TREE2FASTA: a Flexible Perl Script for Batch Extraction of FASTA

Total Page:16

File Type:pdf, Size:1020Kb

TREE2FASTA: a Flexible Perl Script for Batch Extraction of FASTA Sauvage et al. BMC Res Notes (2018) 11:164 https://doi.org/10.1186/s13104-018-3268-y BMC Research Notes RESEARCH NOTE Open Access TREE2FASTA: a fexible Perl script for batch extraction of FASTA sequences from exploratory phylogenetic trees Thomas Sauvage1,2* , Sophie Plouviez1, William E. Schmidt1 and Suzanne Fredericq1 Abstract Objective: The body of DNA sequence data lacking taxonomically informative sequence headers is rapidly growing in user and public databases (e.g. sequences lacking identifcation and contaminants). In the context of systematics studies, sorting such sequence data for taxonomic curation and/or molecular diversity characterization (e.g. crypti- cism) often requires the building of exploratory phylogenetic trees with reference taxa. The subsequent step of segregating DNA sequences of interest based on observed topological relationships can represent a challenging task, especially for large datasets. Results: We have written TREE2FASTA, a Perl script that enables and expedites the sorting of FASTA-formatted sequence data from exploratory phylogenetic trees. TREE2FASTA takes advantage of the interactive, rapid point-and- click color selection and/or annotations of tree leaves in the popular Java tree-viewer FigTree to segregate groups of FASTA sequences of interest to separate fles. TREE2FASTA allows for both simple and nested segregation designs to facilitate the simultaneous preparation of multiple data sets that may overlap in sequence content. Keywords: Barcoding, Biodiversity, Clone, Contaminant, Cryptic, Environmental, FigTree, Forensic, Metabarcoding, OTU, Phylogeny, Systematics Introduction from tree topologies can represent a difficult task since A classic workflow in DNA-based systematics stud- tree-viewing relies on a Newick string [4] that does not ies [1] consists in building exploratory trees to visu- contain DNA information, the latter being enclosed in alize topological relationships of novel sequences the original FASTA file used for tree-building. Thus, to within a larger framework of reference taxa. This relate DNA strings to tip labels (i.e. sequence names), allows for the molecular identification of uncurated one usually needs to script in programming language sequences, the discovery of molecular crypticism [2], such as R, e.g. relying on the package Ape [5] with as well as choosing relevant ingroup/outgroup taxa [3] function ‘drop.tip’ or ‘extract.clade’ to create object (i.e. those to be segregated among the pool of avail- lists of sequence names to match to DNA sequences. able FASTA sequences for focused systematics stud- While this may facilitate part of the process, rap- ies). Systematists may also need to segregate groups idly selecting numerous clades or tips interactively in of FASTA sequences to examine sequence attributes the R interface may not be as fluid as in a dedicated across different clades, such as comparing GC con- tree-viewer such as the popular Java program FigTree tent, examine sequence motifs or divergence. Cur- [6]. For researchers with limited scripting skills, the rently, efficiently mining FASTA sequences of interest process requires to manually edit FASTA files via copy/paste (or delete) in a text editor for wanted (or unwanted) sequences. Others may type extensive lists *Correspondence: [email protected] 1 Department of Biology, University of Louisiana at Lafayette, 410 E. Saint of observed tip labels (i.e. sequence names) that can be Mary Boulevard, Lafayette, LA 70503, USA used to parse FASTA files with dedicated scripts avail- Full list of author information is available at the end of the article able from the community, or with matching functions © The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/ publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Sauvage et al. BMC Res Notes (2018) 11:164 Page 2 of 6 (See fgure on next page.) Fig. 1 Simulated phylogeny displaying taxa named ‘A’ to ‘T’. a Basic workfow for FASTA sequence extraction with TREE2FASTA. An exploratory tree is built following multiple-alignment of FASTA data. The Newick tree string (NWK) is visualized and edited in the tree-viewer FigTree and saved as a NEXUS fle (NEX). TREE2FASTA uses the FASTA alignment and the NEXUS fle (NEX) to produce subsetted FASTA fles according to user selection scheme (here color). b Example of possible color and/or annotation selection schemes in FigTree for TREE2FASTA sequence extraction. The FASTA icon marked with an asterisk ‘*’ contains FASTA sequences for taxa H and I lacking color selection (i.e. achromatic) or lacking annotation. For fgure clarity annotation ‘Group1’ to ‘Group4’ are reported G1 to G4 within FASTA fle icons. FASTA