A Study of the Ultrastructural Localization of Hair Keratin Synthesis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-Like Mouse Models: Tracking the Role of the Hairless Gene
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2006 Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene Yutao Liu University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Life Sciences Commons Recommended Citation Liu, Yutao, "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino- like Mouse Models: Tracking the Role of the Hairless Gene. " PhD diss., University of Tennessee, 2006. https://trace.tennessee.edu/utk_graddiss/1824 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Yutao Liu entitled "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Life Sciences. Brynn H. Voy, Major Professor We have read this dissertation and recommend its acceptance: Naima Moustaid-Moussa, Yisong Wang, Rogert Hettich Accepted for the Council: Carolyn R. -
Studies on the Proteome of Human Hair - Identifcation of Histones and Deamidated Keratins Received: 15 August 2017 Sunil S
www.nature.com/scientificreports OPEN Studies on the Proteome of Human Hair - Identifcation of Histones and Deamidated Keratins Received: 15 August 2017 Sunil S. Adav 1, Roopa S. Subbaiaih2, Swat Kim Kerk 2, Amelia Yilin Lee 2,3, Hui Ying Lai3,4, Accepted: 12 January 2018 Kee Woei Ng3,4,7, Siu Kwan Sze 1 & Artur Schmidtchen2,5,6 Published: xx xx xxxx Human hair is laminar-fbrous tissue and an evolutionarily old keratinization product of follicle trichocytes. Studies on the hair proteome can give new insights into hair function and lead to the development of novel biomarkers for hair in health and disease. Human hair proteins were extracted by detergent and detergent-free techniques. We adopted a shotgun proteomics approach, which demonstrated a large extractability and variety of hair proteins after detergent extraction. We found an enrichment of keratin, keratin-associated proteins (KAPs), and intermediate flament proteins, which were part of protein networks associated with response to stress, innate immunity, epidermis development, and the hair cycle. Our analysis also revealed a signifcant deamidation of keratin type I and II, and KAPs. The hair shafts were found to contain several types of histones, which are well known to exert antimicrobial activity. Analysis of the hair proteome, particularly its composition, protein abundances, deamidated hair proteins, and modifcation sites, may ofer a novel approach to explore potential biomarkers of hair health quality, hair diseases, and aging. Hair is an important and evolutionarily conserved structure. It originates from hair follicles deep within the der- mis and is mainly composed of hair keratins and KAPs, which form a complex network that contributes to the rigidity and mechanical properties. -
Ultrastructure and Immunocytochemistry of the Apodemes in the Chelae of the Blue Crab, Callinectes Sapidus
ULTRASTRUCTURE AND IMMUNOCYTOCHEMISTRY OF THE APODEMES IN THE CHELAE OF THE BLUE CRAB, CALLINECTES SAPIDUS Anne E. Leaser A Thesis Submitted to the University of North Carolina Wilmington in Partial Fulfillment of the Requirements for the Degree of Master of Science Department of Biology and Marine Biology University of North Carolina Wilmington 2010 Approved by Advisory Committee ________Thomas H. Shafer________ _________Robert D. Roer_________ _______Richard M. Dillaman______ Chair Accepted by ______________________________ Dean, Graduate School This thesis has been prepared in a style and format consistent with the journal The Journal of Structural Biology ii TABLE OF CONTENTS ABSTRACT...............................................................................................................................v ACKNOWLEDGMENTS .................................................................................................... viiii LIST OF TABLES................................................................................................................. viii LIST OF FIGURES ..................................................................................................................ix CHAPTER 1: ULTRASTRUCTURE AND IMMUNOCYTOCHEMISTRY OF THE APODEMES AND ASSOCIATED TISSUE IN THE CHELAE OF THE BLUE CRAB.......1 1. Introduction............................................................................................................................1 2. Materials and methods ...........................................................................................................4 -
Copyrighted Material
