Flaviviruses Infections in Neotropical Primates Suggest Long-Term
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Recognition TLR7 Signaling Beyond Endosomal Dendritic Cells
Flavivirus Activation of Plasmacytoid Dendritic Cells Delineates Key Elements of TLR7 Signaling beyond Endosomal Recognition This information is current as of September 29, 2021. Jennifer P. Wang, Ping Liu, Eicke Latz, Douglas T. Golenbock, Robert W. Finberg and Daniel H. Libraty J Immunol 2006; 177:7114-7121; ; doi: 10.4049/jimmunol.177.10.7114 http://www.jimmunol.org/content/177/10/7114 Downloaded from References This article cites 38 articles, 21 of which you can access for free at: http://www.jimmunol.org/content/177/10/7114.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 29, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Flavivirus Activation of Plasmacytoid Dendritic Cells Delineates Key Elements of TLR7 Signaling beyond Endosomal Recognition1 Jennifer P. Wang,2* Ping Liu,† Eicke Latz,* Douglas T. Golenbock,* Robert W. Finberg,* and Daniel H. -
Data-Driven Identification of Potential Zika Virus Vectors Michelle V Evans1,2*, Tad a Dallas1,3, Barbara a Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8
RESEARCH ARTICLE Data-driven identification of potential Zika virus vectors Michelle V Evans1,2*, Tad A Dallas1,3, Barbara A Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8 1Odum School of Ecology, University of Georgia, Athens, United States; 2Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States; 3Department of Environmental Science and Policy, University of California-Davis, Davis, United States; 4Cary Institute of Ecosystem Studies, Millbrook, United States; 5Department of Infectious Disease, University of Georgia, Athens, United States; 6Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States; 7Center for Vaccines and Immunology, University of Georgia, Athens, United States; 8River Basin Center, University of Georgia, Athens, United States Abstract Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. *For correspondence: mvevans@ DOI: 10.7554/eLife.22053.001 uga.edu Competing interests: The authors declare that no competing interests exist. -
Table of Contents
Table of Contents Oral Presentation Abstracts ............................................................................................................................... 3 Plenary Session ............................................................................................................................................ 3 Adult Control I ............................................................................................................................................ 3 Mosquito Lightning Symposium ...................................................................................................................... 5 Student Paper Competition I .......................................................................................................................... 9 Post Regulatory approval SIT adoption ......................................................................................................... 10 16th Arthropod Vector Highlights Symposium ................................................................................................ 11 Adult Control II .......................................................................................................................................... 11 Management .............................................................................................................................................. 14 Student Paper Competition II ...................................................................................................................... 17 Trustee/Commissioner -
Sandra J. Heinemann and John N. Belkin2 for General Information And