fles output to diferent folders are delimited by dashed boxes of the Galaxy tool shed [7], as well as with command Input and output line tools such as samtools [8] or blastdbcmd from the TREE2FASTA formats input fles’ end of lines to line feed NCBI Blast+ package [9]. Overall, although some of (LF) character and thus can be run on Linux, Mac and the above practices may be feasible for small datasets Windows systems with fles generated on any of (and (e.g. typing lists), they may rapidly become unpracti- across) these platforms. Te user provides an interleaved cal for researchers who are faced with large data sets or sequential FASTA fle (i.e. DNA in multi-line or sin- (100 to 1000+ sequences to be sorted). Here, to offer gle-line, respectively) and a NEXUS tree fle exclusively a rapid and interactive solution to sequence selection edited from FigTree. While running, TREE2FASTA will from exploratory phylogenies, we devised a Perl script check for the concordance of FASTA sequence identi- named TREE2FASTA that allows the batch extrac- fers with tree labels, as well as for duplicates within tion of FASTA sequences via color and/or annotation each of these fles. TREE2FASTA will issue warnings of tips/clades of interest in FigTree. We illustrate an and print duplicate or missing sequence labels to help example use of this Perl script to rapidly sort unidenti- with any troubleshooting. However, in such instance, fied chloroplast 16S rDNA sequences belonging to the TREE2FASTA will still run forward and extract existing red seaweeds from the public NCBI Genbank® reposi- matches for fexibility. Subsetted FASTA fles are placed tory. We also document TREE2FASTA’s execution in dedicated folders (‘ANNOT’, ‘COLOR’, ‘COMBO’) speed on two 1000+ sequence trees built from refer- and each FASTA fles is named according to the annota- ence databases used in phototroph metabarcoding. tion or color edited on the tree (as hexadecimal (HEX) codes according to the encoding of individual colors in FigTree’s NEXUS fle, Additional fle 1) or as an anno- Main text tation_color combination. TREE2FASTA fully decon- General implementation structs the edited tree design (each color or annotation A preliminary requirement to using TREE2FASTA is component and their combination) so users can pick the to produce an exploratory phylogeny in a tree-building FASTA fles most relevant to their splitting goals. program relying on a FASTA sequence alignment (e.g. in RAxML [10]). Such program will output a Newick Selection schemes string (‘.nwk’ or ‘.tre’ file) directly readable by most For the purpose of illustration, we use a small simulated tree-viewers for visualization and editing (Newick phylogeny with taxa denoted A to T that we color and/ strings encode taxa relationships in a simple nested or annotate as Group1 to Group4. Five main exam- parentheses format embracing sequence labels [4]). ples are displayed, single and multiple colors, single and Here, we specifically chose the tree-viewer FigTree multiple annotations, and the nested combination of for its intuitive and interactive interface allowing colors and annotations (Fig. 1b). For simplicity here, we rapid coloring/annotation in a few mouse clicks, and depicted TREE2FASTA outputs as FASTA icons with for conveniently exporting edited information within colors matching the tips in the tree (rather than with NEXUS files [11]. TREE2FASTA exclusively parses HEX codes, see section above) and with shorter annota- the taxa block of FigTree’s NEXUS file, which contains tions (in top left corner of FASTA icon, e.g. ‘G1’ instead sequence labels and edited information (see Additional of ‘Group1’). Note that when using annotation in FigTree, file 1), in order to match sequence labels in the original this program masks the original tip label on the tree but FASTA file (containing the DNA sequences) for batch keeps track of it internally. extraction of the sequences of interest in subsetted Using a single color or annotation (i.e. monochro- FASTA files (Fig. 1a). Sequence extraction follows the matic or mono-annotated) will result in the output of selection scheme edited on the tree by the user. two fles, one containing all edited sequences (FASTA icon red or FASTA icon ‘G1’ for Group1, respectively), Sauvage et al. BMC Res Notes (2018) 11:164 Page 3 of 6 Sauvage et al. BMC Res Notes (2018) 11:164 Page 4 of 6 and the second, the remaining unselected sequences (i.e. seaweed. Following multiple-alignment of the sequences taxa H and I in the FASTA icon denoted with an aster- in MUSCLE (2 iterations) [12], we built an exploratory isk; such fles are named ‘NOCOLOR.fas’ or ‘NON- maximum likelihood (ML) tree with RAxML (keeping AME.fas’ in TREE2FASTA computer output). Likewise, the best tree out of 10 restart searches with the rapid using multiple colors or annotations (i.e.
