Intel Xeon PHI Programming LNCC Training
Total Page:16
File Type:pdf, Size:1020Kb
Load more
										Recommended publications
									
								- 
												  A Superscalar Out-Of-Order X86 Soft Processor for FPGAA Superscalar Out-of-Order x86 Soft Processor for FPGA Henry Wong University of Toronto, Intel [email protected] June 5, 2019 Stanford University EE380 1 Hi! ● CPU architect, Intel Hillsboro ● Ph.D., University of Toronto ● Today: x86 OoO processor for FPGA (Ph.D. work) – Motivation – High-level design and results – Microarchitecture details and some circuits 2 FPGA: Field-Programmable Gate Array ● Is a digital circuit (logic gates and wires) ● Is field-programmable (at power-on, not in the fab) ● Pre-fab everything you’ll ever need – 20x area, 20x delay cost – Circuit building blocks are somewhat bigger than logic gates 6-LUT6-LUT 6-LUT6-LUT 3 6-LUT 6-LUT FPGA: Field-Programmable Gate Array ● Is a digital circuit (logic gates and wires) ● Is field-programmable (at power-on, not in the fab) ● Pre-fab everything you’ll ever need – 20x area, 20x delay cost – Circuit building blocks are somewhat bigger than logic gates 6-LUT 6-LUT 6-LUT 6-LUT 4 6-LUT 6-LUT FPGA Soft Processors ● FPGA systems often have software components – Often running on a soft processor ● Need more performance? – Parallel code and hardware accelerators need effort – Less effort if soft processors got faster 5 FPGA Soft Processors ● FPGA systems often have software components – Often running on a soft processor ● Need more performance? – Parallel code and hardware accelerators need effort – Less effort if soft processors got faster 6 FPGA Soft Processors ● FPGA systems often have software components – Often running on a soft processor ● Need more performance? – Parallel
- 
												  Introduction to Intel Xeon Phi Programming ModelsIntroduction to Intel Xeon Phi programming models F.Affinito F. Salvadore SCAI - CINECA Part I Introduction to the Intel Xeon Phi architecture Trends: transistors Trends: clock rates Trends: cores and threads Trends: summarizing... The number of transistors increases The power consumption must not increase The density cannot increase on a single chip Solution : Increase the number of cores GP-GPU and Intel Xeon Phi.. Coupled to the CPU To accelerate highly parallel kernels, facing with the Amdahl Law What is Intel Xeon Phi? 7100 / 5100 / 3100 Series available 5110P: Intel Xeon Phi clock: 1053 MHz 60 cores in-order ~ 1 TFlops/s DP peak performance (2 Tflops SP) 4 hardware threads per core 8 GB DDR5 memory 512-bit SIMD vectors (32 registers) Fully-coherent L1 and L2 caches PCIe bus (rev. 2.0) Max Memory bandwidth (theoretical) 320 GB/s Max TDP: 225 W MIC vs GPU naïve comparison The comparison is naïve System K20s 5110P # cores 2496 60 (*4) Memory size 5 GB 8 GB Peak performance 3.52 TFlops 2 TFlops (SP) Peak performance 1.17 TFlops 1 TFlops (DP) Clock rate 0.706 GHz 1.053 GHz Memory bandwidth 208 GB/s (ECC off) 320 GB/s Terminology MIC = Many Integrated Cores is the name of the architecture Xeon Phi = Commercial name of the Intel product based on the MIC architecture Knight's corner, Knight's landing, Knight's ferry are development names of MIC architectures We will often refer to the CPU as HOST and Xeon Phi as DEVICE Is it an accelerator? YES: It can be used to “accelerate” hot-spots of the code that are highly parallel and computationally extensive In this sense, it works alongside the CPU It can be used as an accelerator using the “offload” programming model An important bottleneck is represented by the communication between host and device (through PCIe) Under this respect, it is very similar to a GPU Is it an accelerator? / 2 NOT ONLY: the Intel Xeon Phi can behave as a many-core X86 node.
