Beyond Mistranslation: Expanding the Role of Aminoacyl-Trna Synthetases Towards the Maintenance of Cellular Viability DISSERTATI

Total Page:16

File Type:pdf, Size:1020Kb

Beyond Mistranslation: Expanding the Role of Aminoacyl-Trna Synthetases Towards the Maintenance of Cellular Viability DISSERTATI Beyond Mistranslation: Expanding the Role of Aminoacyl-tRNA Synthetases towards the Maintenance of Cellular Viability DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Kyle Phillip Mohler Graduate Program in Microbiology The Ohio State University 2017 Dissertation Committee: Professor Michael Ibba, Advisor Professor Juan Alfonzo Professor Irina Artsimovitch Professor Kelly Wrighton Copyrighted by Kyle Phillip Mohler 2017 Abstract When the sequence of amino acids in a newly synthesized protein is not the same as the genetically encoded sequence, a gene is said to have been mistranslated. Alterations in protein sequence resulting from errors in genome maintenance and expression occur with low frequency. The next step in gene expression, protein synthesis, offers the greatest opportunity for errors, with mistranslation events routinely occurring at a frequency of ~1 per 10,000 mRNA codons translated. The translation of genetic information into functional proteins is a multistep process. Aminoacyl-tRNA synthetases (aaRSs) provide the cell with substrates for protein synthesis by correctly pairing amino acids with their cognate tRNAs. Aminoacylation occurs in a two-step reaction. First, cognate amino acid is activated within the catalytic domain to form an aminoacyl-adenylate (aa-AMP). The activated amino acid is then transferred to the 3’ OH of the terminal adenosine on the tRNA acceptor stem of its cognate tRNA, forming an aminoacyl-tRNA (aa-tRNA). Phenylalanyl-tRNA synthetase (PheRS), for example, is responsible for pairing phenylalanine (Phe) with tRNAPhe. Mispaired aa-tRNA species occasionally arise due to a lack of adequate amino acid discrimination within the PheRS active site, resulting in the synthesis of misacylated Tyr- tRNAPhe. The ability of PheRS to misacylate tRNAPhe with non-cognate amino acid makes ii tRNA proofreading (“editing”) mechanisms of PheRS essential to maintaining the accuracy of translation. In eukaryotes, amino acid starvation activates the protein kinase Gcn2p, which leads to changes in gene expression and protein synthesis as part of a global stress response. The signal for Gcn2p activation is deacylated tRNA, which accumulates when tRNA aminoacylation is limited either through lack of substrates or inhibition of synthesis. While the primary role of aaRS editing is to prevent misaminoacylation, here we describe conditions under which editing of non-cognate aa-tRNA is also required for proper detection of amino acid starvation by Gcn2p. In order to directly determine the identity of amino acids misacylated to specific tRNAs, we developed a tRNA pulldown method which allows determination of global aminoacylation profile for a given tRNA isoacceptor. Applying this technology, we identified that PheRS lacking quality control mechanisms allowed for accumulation of Tyr- tRNAPhe (5%) but not deacylated tRNAPhe during amino acid starvation. As with the bacterial stringent response, we found that accurate monitoring of amino acid starvation in yeast is dependent on aaRS-mediated translation quality control to ensure proper accumulation of deacylated tRNA species. Our data reveal a critical function for aaRS- editing in stress responses that is independent of their role in preventing mistranslation. With regards to mistranslation, cumulative translational error rates have been determined at the organismal level, yet the extent of codon specific error rates and the spectrum of misincorporation error from system to system remain less explored. To address this deficiency, we have developed a technique for the quantitative analysis of amino acid iii incorporation that provides the sensitivity necessary to detect mistranslation events during translation of a single codon at frequencies as low as 1 in 10,000 for all 20 proteinogenic amino acids, as well as non-proteinogenic and modified amino acids. Implementation of high resolution methods to determine global baselines for codon specific misincorporation events is required to shed light on these important metrics and would ultimately constitute an essential resource for the study of translation. If we consider the full spectrum of mistranslation presented herein, it becomes clear that some