Approximate Pattern Matching with Index Structures

Total Page:16

File Type:pdf, Size:1020Kb

Approximate Pattern Matching with Index Structures Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen a Approximatec e Pattern Matching b with Index Structuresd f Johannes Krugel a c b d c e d f e e e f a d e b c f Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Approximate Pattern Matching with Index Structures Johannes A. Krugel Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. Helmut Seidl Prüfer der Dissertation: 1. Univ.-Prof. Dr. Ernst W. Mayr 2. Univ.-Prof. Dr. Stefan Kramer, Johannes Gutenberg-Universität Mainz Die Dissertation wurde am 06.05.2015 bei der Technischen Universität München eingereicht und durch die Fakultät für Informatik am 19.01.2016 angenommen. ii Zusammenfassung Ziel dieser Arbeit ist es, einen Überblick über das praktische Verhalten von Indexstrukturen und Algorithmen zur approximativen Textsuche (approximate pattern matching, APM) zu geben, abhängig von den Eigenschaften der Eingabe. APM ist die Suche nach Zeichenfolgen in Texten oder biologischen Sequenzen unter Berücksichtigung von Fehlern (wie z. B. Rechtschreibfehlern oder genetischen Mutationen). In der Offline-Variante dieses Problems kann der Text vorverarbeitet werden, um eine Indexstruktur aufzubauen bevor die Suchanfragen beantwortet werden. Diese Arbeit beschreibt und diskutiert praktisch relevante Indexstrukturen, Ähnlichkeitsmaÿe und Suchalgorithmen für APM. Wir schlagen einen neuen effizienten Suchalgorithmus für Suffixbäume im externen Speicher vor. Im Rahmen der Arbeit wurden mehrere Indexstrukturen und Algorithmen für APM implementiert und in einer Softwarebibliothek bereitgestellt; die Implementierungen sind effizient, stabil, generisch, getestet und online verfügbar. Wir haben reale Testinstanzen zusammengestellt sowie Textgeneratoren zur Erzeugung künstlicher Testinstanzen mittels stochastischer Prozesse implementiert; die Parameter der stochastischen Prozesse können erlernt werden. Alle Testinstanzen wurden hinsichtlich ihrer statistischen Eigenschaften analysiert. Dies ermöglicht eine experimentelle Untersuchung unter realen und/ oder sehr kontrollierten Bedingungen. In einer Reihe von Experimenten haben wir das Verhalten der einzelnen Indexstrukturen und Algorithmen in Abhängigkeit der Eigenschaften der Eingabe untersucht. Abschlieÿend geben wir Empfehlungen für eine geeignete, situationsbezogene Auswahl der Verfahren und der Parameterwerte. iii Abstract The aim of this thesis is to provide an overview of the practical performance of index structures and algorithms for approximate pattern matching (APM) depending on the properties of the input. APM is the problem of searching a pattern in a text or biological sequence tolerating some errors (e. g. spelling mistakes or genetic mutations). In the offline variant, the text can be preprocessed to build an index structure before answering the search queries. This thesis describes and discusses several practically relevant solutions for APM, including index structures, similarity measures, and search algorithms. We propose a new efficient algorithm for APM of multiple patterns using suffix forests in external memory. As part of this project, several index structures and algorithms were implemented in a software library; the implementations are efficient, stable, generic, tested, and available online. We assembled real world test instances and implemented text generators to produce synthetic texts using stochastic processes; the parameters of the processes can be learned. All test instances were analyzed regarding their statistical properties. This makes it possible to perform experiments under realistic and/or very controlled conditions. In a series of experiments, we investigated the behavior of the individual index structures and algorithms depending on the properties of the input. Then we change the perspective and give recommendations for choosing the respective best solution in different practical settings, and furthermore, we indicate appropriate parameter values. iv CONTENTS Contents Abstract iii Contents iv List of Figures v List of Tables v I Introduction1 1 Introduction 3 1.1 Motivation.........................................3 1.2 Basics and notation...................................5 1.3 Problem instances....................................7 1.3.1 Text........................................7 1.3.2 Dictionary.....................................7 1.3.3 Collection of texts................................7 1.3.4 Convertibility...................................7 1.4 Query types........................................9 1.4.1 Exact pattern matching.............................9 1.4.2 Approximate pattern matching......................... 10 1.4.3 Online vs. offline pattern matching....................... 11 1.5 Contributions and structure of this thesis....................... 