In Mammalian Oocyte and Ovarian Follicle Development

Total Page:16

File Type:pdf, Size:1020Kb

In Mammalian Oocyte and Ovarian Follicle Development The function of gametocyte specific factor 1 (GTSF1) in mammalian oocyte and ovarian follicle development By Georgios Liperis Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds School of Medicine August, 2013 I confirm that the work submitted is my own and that appropriate credit has been given where reference has been made to the work of others This copy has been supplied on the understanding that it is copyright material and that no quotation from this thesis may be published without proper acknowledgement II ACKNOWLEDGEMENTS I would like to express my special appreciation to Professor Helen Picton for giving me the opportunity to work on such an enthusiastic project and for all the help and support she has provided me over the last 4 years. You have been a tremendous mentor for me. I would like to thank you for all the support and encouragement and for allowing me to grow as a research scientist and as a person. The good advice, support and friendship of my second supervisor, Dr. John Huntriss, has been invaluable and for that I am extremely grateful. This work couldn’t have been completed without the help from several people. Special thanks to Matt Cotterill and Jian-Ping Liu whose help has been invaluable. Also many thanks to the bioinformatics team, David Illes, Lee Hazelwood and Praveen Baskaran. Over the course of the past 4 years, I have been surrounded by many people that have all contributed to the completion of this study and with some of which I have become close friends. So thank you to; David Miller, Jan Hogg, Ping Jin, Matt Hinkins, Karen Hemmings, Emma Chambers, Carl Ambrose, Esther Collado Fernandez, Lorna Blackwell, Abdul Hakim Shaban Elnfati, Stefanie Nadj, Adel Binduraihem, Gisela Lorente and Forough Torabi Baghkomeh. Last, but by no means least, a huge thank you to my family who have provided constant support and encouragement. Words cannot express how grateful I am to you for all the sacrifices you have made on my behalf. This work has been funded by MRC-DTA “Στους γονείς οφείλομεν το ζην, στους δε διδασκάλους το ευ ζην” (To our parents we owe life, to our teachers a good life) Alexander the Great III ABSTRACT A detailed understanding of the genes and mechanisms that regulate oocyte growth and maturation underpins the development of improved methods of assisted conception. Gametocyte specific factor 1 (GTSF1)-a putative marker of gamete developmental competence, is highly conserved across species but in mammals demonstrates a sexual dimorphism in its function. In mice, male mutants for Gtsf1 have an infertile phenotype, whereas female mutants appear to have normal ovarian function. It is hypothesised that GTSF1 regulates oocyte development in monovular species such as the sheep. Initial studies characterised the expression and cellular distribution of GTSF1 across cDNA libraries spanning ovine oogenesis and embryogenesis and by using in situ hybridisation of fixed tissue. GTSF1 expression was confined to gonadal and embryonic tissues with highest expression in the ooplasm of germinal vesicle (GV)-staged secondary oocytes. The gene sequence of GTSF1 was obtained and the gene and predicted protein sequences revealed close homology across many species with two conserved CHHC zinc finger domains known to bind RNA. Functional analysis of the role of GTSF1 during sheep oocyte maturation was conducted using short interference RNA (siRNA injection) in conjunction with oocyte in vitro maturation (IVM) and oocytectomised cumulus shell co-culture. This system was validated using siRNA knockdown (kd) for a known oocyte-specific gene, Growth differentiation factor 9 (GDF9). The effect on GTSF1 kd was evaluated following the microinjection of 770 