Recommended publications
  • Treebase: an R Package for Discovery, Access and Manipulation of Online Phylogenies
    Methods in Ecology and Evolution 2012, 3, 1060–1066 doi: 10.1111/j.2041-210X.2012.00247.x APPLICATION Treebase: an R package for discovery, access and manipulation of online phylogenies Carl Boettiger1* and Duncan Temple Lang2 1Center for Population Biology, University of California, Davis, CA,95616,USA; and 2Department of Statistics, University of California, Davis, CA,95616,USA Summary 1. The TreeBASE portal is an important and rapidly growing repository of phylogenetic data. The R statistical environment has also become a primary tool for applied phylogenetic analyses across a range of questions, from comparative evolution to community ecology to conservation planning. 2. We have developed treebase, an open-source software package (freely available from http://cran.r-project. org/web/packages/treebase) for the R programming environment, providing simplified, programmatic and inter- active access to phylogenetic data in the TreeBASE repository. 3. We illustrate how this package creates a bridge between the TreeBASE repository and the rapidly growing collection of R packages for phylogenetics that can reduce barriers to discovery and integration across phyloge- netic research. 4. We show how the treebase package can be used to facilitate replication of previous studies and testing of methods and hypotheses across a large sample of phylogenies, which may help make such important reproduc- ibility practices more common. Key-words: application programming interface, database, programmatic, R, software, TreeBASE, workflow include, but are not limited to, ancestral state reconstruction Introduction (Paradis 2004; Butler & King 2004), diversification analysis Applications that use phylogenetic information as part of their (Paradis 2004; Rabosky 2006; Harmon et al.
    [Show full text]
  • NASP: an Accurate, Rapid Method for the Identification of Snps in WGS Datasets That Supports Flexible Input and Output Formats Jason Sahl
    Himmelfarb Health Sciences Library, The George Washington University Health Sciences Research Commons Environmental and Occupational Health Faculty Environmental and Occupational Health Publications 8-2016 NASP: an accurate, rapid method for the identification of SNPs in WGS datasets that supports flexible input and output formats Jason Sahl Darrin Lemmer Jason Travis James Schupp John Gillece See next page for additional authors Follow this and additional works at: http://hsrc.himmelfarb.gwu.edu/sphhs_enviro_facpubs Part of the Bioinformatics Commons, Integrative Biology Commons, Research Methods in Life Sciences Commons, and the Systems Biology Commons APA Citation Sahl, J., Lemmer, D., Travis, J., Schupp, J., Gillece, J., Aziz, M., & +several additional authors (2016). NASP: an accurate, rapid method for the identification of SNPs in WGS datasets that supports flexible input and output formats. Microbial Genomics, 2 (8). http://dx.doi.org/10.1099/mgen.0.000074 This Journal Article is brought to you for free and open access by the Environmental and Occupational Health at Health Sciences Research Commons. It has been accepted for inclusion in Environmental and Occupational Health Faculty Publications by an authorized administrator of Health Sciences Research Commons. For more information, please contact [email protected]. Authors Jason Sahl, Darrin Lemmer, Jason Travis, James Schupp, John Gillece, Maliha Aziz, and +several additional authors This journal article is available at Health Sciences Research Commons: http://hsrc.himmelfarb.gwu.edu/sphhs_enviro_facpubs/212 Methods Paper NASP: an accurate, rapid method for the identification of SNPs in WGS datasets that supports flexible input and output formats Jason W. Sahl,1,2† Darrin Lemmer,1† Jason Travis,1 James M.