organisms tolerate substantial misincorporation events and that these events have the potential to confer selective fitness advantages at the organismal level. The technical advances described in Chapter 2 provide the opportunity to substantially broaden our understanding of the role of mistranslation by allowing measurement of the rates of both misaminoacylation and mistranslation in vivo. Accurate error rate measurements will provide a means to properly establish the relevance of mistranslation in physiological contexts by delineating how the level of mistranslation correlates with a cell’s ability to adapt, survive and thrive under different conditions. iv Dedication This document is dedicated to my family. Specifically to my mother (Shauna Welch), father (Paul Mohler), and to my siblings (Trent Mohler, Dylan Mohler, Holly Mohler, and Bryce Kerr) for their constant support during my education. v Acknowledgments This body of work would not have been possible without the help, guidance and support from so many people. First and foremost, I would like to thank my PhD advisor Dr. Michael Ibba for taking a risk. When I first met him, I didn’t have much to offer him in the way of evidence of past success, but I had plenty of examples of failure. For some reason, he took a chance on me. I am forever in his debt. His guidance, immeasurable patience, and belief in me throughout my graduate career has truly been the secret to my success. He has helped me to develop as a scientist and as I citizen. I truly cannot thank him enough. I am also thankful to my graduate committee, Dr. Juan Alfonzo, Dr. Irina Artsimovitch, and Dr. Kelly Wrighton for continually making themselves available for helpful discussions, critical comments and for sharing the most precious resource of all, time. I am especially indebted to Dr. Tammy Bullwinkle, and Dr. Medha Sharat for their friendship, guidance and support. They helped to make me the scientist I am today. I extend my sincere thanks to everyone who contributed to this dissertation work. Additionally, I would like to thank all the past and present members of Ibba lab for their help and support throughout the years. vi Vita 2006..........................................................Wadsworth High School 2011..........................................................B.S. Microbiology, The Ohio State University 2016..........................................................M.S. Microbiology, The Ohio State University 2013 to present ........................................Graduate Teaching/Research Associate, Department of Microbiology, The Ohio State University Publications Mohler, K., Ibba, M., “Mistranslation and the Stress Response. Nature Microbiology. (In Press) Mohler, K., Mann, R., Hopkins, K., Hwang, L., Reynolds, N., Polymenis, M., Faull, K., Ibba, M., “Translation quality control signals coordinate amino acid starvation response in Saccharomyces cerevisiae.” Nucleic Acids Res. 2017 Feb 7. doi: 10.1093/nar/gkx077. [Epub ahead of print] Mohler, K., Aerni, H.R., Gassaway, B., Ling, J., Ibba, M., Rinehart, J., “MS-READ: Quantitative Measurement of Amino Acid Incorporation.” BBA-General Subjects. 2017 Jan 24. doi: 10.1016/j.bbagen.2017.01.025. [Epub ahead of print] Mohler, K., Mann, R., Ibba, M., “Isoacceptor specific characterization of tRNA aminoacylation and misacylation in vivo.” Methods. 2017 Jan 15. 113:127-131. Walker, M., Mohler, K., Hopkins, K., Ibba, M., Phillip, M. 2015. “Novel compound heterozygous mutations expand the recognized phenotypes of FARS2-linked disease.” Journal of Child Neurology. 2016 Aug 31. 9:1127-37. vii Moghal A., Mohler K., Ibba M., “Mistranslation of the genetic code.” FEBS Letters. 2014. 588(23): 4305-10 Fields of Study Major Field: Microbiology viii Table of contents Abstract ............................................................................................................................... ii Dedication ........................................................................................................................... v Acknowledgments.............................................................................................................. vi Vita .................................................................................................................................... vii Table of contents ................................................................................................................ ix List of tables ...................................................................................................................... xv List of figures ................................................................................................................... xvi List of symbols and abbreviations .............................................................................. xviii Chapter 1 ............................................................................................................................. 