GV oocytes with siRNA target against the sixth exon of ovine GTSF1. The effects of GTSF1 kd were evaluated in 57 MII oocytes and cumulus shells. Targeted kd of GTSF1 in GV oocytes followed by IVM and cumulus shell co-culture did not affect oocyte meiotic progression or cumulus expansion. Microarray analysis using the bovine GeneChip Affymetrix array revealed that 6 down-regulated genes (TCOF1, RPS8, CACNA1D, SREK1IP1, TIMP1, MYL9) following the GTSF1 kd were associated with developmental competence, RNA storage, post-transcriptional modifications and translation. Immunofluorescent studies localized GTSF1 protein to the P-body in GV ovine oocytes. Collectively these results suggest a possible role of GTSF1 in post-transcriptional control of RNA processing, translational regulation and RNA storage which may impact on oocyte developmental competence. IV List of Contents Acknowledgments II Abstract III List of contents IV List of tables VIII List of figures IX List of abbreviations XI Chapter 1: General Introduction 1 1.1 Introduction 1 1.2 Oocyte and follicle development 2 1.2.1 Origin of germ cells 2 1.2.2 Folliculogenesis 4 1.2.3 Primordial follicle development 6 1.2.4 Preantral follicle development 10 1.2.5 Antral follicle development 11 1.2.6 Preovulatory follicle development 16 1.2.7 Peri-ovulatory follicle development and oocyte control of granulosa and cumulus cell function 19 1.3 Oocyte growth and maturation 22 1.3.1 Nuclear maturation of oocytes 24 1.3.2 Cytoplasmic maturation of oocytes 27 1.4 The role of GTSF1 in the regulation of gametogenesis 33 1.4.1 The function of GTSF1 37 1.4.2 RNA-binding 38 1.5 Evaluation of novel gene function 42 1.5.1 The role of small RNA pathways in reproduction 43 1.5.2 RNAi as means to moderate oocyte gene function 46 1.6 Aims and objectives 51 Chapter 2: Materials and methods 53 2.1 Ovine tissue collection and IVM 53 2.1.1 Tissue preparation 53 2.1.2 Aspiration of cumulus oocyte complexes 54 2.1.3 In vitro maturation of COCs 55 2.1.4 Isolation of ovine follicles 55 2.2 General molecular methods 57 2.2.1 Library construction 57 2.2.2 Isolation of mRNA 57 2.2.3 Synthesis of cDNA 58 2.2.4 Long distance PCR of total cDNA 58 2.2.5 Verification PCR 59 2.2.6 Agarose gel electrophoresis 60 2.3 Cloning and sequencing 61 2.3.1 Gel extraction 61 2.3.2 Addition of poly-(A) tail 62 2.3.3 Cloning into pGEM-Teasy 62 2.3.4 Transformation into E. coli 63 2.3.5 Plasmid purification 64 2.3.6 Sequence analysis 64 2.4 Real-time PCR analysis 65 2.5 Western blotting 68 2.5.1 Tissue preparation 68 V 2.5.2 Sodium Dodecyl Sulfate-Polyacrylamide gel electrophoresis 69 2.5.3 Protein transfer 71 2.5.4 Blocking and detection 72 2.6 General histology methods 73 2.6.1 Fluorescence in situ hybridisation 73 2.6.2 Tissue collection and processing 74 2.6.3 Tissue embedding 74 2.6.4 Template preparation 75 2.6.5 Synthesis and labelling of amine-modified RNA 76 2.6.6 FISH protocol 78 2.7 Statistical analysis 80 Chapter 3: Characterisation of ovine GTSF1 81 3.1 Introduction 81 3.1.1 Aims 83 3.2 Materials and Methods 84 3.2.1 Follicle, oocyte, embryo and ovarian somatic cell isolations 84 3.2.2 Somatic tissue cell isolations 85 3.2.3 Molecular evaluation of the ovine developmental series 86 3.2.4 Cloning and sequencing ovine GTSF1 86 3.2.4.1 Nested PCR 86 3.2.4.2 Degenerate primer PCR 89 3.2.5 Characterisation of the cellular localisation of GTSF1 expression across ovine gametogenesis 90 3.2.6 Western blotting 91 3.3 Results 91 3.3.1 Verification of cDNA libraries 91 3.3.2 Expression analysis of GTSF1 across ovine oocyte and embryo development 92 3.3.3 Expression of GTSF1 in somatic tissue 93 3.3.4 Cellular localisation of GTSF1 expression in the ovine ovary and testis 94 3.3.5 Analysis of the GTSF1 ovine sequence 95 3.3.6 Expression of GTSF1 protein in the ovine ovary 100 3.4 Discussion 101 3.4.1 Conclusion 