11 1.6 Implementation environment.............................. 12 II Solutions 15 2 Index structures 17 2.1 Suffix arrays....................................... 19 2.1.1 Classical suffix array............................... 19 2.1.2 Suffix array with LCP table........................... 23 2.2 Tries and suffix trees................................... 24 2.2.1 Trie........................................ 24 2.2.2 Suffix tree..................................... 27 2.2.3 Space reduced suffix tree by Kurtz....................... 29 2.2.4 WOTD suffix tree................................. 31 2.2.5 STTD64 suffix tree................................ 36 2.2.6 Enhanced suffix array.............................. 39 2.2.7 Suffix forest in external memory........................ 42 2.2.8 Other suffix trees in external memory..................... 47 2.3 Compressed indexes.................................. 47 2.3.1 FM index..................................... 48 2.3.2 Compressed suffix array............................ 51 2.3.3 LZ index...................................... 53 2.3.4 Compressed suffix trees............................ 55 2.4 q-gram indexes...................................... 56 CONTENTS v 2.4.1 q-gram index................................... 56 2.4.2 q-sample index.................................. 60 2.4.3 q-gram index with two levels.......................... 61 2.4.4 Other q-gram-based indexes.......................... 65 2.5 Summary......................................... 66 3 Algorithms for approximate search 69 3.1 String measures..................................... 69 3.1.1 Hamming distance................................ 69 3.1.2 Edit distance................................... 70 3.1.3 Alignments and scoring matrices........................ 72 3.1.4 q-gram based measures............................ 73 3.1.5 Further measures................................ 74 3.1.6 Discussion.................................... 75 3.2 Online approximate search............................... 76 3.2.1 Dynamic Programming............................. 77 3.2.2 Bit-parallel algorithm of Myers......................... 78 3.2.3 Splitting the pattern (PEX)............................ 79 3.2.4 Backward automaton (ABNDM)........................ 81 3.2.5 Further algorithms................................ 82 3.3 Approximate search in index structures........................ 82 3.3.1 Neighborhood generation............................ 83 3.3.2 Backtracking in tries and suffix trees...................... 84 3.3.3 Partitioning into exact search.......................... 86 3.3.4 Intermediate partitioning............................. 89 3.3.5 Partitioning with hierarchical verification.................... 90 3.3.6 Approximate search in suffix forests...................... 92 3.3.7 Approximate search in compressed indexes................. 94 3.3.8 Specialized indexes for approximate string matching............ 95 3.3.9 Metric indexes.................................. 96 3.3.10 Top-K-queries.................................. 97 3.4 Summary......................................... 97 4 Software libraries 99 4.1 Index structures for approximate search........................ 99 4.2 Index structures for exact search............................ 100 4.3 Online approximate search............................... 101 4.4 String measures..................................... 101 4.5 Bioinformatics...................................... 102 4.6 Summary......................................... 102 III Evaluation 105 5 Test instances 107 5.1 Real world test instances................................ 107 5.1.1 Natural language texts.............................. 107 5.1.2 DNA sequences................................. 108 5.1.3 Protein sequences................................ 109 vi CONTENTS 5.2 Text analysis....................................... 109 5.2.1 Length....................................... 109 5.2.2 Alphabet..................................... 110 5.2.3 Distribution of q-grams............................. 110 5.2.4 Entropy...................................... 111 5.2.5 Compressibility.................................. 113 5.2.6 Repeat structure................................. 113 5.2.7 Other measures for long-range correlations.................. 114 5.3 Text generators...................................... 115 5.3.1 Bernoulli text generator............................. 116 5.3.2 Fibonacci string generator........................... 116 5.3.3 Markov process................................. 116 5.3.4 Approximate repeats
Recommended publications
  • Pattern Matching Using Similarity Measures
