Chapter 1 Aspects of Biochemistry

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 1 Aspects of Biochemistry Cambridge University Press 978-0-521-17690-3 - Biology Unit 1 for CAPE® Examinations Myda Ramesar, Mary Jones and Geoff Jones Excerpt More information Chapter 1 Aspects of biochemistry By the end of this chapter you should be able to: a discuss how the structure and properties of g outline the molecular structure of water relate to the role that water plays as a haemoglobin, as an example of a globular medium of life; protein, and of collagen, as an example of a fibrous protein, ensuring that the relationships b explain the relationship between the structure between their structures and functions are and function of glucose; clearly established; c explain the relationship between the structure h know how to carry out tests for reducing and and function of sucrose; non-reducing sugars (including quantitative d discuss how the molecular structure of starch, use of the Benedict’s test), for starch and lipids glycogen and cellulose relate to their functions and (the biuret test) for proteins; in living organisms; i know how to investigate and compare e describe the generalised structure of an amino quantitatively reducing sugars and starch; acid and the formation and breakage of a j describe the molecular structure of a peptide bond; triglyceride and its role as a source of energy; f explain the meaning of the terms primary, k describe the structure of phospholipids and secondary, tertiary and quaternary structure their role in membrane structure and function. of proteins, and describe the types of bonding (hydrogen, ionic, disulphide) and hydrophobic interactions which hold the molecule in shape; The human body is made of many different types an explosion of knowledge and understanding, of molecule. Most of your body is water, which has and today a major industry has been built on small molecules made of two atoms of hydrogen the many applications to which we can put this combined with one atom of oxygen, formula H2O. knowledge. Biotechnology makes use of molecules The other main types of molecule in organisms and reactions in living organisms, and research are proteins, carbohydrates, fats and nucleic acids. continues to find new information about how These molecules make up your structure, and molecules behave, and new uses for this technology they also undergo chemical reactions – known as in fields including medicine, agriculture, mining metabolic reactions – that make things happen in and food production. and around your cells. In this chapter, we will look at the structures of the Up until the mid 1950s, we did not know very main types of molecule found in our bodies – and much about the structures of these molecules or in those of every other living organism (Table 1.1). how their structures might relate to the ways in We will also see how these structures relate to the which they behave. Since then, there has been functions of the molecules. 1 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-17690-3 - Biology Unit 1 for CAPE® Examinations Myda Ramesar, Mary Jones and Geoff Jones Excerpt More information Chapter 1: Aspects of biochemistry Molecule Percentage of total mass fact that water is often in liquid form allows it to act as the solvent in which metabolic reactions water 60 (the chemical reactions that take place in living protein 19 organisms) can happen. Water provides a means of fat 15 transporting molecules and ions from one place to another, because many of them can dissolve in it. carbohydrate 4 other 2 The structure of a water molecule Table 1.1 Human body composition. Figure 1.1a shows the structure of a water molecule. It is made up of two hydrogen atoms Water covalently bonded to one oxygen atom. The bonds Water is by far the most abundant molecule in our are single covalent bonds, in which the single bodies. It is also one of the smallest and one of the electron of each hydrogen atom is shared along simplest. Yet water is an amazing substance, with a with one of the six outer shell electrons of the collection of properties that is shared by no other. oxygen, leaving four electrons which are organised It is diffi cult to imagine how life of any kind could into two non-bonding pairs. The bonds are very exist without water. The search for other life in the strong, and it is very diffi cult to split the hydrogen universe begins by searching for other planets that and oxygen atoms apart. may have liquid water on them. A covalent bond is an electron-sharing bond, Water is a major component of all cells, often and in this case the sharing is not equal. The making up between 70% and 90% of the cell’s oxygen atom gets slightly more than its fair share, mass. Your body is about 60% water. Water is also and this gives it a very small negative charge. the environment of many living organisms, and life This is written E− (delta minus). The hydrogen must have fi rst evolved in water. atoms have a very small positive charge, E+ (delta Water has very simple molecules, yet has some plus). So, although a water molecule has a neutral surprising properties. Other substances made electrical charge overall, diff erent parts of it do of such small molecules tend to be gases at the have small positive and negative charges. This temperatures found on most of the Earth, whereas unequal distribution of charge in the molecule is water may