1 1.1 Introduction .......................................................................................................... 2 1.2 Mechanisms of translational fidelity and error .................................................... 4 1.2.1 Amino acid selection
Recommended publications
  • WARS Recombinant Protein Description Product Info
    9853 Pacific Heights Blvd. Suite D. San Diego, CA 92121, USA Tel: 858-263-4982 Email: [email protected] 32-2929: WARS Recombinant Protein Alternative GAMMA-2,IFI53,IFP53,WRS,WARS,TrpRS,hWRS,EC=6.1.1.2,Tryptophanyl-tRNA synthetase,Interferon- Name : induced protein 53,Tryptophan--tRNA ligase,GAMMA-2. Description Source : Escherichia Coli. WARS Recombinant Human produced in E.Coli is a single, non-glycosylated polypeptide chain containing 491 amino acids (1-471 a.a.) and having a molecular mass of 55.3 kDa. The WARS is fused to a 20 amino acid His- Tag at N-terminus and purified by proprietary chromatographic techniques. WARS is part of the class I tRNA synthetase family. 2 types of tryptophanyl tRNA synthetase exist, a cytoplasmic form, called WARS, and a mitochondrial form, called WARS2. WARS catalyzes the aminoacylation of tRNA(trp) with tryptophan and is induced by interferon. WARS controls ERK, Akt, and eNOS activation pathways that are related with angiogenesis, cytoskeletal reorganization and shear stress-responsive gene expression. Product Info Amount : 25 µg Purification : Greater than 90.0% as determined by SDS-PAGE. 1mg/ml solution containing 20mM Tris-HCl pH-8, 1mM DTT, 0.1M NaCl, 1mM DTT & 10% Content : glycerol. Store at 4°C if entire vial will be used within 2-4 weeks. Store, frozen at -20°C for longer periods of Storage condition : time. For long term storage it is recommended to add a carrier protein (0.1% HSA or BSA).Avoid multiple freeze-thaw cycles. Amino Acid : MGSSHHHHHH SSGLVPRGSH MPNSEPASLL ELFNSIATQG ELVRSLKAGN ASKDEIDSAV KMLVSLKMSY KAAAGEDYKA DCPPGNPAPT SNHGPDATEA EEDFVDPWTV QTSSAKGIDY DKLIVRFGSS KIDKELINRI ERATGQRPHH FLRRGIFFSH RDMNQVLDAY ENKKPFYLYT GRGPSSEAMH VGHLIPFIFT KWLQDVFNVP LVIQMTDDEK YLWKDLTLDQ AYSYAVENAK DIIACGFDIN KTFIFSDLDY MGMSSGFYKN VVKIQKHVTF NQVKGIFGFT DSDCIGKISF PAIQAAPSFS NSFPQIFRDR TDIQCLIPCA IDQDPYFRMT RDVAPRIGYP KPALLHSTFF PALQGAQTKM SASDPNSSIF LTDTAKQIKT KVNKHAFSGG RDTIEEHRQF GGNCDVDVSF MYLTFFLEDD DKLEQIRKDY TSGAMLTGEL KKALIEVLQP LIAEHQARRK EVTDEIVKEF MTPRKLSFDF Q.
    [Show full text]
  • DNA Sequencing and Sorting: Identifying Genetic Variations
    BioMath DNA Sequencing and Sorting: Identifying Genetic Variations Student Edition Funded by the National Science Foundation, Proposal No. ESI-06-28091 This material was prepared with the support of the National Science Foundation. However, any opinions, findings, conclusions, and/or recommendations herein are those of the authors and do not necessarily reflect the views of the NSF. At the time of publishing, all included URLs were checked and active. We make every effort to make sure all links stay active, but we cannot make any guaranties that they will remain so. If you find a URL that is inactive, please inform us at [email protected]. DIMACS Published by COMAP, Inc. in conjunction with DIMACS, Rutgers University. ©2015 COMAP, Inc. Printed in the U.S.A. COMAP, Inc. 175 Middlesex Turnpike, Suite 3B Bedford, MA 01730 www.comap.com ISBN: 1 933223 71 5 Front Cover Photograph: EPA GULF BREEZE LABORATORY, PATHO-BIOLOGY LAB. LINDA SHARP ASSISTANT This work is in the public domain in the United States because it is a work prepared by an officer or employee of the United States Government as part of that person’s official duties. DNA Sequencing and Sorting: Identifying Genetic Variations Overview Each of the cells in your body contains a copy of your genetic inheritance, your DNA which has been passed down to you, one half from your biological mother and one half from your biological father. This DNA determines physical features, like eye color and hair color, and can determine susceptibility to medical conditions like hypertension, heart disease, diabetes, and cancer.