Part 1 General Dermatology GENERAL DERMATOLOGY COPYRIGHTED MATERIAL Handbook of Dermatology: A Practical Manual, Second Edition. Margaret W. Mann and Daniel L. Popkin. © 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd. 0004285348.INDD 1 7/31/2019 6:12:02 PM 0004285348.INDD 2 7/31/2019 6:12:02 PM COMMON WORK-UPS, SIGNS, AND MANAGEMENT Dermatologic Differential Algorithm Courtesy of Dr. Neel Patel 1. Is it a rash or growth? AND MANAGEMENT 2. If it is a rash, is it mainly epidermal, dermal, subcutaneous, or a combination? 3. If the rash is epidermal or a combination, try to define the SIGNS, COMMON WORK-UPS, characteristics of the rash. Is it mainly papulosquamous? Papulopustular? Blistering? After defining the characteristics, then think about causes of that type of rash: CITES MVA PITA: Congenital, Infections, Tumor, Endocrinologic, Solar related, Metabolic, Vascular, Allergic, Psychiatric, Latrogenic, Trauma, Autoimmune. When generating the differential, take the history and location of the rash into account. 4. If the rash is dermal or subcutaneous, then think of cells and substances that infiltrate and associated diseases (histiocytes, lymphocytes, mast cells, neutrophils, metastatic tumors, mucin, amyloid, immunoglobulin, etc.). 5. If the lesion is a growth, is it benign or malignant in appearance? Think of cells in the skin and their associated diseases (keratinocytes, fibroblasts, neurons, adipocytes, melanocytes, histiocytes, pericytes, endothelial cells, smooth muscle cells, follicular cells, sebocytes, eccrine -
Nomina Histologica Veterinaria, First Edition
NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria. -
Table S2.A-B. Differentially Expressed Genes Following Activation of OGR1 by Acidic Ph in Mouse Peritoneal Macrophages Ph 6.7 24 H
Table S2.A-B. Differentially expressed genes following activation of OGR1 by acidic pH in mouse peritoneal macrophages pH 6.7 24 h. A. Gene List, including gene process B. Complete Table (Excel). Rank Symbol Full name Involved in: WT/KO (Reference: Gene Card, NCBI, JAX, Uniprot, Ratio unless otherwise indicated) 1. Cyp11a1 Cholesterol side chain cleavage Cholesterol, lipid or steroid metabolism. enzyme, mitochondrial (Cytochrome Catalyses the side-chain cleavage reaction of P450 11A1) cholesterol to pregnenolone. 2. Sparc Secreted acidic cysteine rich Cell adhesion, wound healing, ECM glycoprotein (Osteonectin, Basement interactions, bone mineralization. Activates membrane protein 40 (BM-40)) production and activity of matrix metalloproteinases. 3. Tpsb2 Tryptase beta-2 or tryptase II (trypsin- Inflammatory response, proteolysis. like serine protease) 4. Inhba Inhibin Beta A or Activin beta-A chain Immune response and mediators of inflammation and tissue repair.2-5 5. Cpe Carboxypeptidase E Insulin processing, proteolysis. 6. Igfbp7 Insulin-like growth factor-binding Stimulates prostacyclin (PGI2) production and protein 7 cell adhesion. Induced by retinoic acid. 7. Clu Clusterin Chaperone-mediated protein folding, positive regulation of NF-κB transcription factor activity. Protects cells against apoptosis and cytolysis by complement. Promotes proteasomal degradation of COMMD1 and IKBKB. 8. Cma1 Chymase 1 Cellular response to glucose stimulus, interleukin-1 beta biosynthetic process. Possible roles: vasoactive peptide generation, extracellular matrix degradation. 9. Sfrp4 Secreted frizzled-related protein 4 Negative regulation of Wnt signalling. Increases apoptosis during ovulation. Phosphaturic effects by specifically inhibiting sodium-dependent phosphate uptake. 10. Ephx2 Bifunctional epoxide hydrolase Cholesterol homeostasis, xenobiotic metabolism by degrading potentially toxic epoxides. -
Human Hair Keratin Hydrogel : Fabrication, Characterization and Application
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Human hair keratin hydrogel : fabrication, characterization and application Wang, Shuai 2014 Wang, S. (2014). Human hair keratin hydrogel : fabrication, characterization and application. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/62055 https://doi.org/10.32657/10356/62055 Downloaded on 04 Oct 2021 06:13:17 SGT HUMAN HAIR KERATIN HYDROGEL: FABRICATION, CHARACTERIZATION AND APPLICATION WANG SHUAI SCHOOL OF MATERIALS SCIENCE AND ENGINEERING 2014 HUMAN HAIR KERATIN HYDROGEL: FABRICATION, CHARACTERIZATION AND APPLICATION WANG SHUAI School of Materials Science and Engineering A thesis submitted to the Nanyang Technological University in partial fulfillment of the requirement for the degree of Doctor of Philosophy 2014 Abstract Human hair keratins are readily available, easy to extract and eco-friendly materials with promising bioactivities. These properties make them the ideal building blocks for a scaffold. This research was aimed at