    [Show full text]
  • Hardware Pattern Matching for Network Traffic Analysis in Gigabit
    Technische Universitat¨ Munchen¨ Fakultat¨ fur¨ Informatik Diplomarbeit in Informatik Hardware Pattern Matching for Network Traffic Analysis in Gigabit Environments Gregor M. Maier Aufgabenstellerin: Prof. Anja Feldmann, Ph. D. Betreuerin: Prof. Anja Feldmann, Ph. D. Abgabedatum: 15. Mai 2007 Ich versichere, dass ich diese Diplomarbeit selbst¨andig verfasst und nur die angegebe- nen Quellen und Hilfsmittel verwendet habe. Datum Gregor M. Maier Abstract Pattern Matching is an important task in various applica- tions, including network traffic analysis and intrusion detec- tion. In modern high speed gigabit networks it becomes un- feasible to search for patterns using pure software implemen- tations, due to the amount of data that must be searched. Furthermore applications employing pattern matching often need to search for several patterns at the same time. In this thesis we explore the possibilities of using FPGAs for hardware pattern matching. We analyze the applicability of various pattern matching algorithms for hardware imple- mentation and implement a Rabin-Karp and an approximate pattern matching algorithm in Endace’s network measure- ment cards using VHDL. The implementations are evalu- ated and compared to pure software matching solutions. To demonstrate the power of hardware pattern matching, an example application for traffic accounting using hardware pattern matching is presented as a proof-of-concept. Since some systems like network intrusion detection systems an- alyze reassembled TCP streams, possibilities for hardware TCP reassembly combined with hardware pattern matching are discussed as well. Contents vii Contents List of Figures ix 1 Introduction 1 1.1 Motivation . 1 1.2 Related Work . 2 1.3 About Endace DAG Network Monitoring Cards .
    [Show full text]
  • Introduction to Bioinformatics (Elective) – SBB1609
    SCHOOL OF BIO AND CHEMICAL ENGINEERING DEPARTMENT OF BIOTECHNOLOGY Unit 1 – Introduction to Bioinformatics (Elective) – SBB1609 1 I HISTORY OF BIOINFORMATICS Bioinformatics is an interdisciplinary field that develops methods and software tools for understanding biologicaldata. As an interdisciplinary field of science, bioinformatics combines computer science, statistics, mathematics, and engineering to analyze and interpret biological data. Bioinformatics has been used for in silico analyses of biological queries using mathematical and statistical techniques. Bioinformatics derives knowledge from computer analysis of biological data. These can consist of the information stored in the genetic code, but also experimental results from various sources, patient statistics, and scientific literature. Research in bioinformatics includes method development for storage, retrieval, and analysis of the data. Bioinformatics is a rapidly developing branch of biology and is highly interdisciplinary, using techniques and concepts from informatics, statistics, mathematics, chemistry, biochemistry, physics, and linguistics. It has many practical applications in different areas of biology and medicine. Bioinformatics: Research, development, or application of computational tools and approaches for expanding the use of biological, medical, behavioral or health data, including those to acquire, store, organize, archive, analyze, or visualize such data. Computational Biology: The development and application of data-analytical and theoretical methods, mathematical modeling and computational simulation techniques to the study of biological, behavioral, and social systems. "Classical" bioinformatics: "The mathematical, statistical and computing methods that aim to solve biological problems using DNA and amino acid sequences and related information.” The National Center for Biotechnology Information (NCBI 2001) defines bioinformatics as: "Bioinformatics is the field of science in which biology, computer science, and information technology merge into a single discipline.
    [Show full text]
  • Can Hybridization Be Detected Between African Wolf and Sympatric Canids?