- 
												  Accelerators for HP Proliant Servers Enable Scalable and Efficient High-Performance ComputingFamily data sheet Accelerators for HP ProLiant servers Enable scalable and efficient high-performance computing November 2014 Family data sheet | Accelerators for HP ProLiant servers HP high-performance computing has made it possible to accelerate innovation at any scale. But traditional CPU technology is no longer capable of sufficiently scaling performance to address the skyrocketing demand for compute resources. HP high-performance computing solutions are built on HP ProLiant servers using industry-leading accelerators to dramatically increase performance with lower power requirements. Innovation is the foundation for success What is hybrid computing? Accelerators are revolutionizing high performance computing A hybrid computing model is one where High-performance computing (HPC) is being used to address many of modern society’s biggest accelerators (known as GPUs or coprocessors) challenges, such as designing new vaccines and genetically engineering drugs to fight diseases, work together with CPUs to perform computing finding and extracting precious oil and gas resources, improving financial instruments, and tasks. designing more fuel efficient engines. As parallel processors, accelerators can split computations into hundreds or thousands of This rapid pace of innovation has created an insatiable demand for compute power. At the same pieces and calculate them simultaneously. time, multiple strict requirements are placed on system performance, power consumption, size, response, reliability, portability, and design time. Modern HPC systems are rapidly evolving, Offloading the most compute-intensive portions of already reaching petaflop and targeting exaflop performance. applications to accelerators dramatically increases both application performance and computational All of these challenges lead to a common set of requirements: a need for more computing efficiency.
- 
												  Quick-Reference Guide to Optimization with Intel® CompilersQuick Reference Guide to Optimization with Intel® C++ and Fortran Compilers v19.1 For IA-32 processors, Intel® 64 processors, Intel® Xeon Phi™ processors and compatible non-Intel processors. Contents Application Performance .............................................................................................................................. 2 General Optimization Options and Reports ** ............................................................................................. 3 Parallel Performance ** ................................................................................................................................ 4 Recommended Processor-Specific Optimization Options ** ....................................................................... 5 Optimizing for the Intel® Xeon Phi™ x200 product family ............................................................................ 6 Interprocedural Optimization (IPO) and Profile-Guided Optimization (PGO) Options ................................ 7 Fine-Tuning (All Processors) ** ..................................................................................................................... 8 Floating-Point Arithmetic Options .............................................................................................................. 10 Processor Code Name With Instruction Set Extension Name Synonym .................................................... 11 Frequently Used Processor Names in Compiler Options ...........................................................................
- 
												  Broadwell Skylake Next Gen* NEW Intel NEW Intel NEW Intel Microarchitecture Microarchitecture Microarchitecture15 лет доступности IOTG is extending the product availability for IOTG roadmap products from a minimum of 7 years to a minimum of 15 years when both processor and chipset are on 22nm and newer process technologies. - Xeon Scalable (w/ chipsets) - E3-12xx/15xx v5 and later (w/ chipsets) - 6th gen Core and later (w/ chipsets) - Bay Trail (E3800) and later products (Braswell, N3xxx) - Atom C2xxx (Rangeley) and later - Не включает в себя Xeon-D (7 лет) и E5-26xx v4 (7 лет) 2 IOTG Product Availability Life-Cycle 15 year product availability will start with the following products: Product Discontinuance • Intel® Xeon® Processor Scalable Family codenamed Skylake-SP and later with associated chipsets Notification (PDN)† • Intel® Xeon® E3-12xx/15xx v5 series (Skylake) and later with associated chipsets • 6th Gen Intel® Core™ processor family (Skylake) and later (includes Intel® Pentium® and Celeron® processors) with PDNs will typically be issued no later associated chipsets than 13.5 years after component • Intel Pentium processor N3700 (Braswell) and later and Intel Celeron processors N3xxx (Braswell) and J1900/N2xxx family introduction date. PDNs are (Bay Trail) and later published at https://qdms.intel.com/ • Intel® Atom® processor C2xxx (Rangeley) and E3800 family (Bay Trail) and late Last 7 year product availability Time Last Last Order Ship Last 15 year product availability Time Last Last Order Ship L-1 L L+1 L+2 L+3 L+4 L+5 L+6 L+7 L+8 L+9 L+10 L+11 L+12 L+13 L+14 L+15 Years Introduction of component family † Intel may support this extended manufacturing using reasonably Last Time Order/Ship Periods Component family introduction dates are feasible means deemed by Intel to be appropriate.
