified species list of Finet (1994b) 4 Table 3: Species listed as endemic by Finet (1994b) which are no longer restricted to the Galapagos .... 6 Table 4: Summary of annotated checklist of Galapagan mollusks 6 ACKNOWLEDGMENTS 6 LITERATURE CITED 7 APPENDIX 1: ANNOTATED CHECKLIST OF GALAPAGAN MOLLUSKS 17 APPENDIX 2: REJECTED SPECIES 47 INDEX TO TAXA 57 Vol. XXIX: Supplement THE FESTIVUS Page 1 THE RECENT MOLLUSCAN MARINE EAUNA OE THE ISLAS GALAPAGOS KIRSTIE L. KAISER' Museum Associate, Los Angeles County Museum of Natural History, Los Angeles, California 90007, USA Introduction marine mollusks (Appendix 2). The first list includes The marine mollusks of the Galapagos are of additional earlier citations, recent reported citings, interest to those who study eastern Pacific mollusks, taxonomic changes and confirmations of 31 species particularly because the Archipelago is far enough from previously listed as doubtful.
    [Show full text]
  • A Transcriptomic Survey of Ion Channel-Based Conotoxins in the Chinese Tubular Cone Snail (Conus Betulinus)
    marine drugs Article A Transcriptomic Survey of Ion Channel-Based Conotoxins in the Chinese Tubular Cone Snail (Conus betulinus) Yu Huang 1,2,†, Chao Peng 2,†, Yunhai Yi 1,2, Bingmiao Gao 3 and Qiong Shi 1,2,4,* 1 BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; [email protected] (Y.H.); [email protected] (Y.Y.) 2 Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China; [email protected] 3 Hainan Provincial Key Laboratory of Research and Development of Tropical Medicinal Plants, Hainan Medical University, Haikou 571199, China; [email protected] 4 Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China * Correspondence: [email protected]; Tel.: +86-185-6627-9826 † These authors contributed equally to this work. Received: 31 May 2017; Accepted: 13 July 2017; Published: 18 July 2017 Abstract: Conotoxins in the venom of cone snails (Conus spp.) are a mixture of active peptides that work as blockers, agonists, antagonists, or inactivators of various ion channels. Recently we reported a high-throughput method to identify 215 conotoxin transcripts from the Chinese tubular cone snail, C. betulinus. Here, based on the previous datasets of four transcriptomes from three venom ducts and one venom bulb, we explored ion channel-based conotoxins and predicted their related ion channel receptors. Homologous analysis was also performed for the most abundant ion channel protein, voltage-gated potassium (Kv; with Kv1.1 as the representative), and the most studied ion channel receptor, nicotinic acetylcholine receptor (nAChR; with α2-nAChR as the representative), in different animals.
    [Show full text]
  • The Hawaiian Species of Conus (Mollusca: Gastropoda)1
    The Hawaiian Species of Conus (Mollusca: Gastropoda) 1 ALAN J. KOHN2 IN THECOURSE OF a comparative ecological currents are factors which could plausibly study of gastropod mollus ks of the genus effect the isolation necessary for geographic Conus in Hawaii (Ko hn, 1959), some 2,400 speciation . specimens of 25 species were examined. Un­ Of the 33 species of Conus considered in certainty ofthe correct names to be applied to this paper to be valid constituents of the some of these species prompted the taxo­ Hawaiian fauna, about 20 occur in shallow nomic study reported here. Many workers water on marine benches and coral reefs and have contributed to the systematics of the in bays. Of these, only one species, C. ab­ genus Conus; nevertheless, both nomencla­ breviatusReeve, is considered to be endemic to torial and biological questions have persisted the Hawaiian archipelago . Less is known of concerning the correct names of a number of the species more characteristic of deeper water species that occur in the Hawaiian archi­ habitats. Some, known at present only from pelago, here considered to extend from Kure dredging? about the Hawaiian Islands, may (Ocean) Island (28.25° N. , 178.26° W.) to the in the future prove to occur elsewhere as island of Hawaii (20.00° N. , 155.30° W.). well, when adequate sampling methods are extended to other parts of the Indo-West FAUNAL AFFINITY Pacific region. As is characteristic of the marine fauna of ECOLOGY the Hawaiian Islands, the affinities of Conus are with the Indo-Pacific center of distribu­ Since the ecology of Conus has been dis­ tion .