Mosquito Systematics vol. lO(3) 1978 365 Collection Records of the Project “Mosquitoes of Middle America” 11. Venezuela (VZ); Guianas: French Guiana (FG, FGC), Guyana (GUY), Surinam (SUR)’ SandraJ. Heinemann and John N. Belkin2 For generalinformation and collectionsfrom the Dominican Republic (RDO) the first publication of this seriesshould be consulted(Belkin and Heinemann 1973). Any departurefrom the method in this publication is indicated below. Publications2-6 of the series(Belkin and Heinemann 1975a, 1975b, 1976a, 1976b, 1976~) recordeddata on collectionsfrom the remainderof the West Indies except Jama& ca (Belkin, Heinemann and Page 1970: 255-304) and the islandsadjacent to Venezuela as well asTrini- dad and Tobago (to be coveredlater). Publication7 on collectionsfrom Costa Rica (Heinemann and Belkin 1977a) begantreatment of Central America and publication 8 coveredthe rest of nuclearCentral America (Heinemann and Belkin 1977b). Publication9 was devoted to Mexico (Heinemann and Belkin 1977c), publication 10 dealt with the extensivecollections in Panama(including Canal Zone) (Heinemann and Belkin 1978) and the pre- sent publication beginscoverage of South America. The collectionsin Venezuelaand the Guianascould not have been made without the interest and assistanceof cooperatorsof the project. We are greatly indebted to theseindividuals and their organiza- tions for the facilities, transportationand assistanceas well as the donation of collectionsto the project. In Venezuelawe are indebted to Arnold0 Gabaldon, Lacenio Guerrero, Pablo Cova Garciaand Juan Pulido, all of Direction de Malariologiay SaneamientoAmbiental, Ministerio de Sanidady Asistencia Social;G. H. Bergoldand Octavia M. Suarez,Departamento de Virologia, Instituto Venezolano de Invest- igacionesCientificas (IVIC); and Felipe J. Martin, Departamentode Zoologia Agricola, Facultad de Agro- nomia, UniversidadCentral de Venezuela,Maracay. -
Taxonomy of the Order Bunyavirales: Update 2019
Archives of Virology (2019) 164:1949–1965 https://doi.org/10.1007/s00705-019-04253-6 VIROLOGY DIVISION NEWS Taxonomy of the order Bunyavirales: update 2019 Abulikemu Abudurexiti1 · Scott Adkins2 · Daniela Alioto3 · Sergey V. Alkhovsky4 · Tatjana Avšič‑Županc5 · Matthew J. Ballinger6 · Dennis A. Bente7 · Martin Beer8 · Éric Bergeron9 · Carol D. Blair10 · Thomas Briese11 · Michael J. Buchmeier12 · Felicity J. Burt13 · Charles H. Calisher10 · Chénchén Cháng14 · Rémi N. Charrel15 · Il Ryong Choi16 · J. Christopher S. Clegg17 · Juan Carlos de la Torre18 · Xavier de Lamballerie15 · Fēi Dèng19 · Francesco Di Serio20 · Michele Digiaro21 · Michael A. Drebot22 · Xiaˇoméi Duàn14 · Hideki Ebihara23 · Toufc Elbeaino21 · Koray Ergünay24 · Charles F. Fulhorst7 · Aura R. Garrison25 · George Fú Gāo26 · Jean‑Paul J. Gonzalez27 · Martin H. Groschup28 · Stephan Günther29 · Anne‑Lise Haenni30 · Roy A. Hall31 · Jussi Hepojoki32,33 · Roger Hewson34 · Zhìhóng Hú19 · Holly R. Hughes35 · Miranda Gilda Jonson36 · Sandra Junglen37,38 · Boris Klempa39 · Jonas Klingström40 · Chūn Kòu14 · Lies Laenen41,42 · Amy J. Lambert35 · Stanley A. Langevin43 · Dan Liu44 · Igor S. Lukashevich45 · Tāo Luò1 · Chuánwèi Lüˇ 19 · Piet Maes41 · William Marciel de Souza46 · Marco Marklewitz37,38 · Giovanni P. Martelli47 · Keita Matsuno48,49 · Nicole Mielke‑Ehret50 · Maria Minutolo3 · Ali Mirazimi51 · Abulimiti Moming14 · Hans‑Peter Mühlbach50 · Rayapati Naidu52 · Beatriz Navarro20 · Márcio Roberto Teixeira Nunes53 · Gustavo Palacios25 · Anna Papa54 · Alex Pauvolid‑Corrêa55 · Janusz T. Pawęska56,57 · Jié Qiáo19 · Sheli R. Radoshitzky25 · Renato O. Resende58 · Víctor Romanowski59 · Amadou Alpha Sall60 · Maria S. Salvato61 · Takahide Sasaya62 · Shū Shěn19 · Xiǎohóng Shí63 · Yukio Shirako64 · Peter Simmonds65 · Manuela Sironi66 · Jin‑Won Song67 · Jessica R. Spengler9 · Mark D. Stenglein68 · Zhèngyuán Sū19 · Sùróng Sūn14 · Shuāng Táng19 · Massimo Turina69 · Bó Wáng19 · Chéng Wáng1 · Huálín Wáng19 · Jūn Wáng19 · Tàiyún Wèi70 · Anna E. -
Interaction with Other Flaviviruses (Pre-Existing Immunity, Co-Infection, Cross- Reactivity)