107 Chapter 4: Validation of targeted gene knockdown during the IVM of ovine oocytes by the microinjection of siRNA species 108 4.1 Introduction 108 4.1.1 Aims 112 4.2 Materials and methods 113 4.2.1 Experiment 1: Pilot evaluations of microinjection methodology 113 4.2.2 Experiment 2: Optimisation of GDF9 knockdown using siRNA and IVM of ovine oocytes 116 Day 1: siRNA microinjection and culture of oocytes 116 Day 2: Oocytectomy of COCs and IVM co-culture with gene knockdown oocytes 119 Day 3: Developmental assessments 121 4.2.2.1 Molecular evaluation of GDF9 knockdown 122 4.2.3 Experiment 3: Assessment of the impact of GDF9 knockdown on ovine oocyte maturation and cumulus expansion in vitro 122 4.2.4 Experiment 4: Assessment of the effect of gonadotrophins on maturation and cumulus expansion following GDF9 knockdown in ovine oocytes 124 4.2.5 Statistical analysis 125 4.3 Results 125 4.3.1 Experiment 1: Pilot evaluations of microinjection methodology 125 4.3.2 Experiment 2: Optimisation of GDF9 knockdown using siRNA and IVM of ovine oocytes 127 VI 4.3.3 Experiment 3: Assessment of the impact of GDF9 knockdown on ovine oocyte maturation and cumulus expansion in vitro 132 4.3.3.1 Oocyte survival after microinjection 132 4.3.3.2 The impact of oocyte GDF9 knockdown on meiotic progression in vitro 133 4.3.3.3 The effect of oocyte GDF9 knockdown on cumulus mass and expansion in vitro 133 4.3.4 Molecular analysis of gene expression following GDF9 knockdown 135 4.3.4 Experiment 4: Assessment of the effect of gonadotrophins on maturation and cumulus expansion of GDF9 knockdown on ovine oocytes 138 4.4 Discussion 140 4.4.1 The impact of GDF9 knockdown on oocyte meiotic progression and cumulus cell expansion in vitro 141 4.4.2 The impact of GDF9 on gene expression 143 4.4.3 The effect of gonadotrophins on maturation and cumulus expansion of GDF9 knockdown on ovine oocytes 148 4.4.4 Optimisation of microinjection and
Recommended publications
  • Basal Body Structure and Composition in the Apicomplexans Toxoplasma and Plasmodium Maria E
    Francia et al. Cilia (2016) 5:3 DOI 10.1186/s13630-016-0025-5 Cilia REVIEW Open Access Basal body structure and composition in the apicomplexans Toxoplasma and Plasmodium Maria E. Francia1* , Jean‑Francois Dubremetz2 and Naomi S. Morrissette3 Abstract The phylum Apicomplexa encompasses numerous important human and animal disease-causing parasites, includ‑ ing the Plasmodium species, and Toxoplasma gondii, causative agents of malaria and toxoplasmosis, respectively. Apicomplexans proliferate by asexual replication and can also undergo sexual recombination. Most life cycle stages of the parasite lack flagella; these structures only appear on male gametes. Although male gametes (microgametes) assemble a typical 9 2 axoneme, the structure of the templating basal body is poorly defined. Moreover, the rela‑ tionship between asexual+ stage centrioles and microgamete basal bodies remains unclear. While asexual stages of Plasmodium lack defined centriole structures, the asexual stages of Toxoplasma and closely related coccidian api‑ complexans contain centrioles that consist of nine singlet microtubules and a central tubule. There are relatively few ultra-structural images of Toxoplasma microgametes, which only develop in cat intestinal epithelium. Only a subset of these include sections through the basal body: to date, none have unambiguously captured organization of the basal body structure. Moreover, it is unclear whether this basal body is derived from pre-existing asexual stage centrioles or is synthesized de novo. Basal bodies in Plasmodium microgametes are thought to be synthesized de novo, and their assembly remains ill-defined. Apicomplexan genomes harbor genes encoding δ- and ε-tubulin homologs, potentially enabling these parasites to assemble a typical triplet basal body structure.