    Pattern matching using similarity measures Patroonvergelijking met behulp van gelijkenismaten (met een samenvatting in het Nederlands) PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van Rector Magnificus, Prof. Dr. H. O. Voorma, ingevolge het besluit van het College voor Promoties in het openbaar te verdedigen op maandag 18 september 2000 des morgens te 10:30 uur door Michiel Hagedoorn geboren op 13 juli 1972, te Renkum promotor: Prof. Dr. M. H. Overmars Faculteit Wiskunde & Informatica co-promotor: Dr. R. C. Veltkamp Faculteit Wiskunde & Informatica ISBN 90-393-2460-3 PHILIPS '$ The&&% research% described in this thesis has been made possible by financial support from Philips Research Laboratories. The work in this thesis has been carried out in the graduate school ASCI. Contents 1 Introduction 1 1.1Patternmatching.......................... 1 1.2Applications............................. 4 1.3Obtaininggeometricpatterns................... 7 1.4 Paradigms in geometric pattern matching . 8 1.5Similaritymeasurebasedpatternmatching........... 11 1.6Overviewofthisthesis....................... 16 2 A theory of similarity measures 21 2.1Pseudometricspaces........................ 22 2.2Pseudometricpatternspaces................... 30 2.3Embeddingpatternsinafunctionspace............. 40 2.4TheHausdorffmetric........................ 46 2.5Thevolumeofsymmetricdifference............... 54 2.6 Reflection visibility based distances . 60 2.7Summary.............................. 71 2.8Experimentalresults.......................
    [Show full text]
  • FM-Index Reveals the Reverse Suffix Array
    FM-Index Reveals the Reverse Suffix Array Arnab Ganguly Department of Computer Science, University of Wisconsin - Whitewater, WI, USA [email protected] Daniel Gibney Department of Computer Science, University of Central Florida, Orlando, FL, USA [email protected] Sahar Hooshmand Department of Computer Science, University of Central Florida, Orlando, FL, USA [email protected] M. Oğuzhan Külekci Informatics Institute, Istanbul Technical University, Turkey [email protected] Sharma V. Thankachan Department of Computer Science, University of Central Florida, Orlando, FL, USA [email protected] Abstract Given a text T [1, n] over an alphabet Σ of size σ, the suffix array of T stores the lexicographic order of the suffixes of T . The suffix array needs Θ(n log n) bits of space compared to the n log σ bits needed to store T itself. A major breakthrough [FM–Index, FOCS’00] in the last two decades has been encoding the suffix array in near-optimal number of bits (≈ log σ bits per character). One can decode a suffix array value using the FM-Index in logO(1) n time. We study an extension of the problem in which we have to also decode the suffix array values of the reverse text. This problem has numerous applications such as in approximate pattern matching [Lam et al., BIBM’ 09]. Known approaches maintain the FM–Index of both the forward and the reverse text which drives up the space occupancy to 2n log σ bits (plus lower order terms). This brings in the natural question of whether we can decode the suffix array values of both the forward and the reverse text, but by using n log σ bits (plus lower order terms).
    [Show full text]
  • Pattern Matching Using Fuzzy Methods David Bell and Lynn Palmer, State of California: Genetic Disease Branch
    Pattern Matching Using Fuzzy Methods David Bell and Lynn Palmer, State of California: Genetic Disease Branch ABSTRACT The formula is : Two major methods of detecting similarities Euclidean Distance and 2 a "fuzzy Hamming distance" presented in a paper entitled "F %%y Dij : ; ( <3/i - yj 4 Hamming Distance: A New Dissimilarity Measure" by Bookstein, Klein, and Raita, will be compared using entropy calculations to Euclidean distance is especially useful for comparing determine their abilities to detect patterns in data and match data matching whole word object elements of 2 vectors. The records. .e find that both means of measuring distance are useful code in Java is: depending on the context. .hile fuzzy Hamming distance outperforms in supervised learning situations such as searches, the Listing 1: Euclidean Distance Euclidean distance measure is more useful in unsupervised pattern matching and clustering of data. /** * EuclideanDistance.java INTRODUCTION * * Pattern matching is becoming more of a necessity given the needs for * Created: Fri Oct 07 08:46:40 2002 such methods for detecting similarities in records, epidemiological * * @author David Bell: DHS-GENETICS patterns, genetics and even in the emerging fields of criminal * @version 1.0 behavioral pattern analysis and disease outbreak analysis due to */ possible terrorist activity. 0nfortunately, traditional methods for /** Abstact Distance class linking or matching records, data fields, etc. rely on exact data * @param None matches rather than looking for close matches or patterns. 1f course * @return Distance Template proximity pattern matches are often necessary when dealing with **/ messy data, data that has inexact values and/or data with missing key abstract class distance{ values.