    Can hybridization be detected between African wolf and sympatric canids? Sunniva Helene Bahlk Master of Science Thesis 2015 Center for Ecological and Evolutionary Synthesis Department of Bioscience Faculty of Mathematics and Natural Science University of Oslo, Norway © Sunniva Helene Bahlk 2015 Can hybridization be detected between African wolf and sympatric canids? Sunniva Helene Bahlk http://www.duo.uio.no/ Print: Reprosentralen, University of Oslo II Table of contents Acknowledgments ...................................................................................................................... 1 Abstract ...................................................................................................................................... 3 Introduction ................................................................................................................................ 5 The species in the genus Canis are closely related and widely distributed ........................... 5 Next-generation sequencing and bioinformatics .................................................................. 6 The concepts of hybridization and introgression ................................................................... 8 The aim of my study ............................................................................................................... 9 Materials and Methods ............................................................................................................ 11 Origin of the samples and laboratory protocols .................................................................
    [Show full text]
  • Comprehensive Examinations in Computer Science 1872 - 1878
    COMPREHENSIVE EXAMINATIONS IN COMPUTER SCIENCE 1872 - 1878 edited by Frank M. Liang STAN-CS-78-677 NOVEMBER 1078 (second Printing, August 1979) COMPUTER SCIENCE DEPARTMENT School of Humanities and Sciences STANFORD UNIVERSITY COMPUTER SC l ENCE COMPREHENSIVE EXAMINATIONS 1972 - 1978 b Y the faculty and students of the Stanford University Computer Science Department edited by Frank M. Liang Abstract Since Spring 1972, the Stanford Computer Science Department has periodically given a "comprehensive examination" as one of the qualifying exams for graduate students. Such exams generally have consisted of a six-hour written test followed by a several-day programming problem. Their intent is to make it possible to assess whether a student is sufficiently prepared in all the important aspects of computer science. This report presents the examination questions from thirteen comprehensive examinations, along with their solutions. The preparation of this report has been supported in part by NSF grant MCS 77-23738 and in part by IBM Corporation. Foreword This report probably contains as much concentrated computer science per page as any document In existence - it is the result of thousands of person-hours of creative work by the entire staff of Stanford's Computer Science Department, together with dozens of h~ghly-talented students who also helped to compose the questions. Many of these questions have never before been published. Thus I think every person interested in computer science will find it stimulating and helpful to study these pages. Of course, the material is so concentrated it is best not taken in one gulp; perhaps the wisest policy would be to keep a copy on hand in the bathroom at all times, for those occasional moments when inspirational reading is desirable.
    [Show full text]
  • A Comprehensive SARS-Cov-2 Genomic Analysis Identifies Potential Targets for Drug Repurposing
    PLOS ONE RESEARCH ARTICLE A comprehensive SARS-CoV-2 genomic analysis identifies potential targets for drug repurposing 1☯ 1☯ 2,3 Nithishwer Mouroug Anand , Devang Haresh Liya , Arpit Kumar PradhanID *, Nitish Tayal4, Abhinav Bansal5, Sainitin Donakonda6, Ashwin Kumar Jainarayanan7,8* 1 Department of Physical Sciences, Indian Institute of Science Education and Research, Mohali, India, 2 Graduate School of Systemic Neuroscience, Ludwig Maximilian University of Munich, Munich, Germany, 3 Klinikum rechts der Isar, Technische UniversitaÈt MuÈnchen, MuÈnchen, Germany, 4 Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India, 5 Department of Chemical a1111111111 Sciences, Indian Institute of Science Education and Research, Mohali, India, 6 Institute of Molecular a1111111111 Immunology and Experimental Oncology, Klinikum rechts der Isar, Technische UniversitaÈt MuÈnchen, a1111111111 MuÈnchen, Germany, 7 The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United a1111111111 Kingdom, 8 Interdisciplinary Bioscience DTP, University of Oxford, Oxford, United Kingdom a1111111111 ☯ These authors contributed equally to this work. * [email protected] (AKP); [email protected] (AKJ) OPEN ACCESS Abstract Citation: Anand NM, Liya DH, Pradhan AK, Tayal N, The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which is a novel Bansal A, Donakonda S, et al. (2021) A comprehensive SARS-CoV-2 genomic analysis human coronavirus strain (HCoV) was initially reported in December 2019 in Wuhan City, identifies potential targets for drug repurposing. China. This acute infection caused pneumonia-like symptoms and other respiratory tract ill- PLoS ONE 16(3): e0248553. https://doi.org/ ness. Its higher transmission and infection rate has successfully enabled it to have a global 10.1371/journal.pone.0248553 spread over a matter of small time.