    [Show full text]
  • Screening and Identification of Key Biomarkers in Clear Cell Renal Cell Carcinoma Based on Bioinformatics Analysis
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Screening and identification of key biomarkers in clear cell renal cell carcinoma based on bioinformatics analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Clear cell renal cell carcinoma (ccRCC) is one of the most common types of malignancy of the urinary system. The pathogenesis and effective diagnosis of ccRCC have become popular topics for research in the previous decade. In the current study, an integrated bioinformatics analysis was performed to identify core genes associated in ccRCC. An expression dataset (GSE105261) was downloaded from the Gene Expression Omnibus database, and included 26 ccRCC and 9 normal kideny samples. Assessment of the microarray dataset led to the recognition of differentially expressed genes (DEGs), which was subsequently used for pathway and gene ontology (GO) enrichment analysis.
    [Show full text]
  • Transcription Factors SOHLH1 and SOHLH2 Coordinate Oocyte Differentiation Without Affecting Meiosis I
    Transcription factors SOHLH1 and SOHLH2 coordinate oocyte differentiation without affecting meiosis I Yong-Hyun Shin, … , Vasil Mico, Aleksandar Rajkovic J Clin Invest. 2017;127(6):2106-2117. https://doi.org/10.1172/JCI90281. Research Article Development Reproductive biology Following migration of primordial germ cells to the genital ridge, oogonia undergo several rounds of mitotic division and enter meiosis at approximately E13.5. Most oocytes arrest in the dictyate (diplotene) stage of meiosis circa E18.5. The genes necessary to drive oocyte differentiation in parallel with meiosis are unknown. Here, we have investigated whether expression of spermatogenesis and oogenesis bHLH transcription factor 1 (Sohlh1) and Sohlh2 coordinates oocyte differentiation within the embryonic ovary. We found that SOHLH2 protein was expressed in the mouse germline as early as E12.5 and preceded SOHLH1 protein expression, which occurred circa E15.5. SOHLH1 protein appearance at E15.5 correlated with SOHLH2 translocation from the cytoplasm into the nucleus and was dependent on SOHLH1 expression. NOBOX oogenesis homeobox (NOBOX) and LIM homeobox protein 8 (LHX8), two important regulators of postnatal oogenesis, were coexpressed with SOHLH1. Single deficiency of Sohlh1 or Sohlh2 disrupted the expression of LHX8 and NOBOX in the embryonic gonad without affecting meiosis. Sohlh1-KO infertility was rescued by conditional expression of the Sohlh1 transgene after the onset of meiosis. However, Sohlh1 or Sohlh2 transgene expression could not rescue Sohlh2-KO infertility due to a lack of Sohlh1 or Sohlh2 expression in rescued mice. Our results indicate that Sohlh1 and Sohlh2 are essential regulators of oocyte differentiation but do not affect meiosis I.