developing keratin-based materials with an emphasis on keratin hydrogels. We started with keratin extraction from human hair. The optimized extraction method yields 24 ±1% soluble proteins from human hair. The major components were keratins and keratin associated proteins. The most abundant amino acids were cysteine (>10 mol %), Glutamine/ Glutamic acid (13.6 mol %) and Proline (11 mol %). The first application was using CaCl2 induced keratin hydrogels as 2D cell culture substrates. The CaCl2 induced keratin hydrogels were first tested for physical and mechanical properties. In the in vitro experiment, L929 cells seeded on keratin hydrogels had an average proliferation rate 76% compared to cells on collagen hydrogels. -
Damage of Hair Follicle Stem Cells and Alteration of Keratin Expression in External Radiation-Induced Acute Alopecia
INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 30: 579-584, 2012 Damage of hair follicle stem cells and alteration of keratin expression in external radiation-induced acute alopecia NAOKI NANASHIMA, KOICHI ITO, TAKASHI ISHIKAWA, MANABU NAKANO and TOSHIYA NAKAMURA Department of Biomedical Sciences, Division of Medical Life Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan Received April 4, 2012; Accepted May 28, 2012 DOI: 10.3892/ijmm.2012.1018 Abstract. Alopecia is known as a symptom of acute radia- disturbances and blood and bone marrow disorders are known tion, yet little is known concerning the mechanism of this to occur within several hours to several weeks after 1-6 Gy of phenomenon and the alteration of hair protein profiles. To radiation exposure (4,6). examine this, 6-week-old male C57/BL6 mice were exposed Hair loss is also an effect of ARS, but little is known to 6 Gy of X-ray irradiation, which caused acute alopecia. about the mechanism underlying radiation-induced hair loss. Their hair and skin were collected, and hair proteins were In humans, hair loss is caused by radiation of more than analyzed with liquid chromatography/electrospray-ionization 3 Gy, and almost complete hair loss occurs within weeks of mass spectrometry and immunohistochemistry. No change exposure to 6 Gy (4,6). Since blood stem cells are sensitive to was observed in the composition of major hair keratins, such radiation (7), hair loss is thought to be caused by irradiation- as Krt81, Krt83 and Krt86. However, cytokeratin Krt15 and induced stem cell damage, yet no studies have investigated CD34, which are known as hair follicle stem cell markers, this hypothesis. -
Strand Breaks for P53 Exon 6 and 8 Among Different Time Course of Folate Depletion Or Repletion in the Rectosigmoid Mucosa
SUPPLEMENTAL FIGURE COLON p53 EXONIC STRAND BREAKS DURING FOLATE DEPLETION-REPLETION INTERVENTION Supplemental Figure Legend Strand breaks for p53 exon 6 and 8 among different time course of folate depletion or repletion in the rectosigmoid mucosa. The input of DNA was controlled by GAPDH. The data is shown as ΔCt after normalized to GAPDH. The higher ΔCt the more strand breaks. The P value is shown in the figure. SUPPLEMENT S1 Genes that were significantly UPREGULATED after folate intervention (by unadjusted paired t-test), list is sorted by P value Gene Symbol Nucleotide P VALUE Description OLFM4 NM_006418 0.0000 Homo sapiens differentially expressed in hematopoietic lineages (GW112) mRNA. FMR1NB NM_152578 0.0000 Homo sapiens hypothetical protein FLJ25736 (FLJ25736) mRNA. IFI6 NM_002038 0.0001 Homo sapiens interferon alpha-inducible protein (clone IFI-6-16) (G1P3) transcript variant 1 mRNA. Homo sapiens UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 15 GALNTL5 NM_145292 0.0001 (GALNT15) mRNA. STIM2 NM_020860 0.0001 Homo sapiens stromal interaction molecule 2 (STIM2) mRNA. ZNF645 NM_152577 0.0002 Homo sapiens hypothetical protein FLJ25735 (FLJ25735) mRNA. ATP12A NM_001676 0.0002 Homo sapiens ATPase H+/K+ transporting nongastric alpha polypeptide (ATP12A) mRNA. U1SNRNPBP NM_007020 0.0003 Homo sapiens U1-snRNP binding protein homolog (U1SNRNPBP) transcript variant 1 mRNA. RNF125 NM_017831 0.0004 Homo sapiens ring finger protein 125 (RNF125) mRNA. FMNL1 NM_005892 0.0004 Homo sapiens formin-like (FMNL) mRNA. ISG15 NM_005101 0.0005 Homo sapiens interferon alpha-inducible protein (clone IFI-15K) (G1P2) mRNA. SLC6A14 NM_007231 0.0005 Homo sapiens solute carrier family 6 (neurotransmitter transporter) member 14 (SLC6A14) mRNA. -
Keratin and Keratinization; an Essay in Molecular Biology