    [Show full text]
  • Proteomics of Pyrococcus Furiosus, a Hyperthermophilic Archaeon Refractory to Traditional Methods
    Proteomics of Pyrococcus furiosus, a Hyperthermophilic Archaeon Refractory to Traditional Methods Alice M. Lee,† Joel R. Sevinsky,‡,# Jonathan L. Bundy,‡ Amy M. Grunden,*,† and James L. Stephenson, Jr.*,‡ Department of Microbiology, P.O. Box 7615, North Carolina State University, Raleigh, North Carolina 27695, and Biomarkers and Systems Biology Center, Research Triangle Institute, 3040 Cornwallis Road, Research Triangle Park, North Carolina 27709 Received December 29, 2008 Pyrococcus furiosus is one of the most extensively studied hyperthermophilic archaea. Proteins from this hyperthemophile organism are extremely thermostable and are highly resistant to chemical denaturants, organic solvents and proteolytic digestion. This thermostability makes it difficult to apply traditional methods of enzymatically digesting a complex mixture of proteins, commonly a first step in peptide generation in most shotgun proteomics methods. Here, we have developed a simple shotgun proteomics approach for the global identification of the P. furiosus proteome. This methodology uses a detergent-based microwave assisted acid hydrolysis (MAAH) step coupled with an overnight trypsin digest to obtain peptides. Subsequent peptide fractionation by isoelectric focusing in immobilized pH gradients (IPG-IEF), followed by chromatographic separation with reverse phase nano-HPLC and electrospray ionization tandem mass spectrometry (ESI-MS/MS) of peptides enabled the identification of over 900 proteins representing over 44% of the proteome. In most functional classes, over 50% of the predicted proteins were identified, including a number of membrane proteins. This new sample preparation technique will enable extensive proteomics data to be obtained for this organism, thereby enabling the reconstruction of metabolic pathways and promoting a systems biology based understand- ing of this important extremophile.
    [Show full text]
  • UC Santa Cruz UC Santa Cruz Previously Published Works
    UC Santa Cruz UC Santa Cruz Previously Published Works Title A high-throughput mass spectrometric assay for discovery of human lipoxygenase inhibitors and allosteric effectors. Permalink https://escholarship.org/uc/item/9qp948df Authors Jameson, J Brian Kenyon, Victor Holman, Theodore R Publication Date 2015-05-01 DOI 10.1016/j.ab.2015.02.011 Peer reviewed eScholarship.org Powered by the California Digital Library University of California A HIGH THROUGHPUT MASS SPECTROMETRIC ASSAY FOR DISCOVERY OF HUMAN LIPOXYGENASE INHIBITORS AND ALLOSTERIC EFFECTORS J. Brian Jameson II, Victor Kenyon, Theodore R. Holman* Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064 *Author to which all inquires should be addressed, Phone 831-459-5884, FAX 831-459-2935, [email protected]. Subject Category: enzymatic assays and analyses Short Title: Lipoxygenase Inhibitor and Allosteric MS Assay 1 Abstract Lipoxygenases (LOX) regulate inflammation through the production of a variety of molecules whose specific downstream effects are not entirely understood due to the complexity of the inflammation pathway. The generation of these biomolecules can potentially be inhibited and/or allosterically regulated by small synthetic molecules. The current work describes the first mass spectrometric, high throughput method for identifying small molecule LOX inhibitors and LOX allosteric effectors, which change the substrate preference of human lipoxygenase enzymes. Using a volatile buffer and an acid-labile detergent, enzymatic products can be directly detected using liquid chromatography-mass spectrometry (HPLC- MS), without the need of organic extraction. The method also reduces the required enzyme concentration compared to traditional UV absorbance methods by approximately 30-fold, allowing accurate binding affinity measurements for inhibitors with nanomolar affinity.