    [Show full text]
  • <I>Eunice</I> and <I>Palola</I> (Eunicidae: Polychaeta) from the Eastern Brazilian Coast (13°00•
    BULLETIN OF MARINE SCIENCE, 67(1): 449–463, 2000 NEW TAXA PAPER EUNICE AND PALOLA (EUNICIDAE: POLYCHAETA) FROM THE EASTERN BRAZILIAN COAST (13°00'–22°30'S) Joana Zanol, Paulo Cesar Paiva and Fabiano da Silva Attolini ABSTRACT Seventeen species of Eunicidae belonging to the genera Eunice and Palola were found on the eastern Brazilian Coast. Among them are two new species: Eunice marcusi and Palola brasiliensis. The coast line is dominated by calcareous bottoms and its fauna is one of the poorest known in the western Atlantic. The eastern Brazilian coast polychaete fauna is among the least known in the western Atlantic. The coast (ca 13°00'–22°30'S) is dominated by biogenic calcareous bottoms of living and dead algae, coral reefs and other biodetritic fragments (Lana, 1996). This sub- strate is suitable for reef-boring organisms, such as Eunicidae which is the dominant polychaete family in the area. Despite their large body size and the large number of char- acters, eunicid taxonomy is quite problematic. Several original descriptions were rather brief, leading to a great number of indeterminable species. Fauchald (1992a,b) reviewed the genera Eunice and Palola and redescribed them in a more realistic framework that allowed for the identification of many rare species previously reported as synonyms of ‘well known’ species. Hence, in this study, of the total of 17 species recorded, two are new: Eunice marcusi and Palola brasiliensis, and many are known only from original description or very few samples. MATERIALS AND METHODS Material used for this study was collected by oceanographic surveys using the vessels: HV AN- TARES (Diretoria de Hidrografía e Navegação—Brazilian Navy) and SV ASTRO-GAROUPA (PETROBRÁS).
    [Show full text]
  • Xoimi AMERICAN COXCIIOLOGY
    S31ITnS0NIAN MISCEllANEOUS COLLECTIOXS. BIBLIOGIIAPHY XOimi AMERICAN COXCIIOLOGY TREVIOUS TO THE YEAR 18G0. PREPARED FOR THE SMITHSONIAN INSTITUTION BY . W. G. BINNEY. PART II. FOKEIGN AUTHORS. WASHINGTON: SMITHSONIAN INSTITUTION. JUNE, 1864. : ADYERTISEMENT, The first part of the Bibliography of American Conchology, prepared for the Smithsonian Institution by Mr. Binuey, was published in March, 1863, and embraced the references to de- scriptions of shells by American authors. The second part of the same work is herewith presented to the public, and relates to species of North American shells referred to by European authors. In foreign works binomial authors alone have been quoted, and no species mentioned which is not referred to North America or some specified locality of it. The third part (in an advanced stage of preparation) will in- clude the General Index of Authors, the Index of Generic and Specific names, and a History of American Conchology, together with any additional references belonging to Part I and II, that may be met with. JOSEPH HENRY, Secretary S. I. Washington, June, 1864. (" ) PHILADELPHIA COLLINS, PRINTER. CO]^TENTS. Advertisement ii 4 PART II.—FOREIGN AUTHORS. Titles of Works and Articles published by Foreign Authors . 1 Appendix II to Part I, Section A 271 Appendix III to Part I, Section C 281 287 Appendix IV .......... • Index of Authors in Part II 295 Errata ' 306 (iii ) PART II. FOEEIGN AUTHORS. ( V ) BIBLIOGRxVPHY NOETH AMERICAN CONCHOLOGY. PART II. Pllipps.—A Voyage towards the North Pole, &c. : by CON- STANTiNE John Phipps. Loudou, ITTJc. Pa. BIBLIOGRAPHY OF [part II. FaliricillS.—Fauna Grcenlandica—systematice sistens ani- malia GrcEulandite occidentalis liactenus iudagata, &c., secun dum proprias observatioues Othonis Fabricii.
    [Show full text]
  • Biogeography of Coral Reef Shore Gastropods in the Philippines
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/274311543 Biogeography of Coral Reef Shore Gastropods in the Philippines Thesis · April 2004 CITATIONS READS 0 100 1 author: Benjamin Vallejo University of the Philippines Diliman 28 PUBLICATIONS 88 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: History of Philippine Science in the colonial period View project Available from: Benjamin Vallejo Retrieved on: 10 November 2016 Biogeography of Coral Reef Shore Gastropods in the Philippines Thesis submitted by Benjamin VALLEJO, JR, B.Sc (UPV, Philippines), M.Sc. (UPD, Philippines) in September 2003 for the degree of Doctor of Philosophy in Marine Biology within the School of Marine Biology and Aquaculture James Cook University ABSTRACT The aim of this thesis is to describe the distribution of coral reef and shore gastropods in the Philippines, using the species rich taxa, Nerita, Clypeomorus, Muricidae, Littorinidae, Conus and Oliva. These taxa represent the major gastropod groups in the intertidal and shallow water ecosystems of the Philippines. This distribution is described with reference to the McManus (1985) basin isolation hypothesis of species diversity in Southeast Asia. I examine species-area relationships, range sizes and shapes, major ecological factors that may affect these relationships and ranges, and a phylogeny of one taxon. Range shape and orientation is largely determined by geography. Large ranges are typical of mid-intertidal herbivorous species. Triangualar shaped or narrow ranges are typical of carnivorous taxa. Narrow, overlapping distributions are more common in the central Philippines. The frequency of range sizesin the Philippines has the right skew typical of tropical high diversity systems.