    [Show full text]
  • Real-Time Dynamics of Plasmodium NDC80 Reveals Unusual Modes of Chromosome Segregation During Parasite Proliferation Mohammad Zeeshan1,*, Rajan Pandey1,*, David J
    © 2020. Published by The Company of Biologists Ltd | Journal of Cell Science (2021) 134, jcs245753. doi:10.1242/jcs.245753 RESEARCH ARTICLE SPECIAL ISSUE: CELL BIOLOGY OF HOST–PATHOGEN INTERACTIONS Real-time dynamics of Plasmodium NDC80 reveals unusual modes of chromosome segregation during parasite proliferation Mohammad Zeeshan1,*, Rajan Pandey1,*, David J. P. Ferguson2,3, Eelco C. Tromer4, Robert Markus1, Steven Abel5, Declan Brady1, Emilie Daniel1, Rebecca Limenitakis6, Andrew R. Bottrill7, Karine G. Le Roch5, Anthony A. Holder8, Ross F. Waller4, David S. Guttery9 and Rita Tewari1,‡ ABSTRACT eukaryotic organisms to proliferate, propagate and survive. During Eukaryotic cell proliferation requires chromosome replication and these processes, microtubular spindles form to facilitate an equal precise segregation to ensure daughter cells have identical genomic segregation of duplicated chromosomes to the spindle poles. copies. Species of the genus Plasmodium, the causative agents of Chromosome attachment to spindle microtubules (MTs) is malaria, display remarkable aspects of nuclear division throughout their mediated by kinetochores, which are large multiprotein complexes life cycle to meet some peculiar and unique challenges to DNA assembled on centromeres located at the constriction point of sister replication and chromosome segregation. The parasite undergoes chromatids (Cheeseman, 2014; McKinley and Cheeseman, 2016; atypical endomitosis and endoreduplication with an intact nuclear Musacchio and Desai, 2017; Vader and Musacchio, 2017). Each membrane and intranuclear mitotic spindle. To understand these diverse sister chromatid has its own kinetochore, oriented to facilitate modes of Plasmodium cell division, we have studied the behaviour movement to opposite poles of the spindle apparatus. During and composition of the outer kinetochore NDC80 complex, a key part of anaphase, the spindle elongates and the sister chromatids separate, the mitotic apparatus that attaches the centromere of chromosomes to resulting in segregation of the two genomes during telophase.
    [Show full text]
  • Sexual Development in Plasmodium Parasites: Knowing When It’S Time to Commit
    REVIEWS VECTOR-BORNE DISEASES Sexual development in Plasmodium parasites: knowing when it’s time to commit Gabrielle A. Josling1 and Manuel Llinás1–4 Abstract | Malaria is a devastating infectious disease that is caused by blood-borne apicomplexan parasites of the genus Plasmodium. These pathogens have a complex lifecycle, which includes development in the anopheline mosquito vector and in the liver and red blood cells of mammalian hosts, a process which takes days to weeks, depending on the Plasmodium species. Productive transmission between the mammalian host and the mosquito requires transitioning between asexual and sexual forms of the parasite. Blood- stage parasites replicate cyclically and are mostly asexual, although a small fraction of these convert into male and female sexual forms (gametocytes) in each reproductive cycle. Despite many years of investigation, the molecular processes that elicit sexual differentiation have remained largely unknown. In this Review, we highlight several important recent discoveries that have identified epigenetic factors and specific transcriptional regulators of gametocyte commitment and development, providing crucial insights into this obligate cellular differentiation process. Trophozoite Malaria affects almost 200 million people worldwide and viewed under the microscope, it resembles a flat disc. 1 A highly metabolically active and causes 584,000 deaths annually ; thus, developing a After the ring stage, the parasite rounds up as it enters the asexual form of the malaria better understanding of the mechanisms that drive the trophozoite stage, in which it is far more metabolically parasite that forms during development of the transmissible form of the malaria active and expresses surface antigens for cytoadhesion. the intra‑erythrocytic developmental cycle following parasite is a matter of urgency.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • Genome-Wide Meta-Analysis of Common Variant Differences Between Men and Women