    [Show full text]
  • The Structure, Stability and Pheromone Binding of the Male Mouse Protein Sex Pheromone Darcin
    The Structure, Stability and Pheromone Binding of the Male Mouse Protein Sex Pheromone Darcin Marie M. Phelan1, Lynn McLean2, Stuart D. Armstrong2, Jane L. Hurst3, Robert J. Beynon2, Lu-Yun Lian1* 1 NMR Centre for Structural Biology, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom, 2 Protein Function Group, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom, 3 Mammalian Behaviour & Evolution Group, Institute of Integrative Biology, University of Liverpool, Leahurst Campus, Neston, United Kingdom Abstract Mouse urine contains highly polymorphic major urinary proteins that have multiple functions in scent communication through their abilities to bind, transport and release hydrophobic volatile pheromones. The mouse genome encodes for about 20 of these proteins and are classified, based on amino acid sequence similarity and tissue expression patterns, as either central or peripheral major urinary proteins. Darcin is a male specific peripheral major urinary protein and is distinctive in its role in inherent female attraction. A comparison of the structure and biophysical properties of darcin with MUP11, which belongs to the central class, highlights similarity in the overall structure between the two proteins. The thermodynamic stability, however, differs between the two proteins, with darcin being much more stable. Furthermore, the affinity of a small pheromone mimetic is higher for darcin, although darcin is more discriminatory, being unable to bind bulkier ligands. These attributes are due to the hydrophobic ligand binding cavity of darcin being smaller, caused by the presence of larger amino acid side chains. Thus, the physical and chemical characteristics of the binding cavity, together with its extreme stability, are consistent with darcin being able to exert its function after release into the environment.
    [Show full text]
  • [One Step]WARS Antibody Kit
    Leader in Biomolecular Solutions for Life Science [One Step]WARS Antibody Kit Catalog No.: RK05722 Basic Information Background Catalog No. Aminoacyl-tRNA synthetases catalyze the aminoacylation of tRNA by their cognate RK05722 amino acid. Because of their central role in linking amino acids with nucleotide triplets contained in tRNAs, aminoacyl-tRNA synthetases are thought to be among the first Applications proteins that appeared in evolution. Two forms of tryptophanyl-tRNA synthetase exist, a WB cytoplasmic form, named WARS, and a mitochondrial form, named WARS2. Tryptophanyl-tRNA synthetase (WARS) catalyzes the aminoacylation of tRNA(trp) with Cross-Reactivity tryptophan and is induced by interferon. Tryptophanyl-tRNA synthetase belongs to the Human, Mouse, Rat class I tRNA synthetase family. Four transcript variants encoding two different isoforms have been found for this gene. Observed MW 53-55kDa Calculated MW 48kDa/53kDa Category Antibody kit Product Information Component & Recommended Dilutions Source Catalog No. Product Name Dilutions Rabbit RK05722-1 WARS Rabbit pAb 1:1000 dilution Purification RK05722-2 HRP Goat Anti-Rabbit IgG (H+L) 1:10000 dilution Affinity purification Storage Store at -20℃. Avoid freeze / thaw Immunogen Information cycles. Buffer: PBS with 0.02% sodium azide, Gene ID Swiss Prot 50% glycerol, pH7.3. 7453 P23381 Avoid repeated freeze-thaw cycles. Immunogen Recombinant fusion protein containing a sequence corresponding to amino acids 1-270 Contact of human WARS (NP_776049.1). www.abclonal.com Synonyms WARS;GAMMA-2;IFI53;IFP53 Validation Data Western blot analysis of extracts of various cells, using WARS antibody (A5758) at 1:1000 dilution ratio through one-step method. Antibody | Protein | ELISA Kits | Enzyme | NGS | Service For research use only.