Interaction with other flaviviruses (pre-existing immunity, co-infection, cross- reactivity) Alan D.T. Barrett Department of Pathology Sealy Center for Vaccine Development University of Texas Medical Branch Galveston TX Flavivirus genome 50nm particle. SS, +RNA genome. 10 genes, 3 structural. Beck, A. Barrett, ADT. (2015) Exp Rev Vaccines. 1-14. 2 Flavivirus E protein epitopes • Studies with human and mouse polyclonal sera show extensive serologic cross-reactivities between flaviviruses in terms of physical (ELISA) and biological (HAI and neutralization) assays • Studies with mouse, non-human primate, and human monoclonal antibodies show essentially the same result that all flaviviruses studied to date have a range of E protein epitopes ranging in flavivirus cross-reactive (e.g., mab 4G2 or 6B6C-1), to flavivirus intermediate (e.g., mab 1B7), to serocomplex specific (e.g., DENV-1 to DENV-4; mab MDVP-55A), to flavivirus species specific (e.g., mab 3H5 that is DENV-2 specific). Strain specific epitopes are rare. • Flavivirus infection induces a range of antibodies, including those that recognize multiple flaviviruses. A second, but different, flavivirus infection potentiates induction of flavivirus cross-reactive antibodies. • Most epitopes are “conformational” or “quaternary”. Very few epitopes are linear. Very few epitopes appear to elicit high titer neutralizing antibodies. Reactivity of anti-E protein mouse monoclonal antibodies raised against YF 17D vaccine with YF and 37 other flaviviruses RH: Rabbit hyperimune sera Gould et al., 1985 Reactivity of anti-E protein mouse monoclonal antibodies raised against YF 17D vaccine with YF and 37 other flaviviruses RH: Rabbit hyperimune sera Gould et al., 1985 Reactivity of anti-E and anti-NS1 protein mouse monoclonal antibodies raised against YF 17D vaccine with different YF strains Flavivirus NS1 protein Less flavivirus cross-reactive epitopes than E protein, but some still identified. -
Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris Spelaea)
viruses Article Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris spelaea) Ian H Mendenhall 1,* , Dolyce Low Hong Wen 1,2, Jayanthi Jayakumar 1, Vithiagaran Gunalan 3, Linfa Wang 1 , Sebastian Mauer-Stroh 3,4 , Yvonne C.F. Su 1 and Gavin J.D. Smith 1,5,6 1 Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; [email protected] (D.L.H.W.); [email protected] (J.J.); [email protected] (L.W.); [email protected] (Y.C.F.S.) [email protected] (G.J.D.S.) 2 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore 3 Bioinformatics Institute, Agency for Science, Technology and Research, Singapore 138671, Singapore; [email protected] (V.G.); [email protected] (S.M.-S.) 4 Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore 5 SingHealth Duke-NUS Global Health Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 168753, Singapore 6 Duke Global Health Institute, Duke University, Durham, NC 27710, USA * Correspondence: [email protected] Received: 30 January 2019; Accepted: 7 March 2019; Published: 12 March 2019 Abstract: Bats are unique mammals, exhibit distinctive life history traits and have unique immunological approaches to suppression of viral diseases upon infection. High-throughput next-generation sequencing has been used in characterizing the virome of different bat species. The cave nectar bat, Eonycteris spelaea, has a broad geographical range across Southeast Asia, India and southern China, however, little is known about their involvement in virus transmission. -
Nascent Flavivirus RNA Colocalized in Situ with Double-Stranded RNA in Stable Replication Complexes