    Human Molecular Genetics, 2012, Vol. 21, No. 21 4805–4815 doi:10.1093/hmg/dds304 Advance Access published on July 27, 2012 Genome-wide meta-analysis of common variant differences between men and women Vesna Boraska1,2,∗, Ana Jeroncˇic´ 3, Vincenza Colonna1,5, Lorraine Southam1, Dale R. Nyholt 6, Nigel William Rayner1,7,8, John R.B. Perry7,9,10, Daniela Toniolo11, Eva Albrecht12, Wei Ang13, StefaniaBandinelli14, MajaBarbalic15, IneˆsBarroso1,16, Jacques S.Beckmann18,19, ReinerBiffar20, Dorret Boomsma22, Harry Campbell23, Tanguy Corre11, Jeanette Erdmann24,25,To˜ nu Esko27,28,29, Krista Fischer27, Nora Franceschini30, Timothy M. Frayling9, Giorgia Girotto31, Juan R. Gonzalez32,33, Tamara B. Harris34, Andrew C. Heath35, Iris M. Heid36,37, Wolfgang Hoffmann21, Albert Hofman38,40, Momoko Horikoshi7,8, Jing Hua Zhao17, Anne U. Jackson41,42, Jouke-Jan Hottenga22, Antti Jula43, Mika Ka¨ho¨ nen44,46, Kay-Tee Khaw47, Lambertus A. Kiemeney48, Norman Klopp52, Zolta´n Kutalik18,54, Vasiliki Lagou7,8, Downloaded from Lenore J.Launer34, TerhoLehtima¨ki45,46, Mathieu Lemire55, Marja-LiisaLokki56, Christina Loley26, Jian’an Luan17, Massimo Mangino10, Irene Mateo Leach58, Sarah E. Medland6, Evelin Mihailov28, Grant W. Montgomery6, Gerjan Navis59, John Newnham13, Markku S. Nieminen61, Aarno Palotie1,57,62,63, Kalliope Panoutsopoulou1, Annette Peters53, Nicola Pirastu31, http://hmg.oxfordjournals.org/ Ozren Polasˇek4, Karola Rehnstro¨ m1,57, Samuli Ripatti57, Graham R.S. Ritchie1,64, Fernando Rivadeneira38,39,40, Antonietta Robino31, Nilesh J. Samani65, So-Youn Shin1, Juha Sinisalo61, Johannes H. Smit66, Nicole Soranzo1,10, Lisette Stolk39,40, Dorine W. Swinkels49, Toshiko Tanaka68, Alexander Teumer69, Anke To¨ njes70,71, Michela Traglia11, Jaakko Tuomilehto72,73,74,75, Armand Valsesia18,54,76, Wiek H.
    [Show full text]
  • Plasmodium Falciparum Full Life Cycle and Plasmodium Ovale Liver Stages in Humanized Mice
    ARTICLE Received 12 Nov 2014 | Accepted 29 May 2015 | Published 24 Jul 2015 DOI: 10.1038/ncomms8690 OPEN Plasmodium falciparum full life cycle and Plasmodium ovale liver stages in humanized mice Vale´rie Soulard1,2,3, Henriette Bosson-Vanga1,2,3,4,*, Audrey Lorthiois1,2,3,*,w, Cle´mentine Roucher1,2,3, Jean- Franc¸ois Franetich1,2,3, Gigliola Zanghi1,2,3, Mallaury Bordessoulles1,2,3, Maurel Tefit1,2,3, Marc Thellier5, Serban Morosan6, Gilles Le Naour7,Fre´de´rique Capron7, Hiroshi Suemizu8, Georges Snounou1,2,3, Alicia Moreno-Sabater1,2,3,* & Dominique Mazier1,2,3,5,* Experimental studies of Plasmodium parasites that infect humans are restricted by their host specificity. Humanized mice offer a means to overcome this and further provide the opportunity to observe the parasites in vivo. Here we improve on previous protocols to achieve efficient double engraftment of TK-NOG mice by human primary hepatocytes and red blood cells. Thus, we obtain the complete hepatic development of P. falciparum, the transition to the erythrocytic stages, their subsequent multiplication, and the appearance of mature gametocytes over an extended period of observation. Furthermore, using sporozoites derived from two P. ovale-infected patients, we show that human hepatocytes engrafted in TK-NOG mice sustain maturation of the liver stages, and the presence of late-developing schizonts indicate the eventual activation of quiescent parasites. Thus, TK-NOG mice are highly suited for in vivo observations on the Plasmodium species of humans. 1 Sorbonne Universite´s, UPMC Univ Paris 06, CR7, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 Bd de l’hoˆpital, F-75013 Paris, France.