- 
												  Multiprocessing ContentsMultiprocessing Contents 1 Multiprocessing 1 1.1 Pre-history .............................................. 1 1.2 Key topics ............................................... 1 1.2.1 Processor symmetry ...................................... 1 1.2.2 Instruction and data streams ................................. 1 1.2.3 Processor coupling ...................................... 2 1.2.4 Multiprocessor Communication Architecture ......................... 2 1.3 Flynn’s taxonomy ........................................... 2 1.3.1 SISD multiprocessing ..................................... 2 1.3.2 SIMD multiprocessing .................................... 2 1.3.3 MISD multiprocessing .................................... 3 1.3.4 MIMD multiprocessing .................................... 3 1.4 See also ................................................ 3 1.5 References ............................................... 3 2 Computer multitasking 5 2.1 Multiprogramming .......................................... 5 2.2 Cooperative multitasking ....................................... 6 2.3 Preemptive multitasking ....................................... 6 2.4 Real time ............................................... 7 2.5 Multithreading ............................................ 7 2.6 Memory protection .......................................... 7 2.7 Memory swapping .......................................... 7 2.8 Programming ............................................. 7 2.9 See also ................................................ 8 2.10 References .............................................
- 
												  The Intel X86 Microarchitectures Map Version 2.0The Intel x86 Microarchitectures Map Version 2.0 P6 (1995, 0.50 to 0.35 μm) 8086 (1978, 3 µm) 80386 (1985, 1.5 to 1 µm) P5 (1993, 0.80 to 0.35 μm) NetBurst (2000 , 180 to 130 nm) Skylake (2015, 14 nm) Alternative Names: i686 Series: Alternative Names: iAPX 386, 386, i386 Alternative Names: Pentium, 80586, 586, i586 Alternative Names: Pentium 4, Pentium IV, P4 Alternative Names: SKL (Desktop and Mobile), SKX (Server) Series: Pentium Pro (used in desktops and servers) • 16-bit data bus: 8086 (iAPX Series: Series: Series: Series: • Variant: Klamath (1997, 0.35 μm) 86) • Desktop/Server: i386DX Desktop/Server: P5, P54C • Desktop: Willamette (180 nm) • Desktop: Desktop 6th Generation Core i5 (Skylake-S and Skylake-H) • Alternative Names: Pentium II, PII • 8-bit data bus: 8088 (iAPX • Desktop lower-performance: i386SX Desktop/Server higher-performance: P54CQS, P54CS • Desktop higher-performance: Northwood Pentium 4 (130 nm), Northwood B Pentium 4 HT (130 nm), • Desktop higher-performance: Desktop 6th Generation Core i7 (Skylake-S and Skylake-H), Desktop 7th Generation Core i7 X (Skylake-X), • Series: Klamath (used in desktops) 88) • Mobile: i386SL, 80376, i386EX, Mobile: P54C, P54LM Northwood C Pentium 4 HT (130 nm), Gallatin (Pentium 4 Extreme Edition 130 nm) Desktop 7th Generation Core i9 X (Skylake-X), Desktop 9th Generation Core i7 X (Skylake-X), Desktop 9th Generation Core i9 X (Skylake-X) • Variant: Deschutes (1998, 0.25 to 0.18 μm) i386CXSA, i386SXSA, i386CXSB Compatibility: Pentium OverDrive • Desktop lower-performance: Willamette-128
- 
												  FY18Q2 Marketwide Shopping Event$130 BRIGHTON AREA SCHOOL DISTRICT LAPTOP PRESIDENTS DAY EARLY ACCESS STARTS 2/12 DOORBUSTERS ALL WEEK AT 11AM ET 11.6" A DOORBUSTER 11AM ET, 2/16 A: Inspiron 11 3000 Market value* $199.99 | Save $70 $12999 Intel® Celeron® Processor, Windows 10 Home, 2GB memory* & 32GB storage, 11.6" HD display DOORBUSTER 11AM ET, 2/13 23.8" B B: Dell 24 Monitor - S2418NX Market value* $259.99 | Save $100 $15999 23.8" widescreen In nityEdge monitor, C Full HD 1920 x 1080, Dell HDR DOORBUSTER 11AM ET, 2/14 C: Inspiron Small Desktop Market value* $319.99 | Save $100 $21999 Intel® Pentium® processor, Windows 10 Home, 4GB memory* & 1TB* hard drive Limited quantities available at these prices SAVE BIG ON INCREDIBLE COLOR, SOUND AND STREAMING WITH DELL CINEMA PCs. www.Dell.com/BrightonASD US3936579 *See reverse for important details. Netflix streaming membership required. Screen images are simulated. EARLY ACCESS TO DOORBUSTERS PRESIDENTS DAY SALE STARTS EARLY FOR MEMBERS SAVE UP TO 40% A 15.6" B 27" C 15.6" DOORBUSTER 11AM ET, 2/12 DOORBUSTER 11AM ET, 2/15 D A: Inspiron 15 3000 B: New Inspiron Gaming Desktop Market value* $299.99 | Save $70 Market value* $799.99 | Save $100 $22999 $69999 Intel® Celeron® Processor, Windows 10 Home, 8th Gen Intel® Core™ i5 processor, Windows 10 Home, 4GB memory*, 500GB* hard drive, 15.6" HD 8GB memory*, 1TB* hard drive, 3GB* NVIDIA® display GeForce® GTX 1060 graphics card* DOORBUSTER 11AM ET, 2/14 DOORBUSTER 11AM ET, 2/13 C: Dell UltraSharp 27 D: Inspiron 15 5000 2-in-1 4K Monitor - U2718Q Market value* $499.99 | Save $100 Market value* $739.99 | Save $260 $ 99 $ 99 399 479 7th Gen Intel® Core™ i3 processor, 27" 4K In nityEdge monitor, 3840 x 2160 Windows 10 Home, 4GB memory* & 1TB* resolution, Dell HDR hard drive, 15.6" Full HD Touch display *Limited quantities available at these prices.