    [Show full text]
  • Optimal Time and Space Construction of Suffix Arrays and LCP
    Optimal Time and Space Construction of Suffix Arrays and LCP Arrays for Integer Alphabets Keisuke Goto Fujitsu Laboratories Ltd. Kawasaki, Japan [email protected] Abstract Suffix arrays and LCP arrays are one of the most fundamental data structures widely used for various kinds of string processing. We consider two problems for a read-only string of length N over an integer alphabet [1, . , σ] for 1 ≤ σ ≤ N, the string contains σ distinct characters, the construction of the suffix array, and a simultaneous construction of both the suffix array and LCP array. For the word RAM model, we propose algorithms to solve both of the problems in O(N) time by using O(1) extra words, which are optimal in time and space. Extra words means the required space except for the space of the input string and output suffix array and LCP array. Our contribution improves the previous most efficient algorithms, O(N) time using σ + O(1) extra words by [Nong, TOIS 2013] and O(N log N) time using O(1) extra words by [Franceschini and Muthukrishnan, ICALP 2007], for constructing suffix arrays, and it improves the previous most efficient solution that runs in O(N) time using σ + O(1) extra words for constructing both suffix arrays and LCP arrays through a combination of [Nong, TOIS 2013] and [Manzini, SWAT 2004]. 2012 ACM Subject Classification Theory of computation, Pattern matching Keywords and phrases Suffix Array, Longest Common Prefix Array, In-Place Algorithm Acknowledgements We wish to thank Takashi Kato, Shunsuke Inenaga, Hideo Bannai, Dominik Köppl, and anonymous reviewers for their many valuable suggestions on improving the quality of this paper, and especially, we also wish to thank an anonymous reviewer for giving us a simpler algorithm for computing LCP arrays as described in Section 5.
    [Show full text]
  • Algorithms for Approximate String Matching Petro Protsyk (28 October 2016) Agenda
    Algorithms for approximate string matching Petro Protsyk (28 October 2016) Agenda • About ZyLAB • Overview • Algorithms • Brute-force recursive Algorithm • Wagner and Fischer Algorithm • Algorithms based on Automaton • Bitap • Q&A About ZyLAB ZyLAB is a software company headquartered in Amsterdam. In 1983 ZyLAB was the first company providing a full-text search program for MS-DOS called ZyINDEX In 1991 ZyLAB released ZyIMAGE software bundle that included a fuzzy string search algorithm to overcome scanning and OCR errors. Currently ZyLAB develops eDiscovery and Information Governance solutions for On Premises, SaaS and Cloud installations. ZyLAB continues to develop new versions of its proprietary full-text search engine. 3 About ZyLAB • We develop for Windows environments only, including Azure • Software developed in C++, .Net, SQL • Typical clients are from law enforcement, intelligence, fraud investigators, law firms, regulators etc. • FTC (Federal Trade Commission), est. >50 TB (peak 2TB per day) • US White House (all email of presidential administration), est. >20 TB • Dutch National Police, est. >20 TB 4 ZyLAB Search Engine Full-text search engine • Boolean and Proximity search operators • Support for Wildcards, Regular Expressions and Fuzzy search • Support for numeric and date searches • Search in document fields • Near duplicate search 5 ZyLAB Search Engine • Highly parallel indexing and searching • Can index Terabytes of data and millions of documents • Can be distributed • Supports 100+ languages, Unicode characters 6 Overview Approximate string matching or fuzzy search is the technique of finding strings in text or dictionary that match given pattern approximately with respect to chosen edit distance. The edit distance is the number of primitive operations necessary to convert the string into an exact match.