    [Show full text]
  • Plasmodium Asexual Growth and Sexual Development in the Haematopoietic Niche of the Host
    REVIEWS Plasmodium asexual growth and sexual development in the haematopoietic niche of the host Kannan Venugopal 1, Franziska Hentzschel1, Gediminas Valkiūnas2 and Matthias Marti 1* Abstract | Plasmodium spp. parasites are the causative agents of malaria in humans and animals, and they are exceptionally diverse in their morphology and life cycles. They grow and develop in a wide range of host environments, both within blood- feeding mosquitoes, their definitive hosts, and in vertebrates, which are intermediate hosts. This diversity is testament to their exceptional adaptability and poses a major challenge for developing effective strategies to reduce the disease burden and transmission. Following one asexual amplification cycle in the liver, parasites reach high burdens by rounds of asexual replication within red blood cells. A few of these blood- stage parasites make a developmental switch into the sexual stage (or gametocyte), which is essential for transmission. The bone marrow, in particular the haematopoietic niche (in rodents, also the spleen), is a major site of parasite growth and sexual development. This Review focuses on our current understanding of blood-stage parasite development and vascular and tissue sequestration, which is responsible for disease symptoms and complications, and when involving the bone marrow, provides a niche for asexual replication and gametocyte development. Understanding these processes provides an opportunity for novel therapies and interventions. Gametogenesis Malaria is one of the major life- threatening infectious Malaria parasites have a complex life cycle marked Maturation of male and female diseases in humans and is particularly prevalent in trop- by successive rounds of asexual replication across gametes. ical and subtropical low- income regions of the world.
    [Show full text]
  • Transposon Mutagenesis Identifies Genes Essential for Plasmodium
    Transposon mutagenesis identifies genes essential PNAS PLUS for Plasmodium falciparum gametocytogenesis Hiromi Ikadaia,1,2, Kathryn Shaw Salibaa,2,3, Stefan M. Kanzokb, Kyle J. McLeana, Takeshi Q. Tanakab,4, Jun Caoa,5, Kim C. Williamsonb, and Marcelo Jacobs-Lorenaa,6 aDepartment of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205; and bDepartment of Biology, Loyola University, Chicago, IL 60660 Edited by Alexander S. Raikhel, University of California, Riverside, CA, and approved March 12, 2013 (received for review October 15, 2012) Gametocytes are essential for Plasmodium transmission, but little poststage I development will ensue, where the stage I gametocyte is known about the mechanisms that lead to their formation. Us- will undergo a maturation process over an ∼5- to 7-d period, ing piggyBac transposon-mediated insertional mutagenesis, we resulting in a mature stage V female or male gametocyte. screened for parasites that no longer form mature gametocytes, Very little is known about the molecular mechanisms governing which led to the isolation of 29 clones (insertional gametocyte- the commitment of the dividing parasites to gametocytogenesis or deficient mutants) that fail to form mature gametocytes. Additional about the genes required for gametocyte commitment and de- analysis revealed 16 genes putatively responsible for the loss of velopment. Microarray experiments with early or mature game- gametocytogenesis, none of which has been previously implicated tocytes revealed 246 gametocyte-specific genes (9). The majority in gametocytogenesis. Transcriptional profiling and detection of (∼75%) encodes genes of unknown function. A small number an early stage gametocyte antigen determined that a subset of of these gametocyte-specific genes—Pfs16, Pfg27, Pfmdv1/peg3, these mutants arrests development at stage I or in early stage II Pf11.1, Pfs230, and Pfg377—have been knocked out.