    [Show full text]
  • COVID-19: the Disease, the Immunological Challenges, the Treatment with Pharmaceuticals and Low-Dose Ionizing Radiation
    cells Review COVID-19: The Disease, the Immunological Challenges, the Treatment with Pharmaceuticals and Low-Dose Ionizing Radiation Jihang Yu 1 , Edouard I. Azzam 1, Ashok B. Jadhav 1 and Yi Wang 1,2,* 1 Radiobiology and Health, Isotopes, Radiobiology & Environment Directorate (IRED), Canadian Nuclear Laboratories (CNL), Chalk River, ON K0J 1J0, Canada; [email protected] (J.Y.); [email protected] (E.I.A.); [email protected] (A.B.J.) 2 Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada * Correspondence: [email protected]; Tel.: +1-613-584-3311 (ext. 42653) Abstract: The year 2020 will be carved in the history books—with the proliferation of COVID-19 over the globe and with frontline health workers and basic scientists worldwide diligently fighting to alleviate life-threatening symptoms and curb the spread of the disease. Behind the shocking prevalence of death are countless families who lost loved ones. To these families and to humanity as a whole, the tallies are not irrelevant digits, but a motivation to develop effective strategies to save lives. However, at the onset of the pandemic, not many therapeutic choices were available besides supportive oxygen, anti-inflammatory dexamethasone, and antiviral remdesivir. Low-dose radiation (LDR), at a much lower dosage than applied in cancer treatment, re-emerged after a Citation: Yu, J.; Azzam, E.I.; Jadhav, 75-year silence in its use in unresolved pneumonia, as a scientific interest with surprising effects in A.B.; Wang, Y. COVID-19: The soothing the cytokine storm and other symptoms in severe COVID-19 patients.
    [Show full text]
  • Tryptophanyl Trna Synthetase (WARS) (NM 004184) Human Tagged ORF Clone Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC203587L4 Tryptophanyl tRNA synthetase (WARS) (NM_004184) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: Tryptophanyl tRNA synthetase (WARS) (NM_004184) Human Tagged ORF Clone Tag: mGFP Symbol: WARS1 Synonyms: GAMMA-2; HMN9; IFI53; IFP53; WARS Vector: pLenti-C-mGFP-P2A-Puro (PS100093) E. coli Selection: Chloramphenicol (34 ug/mL) Cell Selection: Puromycin ORF Nucleotide The ORF insert of this clone is exactly the same as(RC203587). Sequence: Restriction Sites: SgfI-MluI Cloning Scheme: ACCN: NM_004184 ORF Size: 1413 bp This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 Tryptophanyl tRNA synthetase (WARS) (NM_004184) Human Tagged ORF Clone – RC203587L4 OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene. RefSeq: NM_004184.3 RefSeq Size: 2884 bp RefSeq ORF: 1416 bp Locus ID: 7453 UniProt ID: P23381, A0A024R6K8 Domains: WHEP-TRS, tRNA-synt_1b Protein Families: Druggable Genome Protein Pathways: Aminoacyl-tRNA biosynthesis, Tryptophan metabolism MW: 53.2 kDa Gene Summary: Aminoacyl-tRNA synthetases catalyze the aminoacylation of tRNA by their cognate amino acid.