    [Show full text]
  • CONE SHELLS - CONIDAE MNHN Koumac 2018
    Living Seashells of the Tropical Indo-Pacific Photographic guide with 1500+ species covered Andrey Ryanskiy INTRODUCTION, COPYRIGHT, ACKNOWLEDGMENTS INTRODUCTION Seashell or sea shells are the hard exoskeleton of mollusks such as snails, clams, chitons. For most people, acquaintance with mollusks began with empty shells. These shells often delight the eye with a variety of shapes and colors. Conchology studies the mollusk shells and this science dates back to the 17th century. However, modern science - malacology is the study of mollusks as whole organisms. Today more and more people are interacting with ocean - divers, snorkelers, beach goers - all of them often find in the seas not empty shells, but live mollusks - living shells, whose appearance is significantly different from museum specimens. This book serves as a tool for identifying such animals. The book covers the region from the Red Sea to Hawaii, Marshall Islands and Guam. Inside the book: • Photographs of 1500+ species, including one hundred cowries (Cypraeidae) and more than one hundred twenty allied cowries (Ovulidae) of the region; • Live photo of hundreds of species have never before appeared in field guides or popular books; • Convenient pictorial guide at the beginning and index at the end of the book ACKNOWLEDGMENTS The significant part of photographs in this book were made by Jeanette Johnson and Scott Johnson during the decades of diving and exploring the beautiful reefs of Indo-Pacific from Indonesia and Philippines to Hawaii and Solomons. They provided to readers not only the great photos but also in-depth knowledge of the fascinating world of living seashells. Sincere thanks to Philippe Bouchet, National Museum of Natural History (Paris), for inviting the author to participate in the La Planete Revisitee expedition program and permission to use some of the NMNH photos.
    [Show full text]
  • Radular Morphology of Conus (Gastropoda: Caenogastropoda: Conidae) from India
    Molluscan Research 27(3): 111–122 ISSN 1323-5818 http://www.mapress.com/mr/ Magnolia Press Radular morphology of Conus (Gastropoda: Caenogastropoda: Conidae) from India J. BENJAMIN FRANKLIN, 1, 3 S. ANTONY FERNANDO, 1 B. A. CHALKE, 2 K. S. KRISHNAN. 2, 3* 1.Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai-608 502, Cuddalore, Tamilnadu, India. 2.Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai-400 005, India. 3.National Centre for Biological Sciences, TIFR, Old Bellary Road, Bangalore-560 065, India.* Corresponding author E-mail: (K. S. Krishnan): [email protected]. Abstract Radular morphologies of 22 species of the genus Conus from Indian coastal waters were analyzed by optical and scanning elec- tron microscopy. Although the majority of species in the present study are vermivorous, all three feeding modes known to occur in the genus are represented. Specific radular-tooth structures consistently define feeding modes. Species showing simi- lar feeding modes also show fine differences in radular structures. We propose that these structures will be of value in species identification in cases of ambiguity in other characteristics. Examination of eight discrete radular-tooth components has allowed us to classify the studied species of Conus into three groups. We see much greater inter-specific differences amongst vermivorous than amongst molluscivorous and piscivorous species. We have used these differences to provide a formula for species identification. The radular teeth of Conus araneosus, C. augur, C. bayani, C. biliosus, C. hyaena, C. lentiginosus, C. loroisii, and C. malacanus are illustrated for the first time. In a few cases our study has also enabled the correction of some erroneous descriptions in the literature.
    [Show full text]
  • Biodiversity and Biogeography of Polychaete Worms (Annelida): Globally and in Wallacea
    Research Proposal BIODIVERSITY AND BIOGEOGRAPHY OF POLYCHAETE WORMS (ANNELIDA): GLOBALLY AND IN WALLACEA Proposed by: Joko Pamungkas Principal supervisor: Dr. Mark J. Costello Co-supervisor: Dr. Christopher J. Glasby INSITUTE OF MARINE SCIENCE FACULTY OF SCIENCE UNIVERSITY OF AUCKLAND 2017 1 Table of Contents 1. Introduction ........................................................................................................... 3 1.1 Background ..................................................................................................... 3 1.2 Objectives ........................................................................................................ 5 2. Literature Review .................................................................................................. 6 2.1 Polychaete taxonomy, biology and ecology ..................................................... 6 2.2 Global species richness: how to estimate? ....................................................... 10 2.3 Global distribution of marine species ............................................................... 11 2.4 Indonesian polychaetes ..................................................................................... 13 2.5 Indo-West Pacific and Wallacea ..................................................................... 15 3. Methodology .......................................................................................................... 18 3.1 Estimating the global species richness of polychaetes ....................................
    [Show full text]