Virology 258, 108–117 (1999) Article ID viro.1999.9683, available online at http://www.idealibrary.com on View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Nascent Flavivirus RNA Colocalized in Situ with Double-Stranded RNA in Stable Replication Complexes Edwin G. Westaway,1 Alexander A. Khromykh, and Jason M. Mackenzie Sir Albert Sakzewski Virus Research Centre, Royal Children’s Hospital, Herston, Brisbane, Queensland 4029 Australia Received November 30, 1998; returned to author for revision January 20, 1999; accepted March 2, 1999 Incorporation of bromouridine (BrU) into viral RNA in Kunjin virus-infected Vero cells treated with actinomycin D was monitored in situ by immunofluorescence using antibodies reactive with Br-RNA. The results showed unequivocally that nascent viral RNA was located focally in the same subcellular site as dsRNA, the putative template for flavivirus RNA synthesis. When cells were labeled with BrU for 15 min, the estimated cycle period for RNA synthesis, the nascent Br-RNA was not digested in permeabilized cells by RNase A under high-salt conditions, in accord with our original model of flavivirus RNA synthesis (Chu, P. W. G., and Westaway, E. G., Virology 140, 68–79, 1985). The model assumes that there is on average only one nascent strand per template, which remains bound until displaced during the next cycle of RNA synthesis. The replicase complex located by BrU incorporation in the identified foci was stable, remaining active in incorporating BrU or [32P]orthophosphate in viral RNA after complete inhibition of protein synthesis in cycloheximide-treated cells. -
Host-Virus Interactions in the Pacific White Shrimp, Litopenaeus Vannamei Duan Sriyotee Loy Iowa State University
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2014 Host-virus interactions in the Pacific white shrimp, Litopenaeus vannamei Duan Sriyotee Loy Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Virology Commons Recommended Citation Loy, Duan Sriyotee, "Host-virus interactions in the Pacific white shrimp, Litopenaeus vannamei" (2014). Graduate Theses and Dissertations. 13777. https://lib.dr.iastate.edu/etd/13777 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Host-virus interactions in the Pacific white shrimp, Litopenaeus vannamei by Duan Sriyotee Loy A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Veterinary Microbiology Program of Study Committee: Lyric Bartholomay, Co-Major Professor Bradley Blitvich, Co-Major Professor D.L. Hank Harris Cathy Miller Michael Kimber Iowa State University Ames, Iowa 2014 Copyright © Duan Sriyotee Loy, 2014. All rights reserved. ii TABLE OF CONTENTS CHAPTER 1: GENERAL INTRODUCTION...…………………………………………...1 Introduction…………………………………………………………………………………………1 Dissertation Organization…………………………………………………………………………3 -
T Cell Responses Induced by Attenuated Flavivirus Vaccination Are Specific and Show Limited Cross
bioRxiv preprint doi: https://doi.org/10.1101/2020.01.17.911099; this version posted January 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 T cell responses induced by attenuated flavivirus vaccination are specific and show limited cross- 2 reactivity with other flavivirus species. 3 Alba Grifonia, Hannah Voica, Sandeep Kumar Dhandaa, Conner K. Kidda, James D Brienb, Søren 4 Buusc, Anette Stryhnc, Anna P Durbind, Stephen Whiteheade, Sean A. Diehlf, Aruna D. De Silvaa,g, 5 Angel Balmasedah, Eva Harrisi, Daniela Weiskopfa and Alessandro Settea,j# 6 aDivision of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States 7 bSaint Louis University, Saint Louis, MO, United States 8 cLaboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, 9 Copenhagen, Denmark. 10 dJohns Hopkins University Bloomberg School of Public Health, Baltimore, MD 11 eNational Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 12 fUniversity of Vermont, School of Medicine, Burlington, VT 13 gDepartment of Paraclinical Sciences, General Sir John Kotelawala Defense University, 14 Ratmalana, Sri Lanka. 15 hNational Virology Laboratory, National Center for Diagnosis and Reference, Ministry of Health, 16 Managua, Nicaragua 17 iDivision of Infectious Diseases and Vaccinology, School of Public Health, University of 18 California, Berkeley, CA 94720. 19 jDepartment of Medicine, University of California San Diego, La Jolla, CA, United States 20 21 Running Head: Human T cell cross-reactivity in flavivirus species 22 #Address correspondence to Dr. -