    [Show full text]
  • Nucleotide Base Coding and Am1ino Acid Replacemients in Proteins* by Emil L
    VOL. 48, 1962 BIOCHEMISTRY: E. L. SAIITH 677 18 Britten, R. J., and R. B. Roberts, Science, 131, 32 (1960). '9 Crestfield, A. M., K. C. Smith, and F. WV. Allen, J. Biol. Chem., 216, 185 (1955). 20 Gamow, G., Nature, 173, 318 (1954). 21 Brenner, S., these PROCEEDINGS, 43, 687 (1957). 22 Nirenberg, M. WV., J. H. Matthaei, and 0. WV. Jones, unpublished data. 23 Crick, F. H. C., L. Barnett, S. Brenner, and R. J. Watts-Tobin, Nature, 192, 1227 (1961). 24 Levene, P. A., and R. S. Tipson, J. Biol. Ch-nn., 111, 313 (1935). 25 Gierer, A., and K. W. Mundry, Nature, 182, 1437 (1958). 2' Tsugita, A., and H. Fraenkel-Conrat, J. Mllot. Biol., in press. 27 Tsugita, A., and H. Fraenkel-Conrat, personal communication. 28 Wittmann, H. G., Naturwissenschaften, 48, 729 (1961). 29 Freese, E., in Structure and Function of Genetic Elements, Brookhaven Symposia in Biology, no. 12 (1959), p. 63. NUCLEOTIDE BASE CODING AND AM1INO ACID REPLACEMIENTS IN PROTEINS* BY EMIL L. SMITHt LABORATORY FOR STUDY OF HEREDITARY AND METABOLIC DISORDERS AND THE DEPARTMENTS OF BIOLOGICAL CHEMISTRY AND MEDICINE, UNIVERSITY OF UTAH COLLEGE OF MEDICINE Communicated by Severo Ochoa, February 14, 1962 The problem of which bases of messenger or template RNA' specify the coding of amino acids in proteins has been largely elucidated by the use of synthetic polyri- bonucleotides.2-7 For these triplet nucleotide compositions (Table 1), it is of in- terest to examine some of the presently known cases of amino acid substitutions in polypeptides or proteins of known structure.
    [Show full text]
  • Mass Spectrometry Based Bioanalytics on Model Organisms
    Mass Spectrometry based Bioanalytics on Model Organisms Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Christian Treitz Kiel, 2017 Erster Gutachter: Prof. Dr. Andreas Tholey Zweiter Gutachter: Prof. Dr. Matthias Leippe Tag der mündlichen Prüfung: 22.02.2018 Zum Druck genehmigt: 22.02.2018 Danksagung An dieser Stelle möchte ich mich bei allen bedanken, die mit ihrer Unterstützung zu der Fertigstellung dieser Dissertation beigetragen haben. Mein herzlicher Dank gilt meinem Doktorvater, Professor Andreas Tholey, der mit seiner kompetenten Betreuung und unermüdlichen Motivation maßgeblich zur erfolgreichen Fertigstellung dieser Arbeit beigetragen hat. Das entgegengebrachte Vertrauen, die interessanten Projekte und den konstruktiven Austausch in zahlreichen wissenschaftlichen und persönlichen Gesprächen weiß ich sehr zu schätzen. Bei den jetzigen und auch ehemaligen Kollegen der Arbeitsgruppe möchte ich mich nicht nur für das positive Arbeitsklima sondern auch für die bereitwillige Anteilnahme an Freizeitaktivitäten und dem damit gelieferten Ausgleich bedanken. Für die Durchsicht, Korrektur und Diskussion meiner Arbeit bedanke ich mich bei Dr. Liam Cassidy, Dr. Diego Yepes, Dr. Tomas Koudelka, Jan Leipert und Patrick Kaleja. Insbesondere Liam hat einen Großteil der Arbeit korrekturgelesen und meine Vergehen an der englischen Sprache tapfer ertragen; thank you. Beim Thema Korrekturlesen darf ich auch Joanna Tucher nicht vergessen, die in der kurzen Zeit, zurück zu Besuch im hohen Norden, so lieb war die Zusammenfassung zu lesen. Des Weiteren möchte ich mich bei den zahlreichen Kooperationspartnern bedanken, ohne deren Hilfe die behandelten Forschungsprojekte nicht zustande gekommen wären. Dabei gilt mein Dank Professor Matthias Leippe und den Mitarbeitern des Zoologischen Instituts der Christian-Albrechts-Universität für das Konzept zur Erforschung erkrankter Fadenwürmer.