    [Show full text]
  • Trusted Research Environments (TRE) a Strategy to Build Public Trust and Meet Changing Health Data Science Needs
    Trusted Research Environments (TRE) A strategy to build public trust and meet changing health data science needs Green Paper v2.0 dated 21 July 2020 – For sign off Table of Contents Executive Summary .................................................................................................................................................... 3 Status of the document .............................................................................................................................................. 5 Overview .................................................................................................................................................................... 6 Purpose ........................................................................................................................................................................... 6 Background .................................................................................................................................................................... 6 The case for TREs providing access to health data through safe settings ...................................................................... 8 Requirements for a Trusted Research Environment...................................................................................................10 Safe people ................................................................................................................................................................... 10 Safe projects ................................................................................................................................................................
    [Show full text]
  • Computational Biology and Bioinformatics
    DEPARTMENT OF COMPUTATIONAL BIOLOGY AND BIOINFORMATICS UNIVERSITY OF KERALA MSc. PROGRAMME IN COMPUTATIONAL BIOLOGY SYLLABUS Under Credit and Semester System w. e. f. 2017 Admissions DEPARTMENT OF COMPUTATIONAL BIOLOGY AND BIOINFORMATICS UNIVERSITY OF KERALA MSc. PROGRAMME IN COMPUTATIONAL BIOLOGY SYLLABUS PROGRAMME OBJECTIVES Aims to equip students with basic computational and mathematical skill To impart basic life science knowledge To acquire advanced computational and modelling skills required to address problems of life sciences for computational perspectives MSc. Syllabus of the Programme Number of Semester Course Code Name of the course Credits Core Courses BIN-C-411 Introduction to Life Sciences & Bioinformatics 4 BIN-C-412 Applied Mathematics 4 BIN-C-413 Web programming and Databases 4 I BIN-C-414 Bioinformatics Lab I 3 Internal Electives BIN-E-415 (i) Python Programming (E) 2 BIN-E-415 (ii) Seminar I (E) 2 BIN-E-415 (iii) Programming in R (E) 2 BIN-E-415 (iv) Communication skill in English (Elective skill course) 2 Core Courses BIN-C-421 Creativity, Research & Knowledge Management 4 BIN-C-422 Fundamentals of Molecular Biology 4 BIN-C-423 Computational Genomics 4 BIN-C-424 Bioinformatics Lab II 3 II Internal Electives BIN-E-425 (i) Perl and BioPerl (E) 4 BIN-E-425 (ii) Case Study (E) 2 BIN-E-425 (iii) Android App Development for Bioinformatics(E) 2 BIN-E-425 (iv) Negotiated Studies(E) 2 BIN-E-425 (v) Communication skill in English (Elective skill course) 2 Core Courses BIN-C-431 Proteomics and CADD 4 BIN-C-432 Phylogenetics
    [Show full text]
  • An Efficient Pipeline for Assaying Whole-Genome Plastid Variation for Population Genetics and Phylogeography
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Spring 6-2-2017 An Efficient Pipeline for Assaying Whole-Genome Plastid Variation for Population Genetics and Phylogeography Brendan F. Kohrn Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Biology Commons, and the Plant Sciences Commons Let us know how access to this document benefits ou.y Recommended Citation Kohrn, Brendan F., "An Efficient Pipeline for Assaying Whole-Genome Plastid Variation for Population Genetics and Phylogeography" (2017). Dissertations and Theses. Paper 4007. https://doi.org/10.15760/etd.5891 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. An Efficient Pipeline for Assaying Whole-Genome Plastid Variation for Population Genetics and Phylogeography by Brendan F. Kohrn A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Biology Thesis Committee: Mitch Cruzan, Chair Sarah Eppley Rahul Raghavan Portland State University 2017 © 2017 Brendan F. Kohrn i Abstract Tracking seed dispersal using traditional, direct measurement approaches is difficult and generally underestimates dispersal distances. Variation in chloroplast haplotypes (cpDNA) offers a way to trace past seed dispersal and to make inferences about factors contributing to present patterns of dispersal. Although cpDNA generally has low levels of intraspecific variation, this can be overcome by assaying the whole chloroplast genome. Whole-genome sequencing is more expensive, but resources can be conserved by pooling samples.