INTERNATIONAL SERIES OF MONOGRAPHS ON PURE AND APPLIED BIOLOGY Division: MODERN TRENDS IN PHYSIOLOGICAL SCIENCES General Editors : P. Alexander and Z. M. Bacq Volume 12 KERATIN AND KERATINIZATION OTHER TITLES IN THE SERIES ON PURE AND APPLIED BIOLOGY Vol. KERATIN AND KERATINIZATION An Essay in Molecular Biology E. H. Mercer, D.Sc, Ph.D. Chester Beatty Research Institute: Institute of Cancer Research, Royal Cancer Hospital, London PERGAMON PRESS NEW YORK • OXFORD • LONDON • PARIS 1961 PERGAMON PRESS INC. 122 East 55th Street, New York, 22, N. Y. 1404 Neiv York Avenue N.W., Washington 5 D.C. PERGAMON PRESS LTD. Headington Hill Hall, Oxford 4 & 5 Fitzroy Square, London, W.l PERGAMON PRESS S.A.R.L. 24 Rue des Ecoles, Paris, V. PERGAMON PRESS G.m.b.H. Kaiserstrasse 75, Frankfurt am Main Copyright © 1961 PERGAMON PRESS LTD. Library of Congress Card No. 60-53516 Set in Imprint 11 on 12 pt. and printed in Great Britain by BELL AND BAIN LTD., GLASGOW, SCOTLAND This book is dedicated to the memory of W. T. ASTBURY Contents Preface XI Acknowledgements xiii I Keratin and Molecular Biology 1 Macromolecules and biology 1 Orders of magnitude 3 Types of fibrous proteins and their classification 5 Birefringence 10 X-ray methods 11 14 The a, j8 and collagen patterns Stabilization 19 Ecdysis 22 Distribution of the fundamental fibre-types 22 Some difficulties in defining a keratin 27 The significance of the variable amino acid composition 31 The fine structure of cells 34 Electron microscopy and cytology 34 The cell surface, its specializations and intercellular adhesion 37 The cell membrane 37 Cilia, flagella, etc 39 Surface invaginations 40 Specializations of opposed surfaces. -
Human Hair Keratin and Its Interaction with Metal Ions
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Human hair keratin and its interaction with metal ions Low, Choon Teck 2020 https://hdl.handle.net/10356/142466 https://doi.org/10.32657/10356/142466 This work is licensed under a Creative Commons Attribution‑NonCommercial 4.0 International License (CC BY‑NC 4.0). Downloaded on 03 Oct 2021 01:17:00 SGT HUMAN HAIR KERATIN AND ITS INTERACTION WITH METAL IONS LOW CHOON TECK SCHOOL OF MATERIALS SCIENCE AND ENGINEERING 2020 HUMAN HAIR KERATIN AND ITS INTERACTION WITH METAL IONS LOW CHOON TECK SCHOOL OF MATERIALS SCIENCE AND ENGINEERING A thesis submitted to the Nanyang Technological University in partial fulfilment of the requirement for the degree of Master of Engineering 2020 Statement of Originality I hereby certify that the work embodied in this thesis is the result of original research, is free of plagiarised materials, and has not been submitted for a higher degree to any other University or Institution. 20/02/2020 . Date Low Choon Teck Supervisor Declaration Statement I have reviewed the content and presentation style of this thesis and declare it is free of plagiarism and of sufficient grammatical clarity to be examined. To the best of my knowledge, the research and writing are those of the candidate except as acknowledged in the Author Attribution Statement. I confirm that the investigations were conducted in accord with the ethics policies and integrity standards of Nanyang Technological University and that the research data are presented honestly and without prejudice. 20/02/2020 . -
Mechanistic Investigation of a Hemostatic Keratin Biomaterial
MECHANISTIC INVESTIGATION OF A HEMOSTATIC KERATIN BIOMATERIAL By MARIA BAHAWDORY RAHMANY A Dissertation Submitted to the Graduate Faculty of WAKE FOREST UNIVERSITY GRADUATE SCHOOL OF ARTS AND SCIENCES in Partial Fulfillment of the Requirements for the degree of DOCTOR OF PHILOSOPHY Molecular Medicine and Translational Science May 2013 Winston-Salem, North Carolina Approved By: Mark Van Dyke, Ph.D Advisor Justin M. Saul, Ph.D Chair Roy R. Hantgan, Ph.D. Jason Hoth, M.D., Ph.D Daniel Kim-Shapiro, Ph.D. [i] ACKNOWLEDGMENTS The last five years at Wake have been the filled with friendships, challenges and opportunities, all of which were a result of the many amazing people I crossed paths with while doing my graduate studies. I would first like to thank the Molecular Medicine & Translational Science program for taking a chance and accepting me into the program less than a month before classes were to begin. Thank you to the program faculty members for providing constant support for students as we navigate our way through graduate school. I am thankful for the MMTS program for bringing together Bailey, Jessica, Jasmin and I, we have developed a lifelong friendship and continue to support each other through personal and professional endeavors. To my advisor Mark Van Dyke (MVD), your first words to me were “are you afraid of blood?” and I’m pretty lucky that you believed me when I said “No”. Thank you for being a wonderful mentor, advisor, life coach, filter and all of the other roles you have taken in the past 4 years to ensure my success.