    [Show full text]
  • The Genetics of Non-Syndromic Primary Ovarian Insufficiency: a Systematic Review
    Systematic Review The Genetics of Non-Syndromic Primary Ovarian Insufficiency: A Systematic Review Roberta Venturella, M.D.1, Valentino De Vivo, M.D.2, Annunziata Carlea, M.D.2, Pietro D’Alessandro, M.D.2, Gabriele Saccone, M.D.2*, Bruno Arduino, M.D.2, Francesco Paolo Improda, M.D.2, Daniela Lico, M.D.1, Erika Rania, M.D.1, Carmela De Marco, M.D.3, Giuseppe Viglietto, M.D.3, Fulvio Zullo, M.D.1 1. Department of Obstetrics and Gynaecology, Magna Graecia University of Catanzaro, Catanzaro, Italy 2. Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, Naples, Italy 3. Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy Abstract Several causes for primary ovarian insufficiency (POI) have been described, including iatrogenic and environmental factor, viral infections, chronic disease as well as genetic alterations. The aim of this review was to collect all the ge- netic mutations associated with non-syndromic POI. All studies, including gene screening, genome-wide study and as- sessing genetic mutations associated with POI, were included and analyzed in this systematic review. Syndromic POI and chromosomal abnormalities were not evaluated. Single gene perturbations, including genes on the X chromosome (such as BMP15, PGRMC1 and FMR1) and genes on autosomal chromosomes (such as GDF9, FIGLA, NOBOX, ESR1, FSHR and NANOS3) have a positive correlation with non-syndromic POI. Future strategies include linkage analysis of families with multiple affected members, array comparative genomic hybridization (CGH) for analysis of copy number variations, next generation sequencing technology and genome-wide data analysis.
    [Show full text]
  • Plasmodium Malariae and P. Ovale Genomes Provide Insights Into Malaria Parasite Evolution Gavin G
    OPEN LETTER doi:10.1038/nature21038 Plasmodium malariae and P. ovale genomes provide insights into malaria parasite evolution Gavin G. Rutledge1, Ulrike Böhme1, Mandy Sanders1, Adam J. Reid1, James A. Cotton1, Oumou Maiga-Ascofare2,3, Abdoulaye A. Djimdé1,2, Tobias O. Apinjoh4, Lucas Amenga-Etego5, Magnus Manske1, John W. Barnwell6, François Renaud7, Benjamin Ollomo8, Franck Prugnolle7,8, Nicholas M. Anstey9, Sarah Auburn9, Ric N. Price9,10, James S. McCarthy11, Dominic P. Kwiatkowski1,12, Chris I. Newbold1,13, Matthew Berriman1 & Thomas D. Otto1 Elucidation of the evolutionary history and interrelatedness of human parasite P. falciparum than in its chimpanzee-infective relative Plasmodium species that infect humans has been hampered by a P. reichenowi8. In both cases, the lack of diversity in human-infective lack of genetic information for three human-infective species: P. species suggests recent population expansions. However, we found malariae and two P. ovale species (P. o. curtisi and P. o. wallikeri)1. that a species that infects New World primates termed P. brasilianum These species are prevalent across most regions in which malaria was indistinguishable from P. malariae (Extended Data Fig. 2b), as is endemic2,3 and are often undetectable by light microscopy4, previously suggested9. Thus host adaptation in the P. malariae lineage rendering their study in human populations difficult5. The exact appears to be less restricted than in P. falciparum. evolutionary relationship of these species to the other human- Using additional samples to calculate standard measures of molecular infective species has been contested6,7. Using a new reference evolution (Methods; Supplementary Information), we identified a genome for P.
    [Show full text]