    [Show full text]
  • CSCI 2041: Pattern Matching Basics
    CSCI 2041: Pattern Matching Basics Chris Kauffman Last Updated: Fri Sep 28 08:52:58 CDT 2018 1 Logistics Reading Assignment 2 I OCaml System Manual: Ch I Demo in lecture 1.4 - 1.5 I Post today/tomorrow I Practical OCaml: Ch 4 Next Week Goals I Mon: Review I Code patterns I Wed: Exam 1 I Pattern Matching I Fri: Lecture 2 Consider: Summing Adjacent Elements 1 (* match_basics.ml: basic demo of pattern matching *) 2 3 (* Create a list comprised of the sum of adjacent pairs of 4 elements in list. The last element in an odd-length list is 5 part of the return as is. *) 6 let rec sum_adj_ie list = 7 if list = [] then (* CASE of empty list *) 8 [] (* base case *) 9 else 10 let a = List.hd list in (* DESTRUCTURE list *) 11 let atail = List.tl list in (* bind names *) 12 if atail = [] then (* CASE of 1 elem left *) 13 [a] (* base case *) 14 else (* CASE of 2 or more elems left *) 15 let b = List.hd atail in (* destructure list *) 16 let tail = List.tl atail in (* bind names *) 17 (a+b) :: (sum_adj_ie tail) (* recursive case *) The above function follows a common paradigm: I Select between Cases during a computation I Cases are based on structure of data I Data is Destructured to bind names to parts of it 3 Pattern Matching in Programming Languages I Pattern Matching as a programming language feature checks that data matches a certain structure the executes if so I Can take many forms such as processing lines of input files that match a regular expression I Pattern Matching in OCaml/ML combines I Case analysis: does the data match a certain structure I Destructure Binding: bind names to parts of the data I Pattern Matching gives OCaml/ML a certain "cool" factor I Associated with the match/with syntax as follows match something with | pattern1 -> result1 (* pattern1 gives result1 *) | pattern2 -> (* pattern 2..
    [Show full text]
  • Compiling Pattern Matching to Good Decision Trees
    Submitted to ML’08 Compiling Pattern Matching to good Decision Trees Luc Maranget INRIA Luc.marangetinria.fr Abstract In this paper we study compilation to decision tree, whose We address the issue of compiling ML pattern matching to efficient primary advantage is never testing a given subterm of the subject decisions trees. Traditionally, compilation to decision trees is op- value more than once (and whose primary drawback is potential timized by (1) implementing decision trees as dags with maximal code size explosion). Our aim is to refine naive compilation to sharing; (2) guiding a simple compiler with heuristics. We first de- decision trees, and to compare the output of such an optimizing sign new heuristics that are inspired by necessity, a notion from compiler with optimized backtracking automata. lazy pattern matching that we rephrase in terms of decision tree se- Compilation to decision can be very sensitive to the testing mantics. Thereby, we simplify previous semantical frameworks and order of subject value subterms. The situation can be explained demonstrate a direct connection between necessity and decision by the example of an human programmer attempting to translate a ML program into a lower-level language without pattern matching. tree runtime efficiency. We complete our study by experiments, 1 showing that optimized compilation to decision trees is competi- Let f be the following function defined on triples of booleans : tive. We also suggest some heuristics precisely. l e t f x y z = match x,y,z with | _,F,T -> 1 Categories and Subject Descriptors D 3. 3 [Programming Lan- | F,T,_ -> 2 guages]: Language Constructs and Features—Patterns | _,_,F -> 3 | _,_,T -> 4 General Terms Design, Performance, Sequentiality.