    [Show full text]
  • In Solution Separation of Membrane Proteins Using Free Flow
    PROTEÓMICA • NÚMERO 1 • FEBRERO 2008 111 Tabla 1 Observado1 PM2 Secuencia3 533.57 (4+) 2130.2391 V.PEIKPAIPLPGPEPKPKPEP.E 565.83 (4+) 2259.2950 V.PEIKPAIPLPGPEPKPKPEPE.V 590.40 (4+) 2259.2950 V.KVPEIKPAIPLPGPEPKPKPEP.E 622.62 (4+) 2486.4494 V.KVPEIKPAIPLPGPEPKPKPEPE.V 1 Peso Molecular observado en el LC-MS-MS. 2 Peso Molecular de los iones simplemente cargados observados en el MALDI-TOF. 3 Secuencia determinada tras la interpretación de los espectros de MS-MS en MASCOT. Conclusiones llos que afectan a la degradación de la estructura muscular. Cuatro fragmentos de titina han sido aislados e identifi cados por primera vez en un extracto de Bibliografía jamón curado, confi rmándose la extensa proteólisis de esta proteína durante el procesado del mismo. Larrea V., Hernando I., Quiles A., Lluch M.A., Pérez- Esta investigación contribuye a conocer más sobre Munuera I. Meat Science, 2006; 74:586-593. los cambios bioquímicos que tienen lugar en el Toldrá F., Flores M., Sanz Y. Food Chemistry, 1997; músculo post-mortem y, particularmente, aque- 59(4):523-530. In solution separation of membrane proteins using free fl ow electrophoresis (FFE) Obermaier C, Hartmann K, Wildgruber R, Weber G, Eckerskorn C, Nissum M. BD Diagnostics, Innovation Center Biotechnology, Martinsried, Germany Introduction Material and methods Free-Flow Electrophoresis (FFE) in the isoelectric A total cell extract from HeLa cells was pre- focusing (IEF) mode provides a carrier-free alternative pared by sonication in lysis buffer followed by to 2D-gel electrophoresis that is not limited in pH or centrifugation. Membrane proteins were extracted size range.
    [Show full text]
  • Precise Genetic Mapping and Integrative Bioinformatics in Diversity Outbred Mice Reveals Hydin As a Novel Pain Gene
    Mamm Genome (2014) 25:211–222 DOI 10.1007/s00335-014-9508-0 Precise genetic mapping and integrative bioinformatics in Diversity Outbred mice reveals Hydin as a novel pain gene Jill M. Recla • Raymond F. Robledo • Daniel M. Gatti • Carol J. Bult • Gary A. Churchill • Elissa J. Chesler Received: 14 January 2014 / Accepted: 5 March 2014 / Published online: 5 April 2014 Ó The Author(s) 2014. This article is published with open access at Springerlink.com Abstract Mouse genetics is a powerful approach for interaction. Our results reveal a novel, putative role for the discovering genes and other genome features influencing protein-coding gene, Hydin, in thermal pain response, human pain sensitivity. Genetic mapping studies have possibly through the gene’s role in ciliary motility in the historically been limited by low mapping resolution of choroid plexus–cerebrospinal fluid system of the brain. conventional mouse crosses, resulting in pain-related Real-time quantitative-PCR analysis showed no expression quantitative trait loci (QTL) spanning several megabases differences in Hydin transcript levels between pain-sensi- and containing hundreds of candidate genes. The recently tive and pain-resistant mice, suggesting that Hydin may developed Diversity Outbred (DO) population is derived influence hot-plate behavior through other biological from the same eight inbred founder strains as the Collab- mechanisms. orative Cross, including three wild-derived strains. DO mice offer increased genetic heterozygosity and allelic diversity compared to crosses involving standard mouse Introduction strains. The high rate of recombinatorial precision afforded by DO mice makes them an ideal resource for high-reso- Human pain sensitivity varies widely between individuals, lution genetic mapping, allowing the circumvention of and the significant influence of genetic factors on pain costly fine-mapping studies.
    [Show full text]