    [Show full text]
  • Deep Sampling of Hawaiian Caenorhabditis Elegans Reveals
    RESEARCH ARTICLE Deep sampling of Hawaiian Caenorhabditis elegans reveals high genetic diversity and admixture with global populations Tim A Crombie1, Stefan Zdraljevic1,2, Daniel E Cook1,2, Robyn E Tanny1, Shannon C Brady1,2, Ye Wang1, Kathryn S Evans1,2, Steffen Hahnel1, Daehan Lee1, Briana C Rodriguez1, Gaotian Zhang1, Joost van der Zwagg1, Karin Kiontke3, Erik C Andersen1* 1Department of Molecular Biosciences, Northwestern University, Evanston, United States; 2Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, United States; 3Department of Biology, New York University, New York, United States Abstract Hawaiian isolates of the nematode species Caenorhabditis elegans have long been known to harbor genetic diversity greater than the rest of the worldwide population, but this observation was supported by only a small number of wild strains. To better characterize the niche and genetic diversity of Hawaiian C. elegans and other Caenorhabditis species, we sampled different substrates and niches across the Hawaiian islands. We identified hundreds of new Caenorhabditis strains from known species and a new species, Caenorhabditis oiwi. Hawaiian C. elegans are found in cooler climates at high elevations but are not associated with any specific substrate, as compared to other Caenorhabditis species. Surprisingly, admixture analysis revealed evidence of shared ancestry between some Hawaiian and non-Hawaiian C. elegans strains. We suggest that the deep diversity we observed in Hawaii might represent patterns of ancestral C. elegans *For correspondence: genetic diversity in the species before human influence. [email protected] Competing interests: The authors declare that no Introduction competing interests exist. Over the last 50 years, the nematode Caenorhabditis elegans has been central to many important Funding: See page 21 discoveries in the fields of developmental, cellular, and molecular biology.
    [Show full text]
  • A Personalized Cloud-Based Traffic Redundancy Elimination for Smartphones Vivekgautham Soundararaj Clemson University, [email protected]
    Clemson University TigerPrints All Theses Theses 5-2016 TailoredRE: A Personalized Cloud-based Traffic Redundancy Elimination for Smartphones Vivekgautham Soundararaj Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Recommended Citation Soundararaj, Vivekgautham, "TailoredRE: A Personalized Cloud-based Traffic Redundancy Elimination for Smartphones" (2016). All Theses. 2387. https://tigerprints.clemson.edu/all_theses/2387 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. TailoredRE: A Personalized Cloud-based Traffic Redundancy Elimination for Smartphones A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Computer Engineering by Vivekgautham Soundararaj May 2016 Accepted by: Dr. Haiying Shen, Committee Chair Dr. Rong Ge Dr. Walter Ligon Abstract The exceptional rise in usages of mobile devices such as smartphones and tablets has contributed to a massive increase in wireless network traffic both Cellular (3G/4G/LTE) and WiFi. The unprecedented growth in wireless network traffic not only strain the battery of the mobile devices but also bogs down the last-hop wireless access links. Interestingly, a significant part of this data traffic exhibits high level of redundancy in them due to re- peated access of popular contents in the web. Hence, a good amount of research both in academia and in industries has studied, analyzed and designed diverse systems that attempt to eliminate redundancy in the network traffic.
    [Show full text]