    [Show full text]
  • Combinatorial Pattern Matching
    Combinatorial Pattern Matching 1 A Recurring Problem Finding patterns within sequences Variants on this idea Finding repeated motifs amoungst a set of strings What are the most frequent k-mers How many time does a specific k-mer appear Fundamental problem: Pattern Matching Find all positions of a particular substring in given sequence? 2 Pattern Matching Goal: Find all occurrences of a pattern in a text Input: Pattern p = p1, p2, … pn and text t = t1, t2, … tm Output: All positions 1 < i < (m – n + 1) such that the n-letter substring of t starting at i matches p def bruteForcePatternMatching(p, t): locations = [] for i in xrange(0, len(t)-len(p)+1): if t[i:i+len(p)] == p: locations.append(i) return locations print bruteForcePatternMatching("ssi", "imissmissmississippi") [11, 14] 3 Pattern Matching Performance Performance: m - length of the text t n - the length of the pattern p Search Loop - executed O(m) times Comparison - O(n) symbols compared Total cost - O(mn) per pattern In practice, most comparisons terminate early Worst-case: p = "AAAT" t = "AAAAAAAAAAAAAAAAAAAAAAAT" 4 We can do better! If we preprocess our pattern we can search more effciently (O(n)) Example: imissmissmississippi 1. s 2. s 3. s 4. SSi 5. s 6. SSi 7. s 8. SSI - match at 11 9. SSI - match at 14 10. s 11. s 12. s At steps 4 and 6 after finding the mismatch i ≠ m we can skip over all positions tested because we know that the suffix "sm" is not a prefix of our pattern "ssi" Even works for our worst-case example "AAAAT" in "AAAAAAAAAAAAAAT" by recognizing the shared prefixes ("AAA" in "AAAA").
    [Show full text]
  • A Quick Tour on Suffix Arrays and Compressed Suffix Arrays✩ Roberto Grossi Dipartimento Di Informatica, Università Di Pisa, Italy Article Info a B S T R a C T
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Theoretical Computer Science 412 (2011) 2964–2973 Contents lists available at ScienceDirect Theoretical Computer Science journal homepage: www.elsevier.com/locate/tcs A quick tour on suffix arrays and compressed suffix arraysI Roberto Grossi Dipartimento di Informatica, Università di Pisa, Italy article info a b s t r a c t Keywords: Suffix arrays are a key data structure for solving a run of problems on texts and sequences, Pattern matching from data compression and information retrieval to biological sequence analysis and Suffix array pattern discovery. In their simplest version, they can just be seen as a permutation of Suffix tree f g Text indexing the elements in 1; 2;:::; n , encoding the sorted sequence of suffixes from a given text Data compression of length n, under the lexicographic order. Yet, they are on a par with ubiquitous and Space efficiency sophisticated suffix trees. Over the years, many interesting combinatorial properties have Implicitness and succinctness been devised for this special class of permutations: for instance, they can implicitly encode extra information, and they are a well characterized subset of the nW permutations. This paper gives a short tutorial on suffix arrays and their compressed version to explore and review some of their algorithmic features, discussing the space issues related to their usage in text indexing, combinatorial pattern matching, and data compression. ' 2011 Elsevier B.V. All rights reserved. 1. Suffix arrays Consider a text T ≡ T T1; nU of n symbols over an alphabet Σ, where T TnUD # is an endmarker not occurring elsewhere and smaller than any other symbol in Σ.