Forest-Obligate Sabethes Mosquitoes Suggest Palaeoecological Perturbations
Heredity (2008) 101, 186–195 & 2008 Nature Publishing Group All rights reserved 0018-067X/08 $30.00 www.nature.com/hdy ORIGINAL ARTICLE Forest-obligate Sabethes mosquitoes suggest palaeoecological perturbations PM Pedro1, MA Sallum2 and RK Butlin3 1Ecology and Evolution Group, School of Biology, University of Leeds, Leeds, UK; 2Faculdade de Sau´de Pu´blica, Universidade de Sa˜o Paulo, Sa˜o Paulo, Brazil and 3Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, UK The origin of tropical forest diversity has been hotly debated its geographic distribution relative to the other two within a for decades. Although specific mechanisms vary, many such small sampling area (B70 Â 35 km). This fact, supported by explanations propose some vicariance in the distribution of the inability of maximum likelihood analyses to achieve species during glacial cycles and several have been adequate fits to simple models for the population demogra- supported by genetic evidence in Neotropical taxa. However, phy of the species, suggests a more complex history, no consensus exists with regard to the extent or time frame possibly involving disjunct forest refugia. This hypothesis is of the vicariance events. Here, we analyse the cytochrome supported by a genetic signal of recent population growth, oxidase II mitochondrial gene of 250 Sabethes albiprivus B which is expected if population sizes of this forest-obligate mosquitoes sampled from western Sao Paulo in Brazil. There insect increased during the forest expansions that followed was very low population structuring among collection sites glacial periods. Although a time frame cannot be reliably (FST ¼ 0.03, P ¼ 0.04). -
New Records of Mosquito Species (Diptera: Culicidae) for Santa Catarina and Paraná (Brazil)
Biota Neotrop., vol. 8, no. 4, Out./Dez. 2008 New records of mosquito species (Diptera: Culicidae) for Santa Catarina and Paraná (Brazil) Gerson Azulim Müller1,3, Eduardo Fumio Kuwabara1, Jonny Edward Duque1, Mario Antônio Navarro-Silva1 & Carlos Brisola Marcondes2 1Departamento de Zoologia, Universidade Federal do Paraná – UFPR, CP 19020, CEP 81531-980, Curitiba, PR, Brazil, www.ufpr.br 2Departamento de Microbiologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina – UFSC, CEP 88040-900, Florianópolis, SC, Brazil, www.ufsc.br 3Corresponding author: Gerson Azulim Müller, e-mail: [email protected] MÜLLER, G.A., KUWABARA, E.F., DUQUE., J.E., NAVARRO-SILVA, M.A. & MARCONDES, C.B. 2008. New records of mosquito species (Diptera: Culicidae) for Santa Catarina and Paraná (Brazil). Biota Neotrop. 8(4): http://www.biotaneotropica.org.br/v8n4/en/abstract?short-communication+bn01208042008. Abstract: We provide eight new mosquito species records for Santa Catarina (Limatus flavisetosus Oliveira Castro 1935, Mansonia flaveola (Coquillett 1906), Ma. titillans (Walker 1848), Psorophora forceps Cerqueira 1939, Sabethes xyphydes Harbach 1994, Toxorhynchites bambusicolus (Lutz & Neiva 1913), Tx. theobaldi (Dyar & Knab 1906) and Wyeomyia lassalli Bonne-Wepster & Bonne 1921) and three for Paraná (Ochlerotatus argyrothorax Bonne-Wepster & Bonne 1920, Uranotaenia pallidoventer Theobald 1903 and Wyeomyia pilicauda Root 1928). Additionally, we list all species in these eight genera recorded previously in the two states. The known distribution and possible epidemiological implications of the new species records are discussed. Keywords: Ochlerotatus, Psorophora, Sabethes, Toxorhynchites, Wyeomyia, Mansonia. MÜLLER, G.A., KUWABARA, E.F., DUQUE, J.E., NAVARRO-SILVA, M.A. & MARCONDES, C.B. 2008. Novos registros de espécies de mosquitos (Diptera: Culicidae) em Santa Catarina e Paraná (Brasil).