- 
												  Future Computing Platforms for Science in a Power Constrained EraFuture Computing Platforms for Science in a Power Constrained Era David Abdurachmanov1, Peter Elmer2, Giulio Eulisse1, Robert Knight3 1 Fermilab, Batavia, IL 60510, USA 2 Department of Physics, Princeton University, Princeton, NJ 08540, USA 3 Research Computing, Office of Information Technology, Princeton University, Princeton, NJ, 08540, USA E-mail: [email protected] Abstract. Power consumption will be a key constraint on the future growth of Distributed High Throughput Computing (DHTC) as used by High Energy Physics (HEP). This makes performance-per-watt a crucial metric for selecting cost-efficient computing solutions. For this paper, we have done a wide survey of current and emerging architectures becoming available on the market including x86-64 variants, ARMv7 32-bit, ARMv8 64-bit, Many-Core and GPU solutions, as well as newer System-on-Chip (SoC) solutions. We compare performance and energy efficiency using an evolving set of standardized HEP-related benchmarks and power measurement techniques we have been developing. We evaluate the potential for use of such computing solutions in the context of DHTC systems, such as the Worldwide LHC Computing Grid (WLCG). 1. Introduction and Motivation The data produced by the four experiments at the Large Hadron Collider (LHC) [1] or similar High Energy Physics (HEP) experiments requires a significant amount of human and computing resources which cannot be provided by research institute or even country. For this reasons the various parties involved created the Worldwide LHC Computing Grid (WLCG) in order to tackle the data processing challenges posed by such a large amount of data. The WLGC consists of a arXiv:1510.03676v1 [cs.DC] 28 Jul 2015 highly federated union of computing centers sparse in 40 countries and it represents an admirable example of international organization.
- 
												  Introduction to Intel Xeon Phi (“Knights Landing”) on CoriIntroduction to Intel Xeon Phi (“Knights Landing”) on Cori" Brandon Cook! Brian Friesen" 2017 June 9 - 1 - Knights Landing is here!" • KNL nodes installed in Cori in 2016 • “Pre-produc=on” for ~ 1 year – No charge for using KNL nodes – Limited access (un7l now!) – Intermi=ent down7me – Frequent so@ware changes • KNL nodes on Cori will soon enter produc=on – Charging Begins 2017 July 1 - 2 - Knights Landing overview" Knights Landing: Next Intel® Xeon Phi™ Processor Intel® Many-Core Processor targeted for HPC and Supercomputing First self-boot Intel® Xeon Phi™ processor that is binary compatible with main line IA. Boots standard OS. Significant improvement in scalar and vector performance Integration of Memory on package: innovative memory architecture for high bandwidth and high capacity Integration of Fabric on package Three products KNL Self-Boot KNL Self-Boot w/ Fabric KNL Card (Baseline) (Fabric Integrated) (PCIe-Card) Potential future options subject to change without notice. All timeframes, features, products and dates are preliminary forecasts and subject to change without further notification. - 3 - Knights Landing overview TILE CHA 2 VPU 2 VPU Knights Landing Overview 1MB L2 Core Core 2 x16 X4 MCDRAM MCDRAM 1 x4 DMI MCDRAM MCDRAM Chip: 36 Tiles interconnected by 2D Mesh Tile: 2 Cores + 2 VPU/core + 1 MB L2 EDC EDC PCIe D EDC EDC M Gen 3 3 I 3 Memory: MCDRAM: 16 GB on-package; High BW D Tile D D D DDR4: 6 channels @ 2400 up to 384GB R R 4 36 Tiles 4 IO: 36 lanes PCIe Gen3. 4 lanes of DMI for chipset C DDR MC connected by DDR MC C Node: 1-Socket only H H A 2D Mesh A Fabric: Omni-Path on-package (not shown) N Interconnect N N N E E L L Vector Peak Perf: 3+TF DP and 6+TF SP Flops S S Scalar Perf: ~3x over Knights Corner EDC EDC misc EDC EDC Streams Triad (GB/s): MCDRAM : 400+; DDR: 90+ Source Intel: All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.