    [Show full text]
  • Suffix Trees, Suffix Arrays, BWT
    ALGORITHMES POUR LA BIO-INFORMATIQUE ET LA VISUALISATION COURS 3 Raluca Uricaru Suffix trees, suffix arrays, BWT Based on: Suffix trees and suffix arrays presentation by Haim Kaplan Suffix trees course by Paco Gomez Linear-Time Construction of Suffix Trees by Dan Gusfield Introduction to the Burrows-Wheeler Transform and FM Index, Ben Langmead Trie • A tree representing a set of strings. c { a aeef b ad e bbfe d b bbfg e c f } f e g Trie • Assume no string is a prefix of another Each edge is labeled by a letter, c no two edges outgoing from the a b same node are labeled the same. e b Each string corresponds to a d leaf. e f f e g Compressed Trie • Compress unary nodes, label edges by strings c è a a c b e d b d bbf e eef f f e g e g Suffix tree Given a string s a suffix tree of s is a compressed trie of all suffixes of s. Observation: To make suffixes prefix-free we add a special character, say $, at the end of s Suffix tree (Example) Let s=abab. A suffix tree of s is a compressed trie of all suffixes of s=abab$ { $ a b $ b b$ $ ab$ a a $ b bab$ b $ abab$ $ } Trivial algorithm to build a Suffix tree a b Put the largest suffix in a b $ a b b a Put the suffix bab$ in a b b $ $ a b b a a b b $ $ Put the suffix ab$ in a b b a b $ a $ b $ a b b a b $ a $ b $ Put the suffix b$ in a b b $ a a $ b b $ $ a b b $ a a $ b b $ $ Put the suffix $ in $ a b b $ a a $ b b $ $ $ a b b $ a a $ b b $ $ We will also label each leaf with the starting point of the corresponding suffix.
    [Show full text]
  • Hardware Pattern Matching for Network Traffic Analysis in Gigabit
    Technische Universitat¨ Munchen¨ Fakultat¨ fur¨ Informatik Diplomarbeit in Informatik Hardware Pattern Matching for Network Traffic Analysis in Gigabit Environments Gregor M. Maier Aufgabenstellerin: Prof. Anja Feldmann, Ph. D. Betreuerin: Prof. Anja Feldmann, Ph. D. Abgabedatum: 15. Mai 2007 Ich versichere, dass ich diese Diplomarbeit selbst¨andig verfasst und nur die angegebe- nen Quellen und Hilfsmittel verwendet habe. Datum Gregor M. Maier Abstract Pattern Matching is an important task in various applica- tions, including network traffic analysis and intrusion detec- tion. In modern high speed gigabit networks it becomes un- feasible to search for patterns using pure software implemen- tations, due to the amount of data that must be searched. Furthermore applications employing pattern matching often need to search for several patterns at the same time. In this thesis we explore the possibilities of using FPGAs for hardware pattern matching. We analyze the applicability of various pattern matching algorithms for hardware imple- mentation and implement a Rabin-Karp and an approximate pattern matching algorithm in Endace’s network measure- ment cards using VHDL. The implementations are evalu- ated and compared to pure software matching solutions. To demonstrate the power of hardware pattern matching, an example application for traffic accounting using hardware pattern matching is presented as a proof-of-concept. Since some systems like network intrusion detection systems an- alyze reassembled TCP streams, possibilities for hardware TCP reassembly combined with hardware pattern matching are discussed as well. Contents vii Contents List of Figures ix 1 Introduction 1 1.1 Motivation . 1 1.2 Related Work . 2 1.3 About Endace DAG Network Monitoring Cards .
    [Show full text]
  • 1 Suffix Trees
    15-451/651: Design & Analysis of Algorithms November 27, 2018 Lecture #24: Suffix Trees and Arrays last changed: November 26, 2018 We're shifting gears now to revisit string algorithms. One approach to string problems is to build a more general data structure that represents the strings in a way that allows for certain queries about the string to be answered quickly. There are a lot of such indexes (e.g. wavelet trees, FM- index, etc.) that make different tradeoffs and support different queries. Today, we're going to see two of the most common string index data structures: suffix trees and suffix arrays. 1 Suffix Trees Consider a string T of length t (long). Our goal is to preprocess T and construct a data structure that will allow various kinds of queries on T to be answered efficiently. The most basic example is this: given a pattern P of length p, find all occurrences of P in the text T . What is the performance we aiming for? • The time to find all occurrences of pattern P in T should be O(p + k) where k is the number of occurrences of P in T . • Moreover, ideally we would require O(t) time to do the preprocessing, and O(t) space to store the data structure. Suffix trees are a solution to this problem, with all these ideal properties.1 They can be used to solve many other problems as well. In this lecture, we'll consider the alphabet size to be jΣj = O(1). 1.1 Tries The first piece of the puzzle is a trie, a data structure for storing a set of strings.
    [Show full text]