- 
												  Intel® Omni-Path Architecture Overview and UpdateThe architecture for Discovery June, 2016 Intel Confidential Caught in the Vortex…? Business Efficiency & Agility DATA: Trust, Privacy, sovereignty Innovation: New Economy Biz Models Macro Economic Effect Growth Enablers/Inhibitors Intel® Solutions Summit 2016 2 Intel® Solutions Summit 2016 3 Intel Confidential 4 Data Center Blocks Reduce Complexity Intel engineering, validation, support Data Center Blocks Speed time to market Begin with a higher level of integration HPC Cloud Enterprise Storage Increase Value VSAN Ready HPC Compute SMB Server Block Reduce TCO, value pricing Block Node Fuel innovation Server blocks for specific segments Focus R&D on value-add and differentiation Intel® Solutions Summit 2016 5 A Holistic Design Solution for All HPC Needs Intel® Scalable System Framework Small Clusters Through Supercomputers Compute Memory/Storage Compute and Data-Centric Computing Fabric Software Standards-Based Programmability On-Premise and Cloud-Based Intel Silicon Photonics Intel® Xeon® Processors Intel® Solutions for Lustre* Intel® Omni-Path Architecture HPC System Software Stack Intel® Xeon Phi™ Processors Intel® SSDs Intel® True Scale Fabric Intel® Software Tools Intel® Xeon Phi™ Coprocessors Intel® Optane™ Technology Intel® Ethernet Intel® Cluster Ready Program Intel® Server Boards and Platforms 3D XPoint™ Technology Intel® Silicon Photonics Intel® Visualization Toolkit Intel Confidential 14 Parallel is the Path Forward Intel® Xeon® and Intel® Xeon Phi™ Product Families are both going parallel How do we attain extremely high compute
- 
												  Intel Atom Processor E3800 Product Families in RetailWhite Paper Intelligent Systems Intel® Celeron® Processor and Intel® Atom™ Processor E3800 Product Families Intel® Celeron® Processor and Intel® Atom™ Processor E3800 Product Families in Retail Transform user experiences in entry retail devices with full HD video decode, improved graphics, quad-core compute performance, and built-in security Introduction Advanced features include: Intelligent devices that provide HD • Media: Scalable full HD video playback video capability, compelling graphics, includes support for 10 or more responsive performance, and security are simultaneous video streams. transforming in-store retail experiences. • Graphics: Gen 7 Intel® Graphics Today’s retail customers expect POS Architecture enables enhanced visual systems, interactive kiosks, and digital processing over previous-generation signs to support rich media and graphics Intel Atom processors. experience for timely and visually compelling digital promotions and a range • Power and Form Factor: SoC with of choices at checkout, with confidence smaller package size and industrial “The Intel Celeron processor and that the device provides security to temperature range is ideal for thin, protect transactional and personal data. light and environmentally adaptive Intel Atom processor E3800 entry retail devices. The Intel® Celeron® processor and Intel® product families provide full Atom™ processor E3800 product families • Compute: Quad-core processing1 HD simultaneous video decode for intelligent systems help bring these enables improved out-of-order compute capabilities to entry retail devices. performance for more responsive user capability, delivering interactive Compared to previous-generation Intel experiences. Celeron and Atom processors, this new 2-D and 3-D graphics with much • Security: Built-in hardware-assisted processor family provides significantly security enhancements include Intel® improved playback enabling improved media and graphics performance AES New Instructions (Intel® AES NI)2 and enables smaller, more power-efficient immersive visual experiences and Secure Boot.