be found as a solid, liquid or gas. The called a dipole. a Water molecule b Hydrogen bonding E− In a water molecule, the two hydrogen O There is a weak electrical atoms are found to one side of the E+ E+ HH attraction between a hydrogen in oxygen atom. one molecule and the oxygen in E− another. This is a hydrogen bond. O O covalent bond E+ E+ HH HH 104.5° small negative charge hydrogen bond E− E+ E+ small positive charges The oxygen atom pulls the bonding electrons towards it, which makes the oxygen slightly negatively charged. In the liquid state, water molecules undergo The hydrogen atoms have small positive charges. This hydrogen bonding with surrounding molecules. unequal distribution of charge is called a dipole. The bonds break and reform as the molecules move around. Figure 1.1 a The structure of a water molecule; b hydrogen bonding. 2 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-17690-3 - Biology Unit 1 for CAPE® Examinations Myda Ramesar, Mary Jones and Geoff Jones Excerpt More information Chapter 1: Aspects of biochemistry These tiny charges mean that water molecules As the surface water gets colder it gets denser and are attracted to each other – the positively charged sinks to the bottom, displacing warmer water hydrogen atoms in one molecule are attracted which rises to the surface and cools. However, to the negatively charged oxygen atoms in other when water gets colder than 4°C, it becomes less molecules. The attraction is called a hydrogen bond dense than the warmer water below it and so it (Figure 1.1b). Every water molecule is hydrogen stays on the surface where it forms ice. The layer bonded to its four nearest neighbours. of ice insulates the water below it from further Hydrogen bonds are weak, long-distance temperature changes. This water remains at 4°C bonds. As we will see later in this chapter, they are and stays liquid, providing an environment in very common and very important in biological which living organisms can continue to survive. molecules. Changes in density of water as its temperature In the next few pages, we will look in detail changes are the main cause of ocean currents and at some of the special properties of water, and upwellings, which help to maintain the circulation how these make water so important to all living of nutrients in seas and oceans. organisms. Ice, liquid water and water vapour O O In a solid substance, such as ice, the molecules H H H H have relatively little kinetic energy. They vibrate O continuously, but remain in fixed positions. In H H liquid water, the molecules have more kinetic O O energy, moving around past each other, forming H H H H fleeting hydrogen bonds with each other. In water O vapour, the molecules are far apart, scarcely H H hydrogen bond interacting with each other at all. O O In solid water – ice – the hydrogen bonds hold H H H H the water molecules in a rigid lattice formation. As in all solids, the molecules vibrate, but they do not move around. As the temperature of liquid water decreases, the water molecules have less and less Figure 1.2 The structure of ice. Water molecules kinetic energy and they slow down. This allows are held in a regular, fixed arrangement or lattice each molecule to form the maximum number of (shown in only two dimensions here). hydrogen bonds (four) with other water molecules. When this happens, the water molecules spread out Water, heat and temperature to form these bonds. This produces a rigid lattice which holds the water molecules further apart than Specific heat capacity in liquid water (Figure 1.2). Ice is therefore less If you heat water, the temperature of the water dense than liquid water, and so it floats. Hydrogen rises. Temperature relates to the amount of kinetic bonding is responsible for this unique property of energy that the water molecules have. As heat water. energy is added to the water, a lot of the energy The fact that ice floats on liquid water is is used to break the hydrogen bonds between the important for aquatic living organisms.
Recommended publications
  • The Distribution of Carbohydrase Activities in the Small Intestine in Early Weaned Calves
    The Distribution of Carbohydrase Activities in the Small Intestine in Early Weaned Calves Toshikazu MIYASHIGEand Shigefusa YAHATA Chugoku National Agricultural Experiment Station, Oda-shi 694-01 (Received December 8, 1980) Abstract 1. The carbohydrase activities of the small intestine of early weaned calves were compared with those of nursing ones at 26 weeks of age. 2. In the early weaned calves, the pH value of content of the caecum was observed to be lower than that of the nursing ones, suggesting that more soluble carbohydrates would have escaped from ruminal fermentation and reached the caecum. 3. The values of maltase and iso maltase activities of the early weaned calves were not different from those of the nursing ones. However, maltase activity of the early weaned calves distributed more constantly with relatively high level all over the small intestine. Lactase activity of the early weaned calves was almost the same as that of the nursing ones. Dextranase and amylase activities were also found in the small intestine of the early weaned calves. Jpn. J. Zootech. Sci., 52 (7): 532-536, 1981 In the previous study1) with nursing calves, it was shown that intestinal maltase activity was very low and did not increase with age. But the pattern of the distri- bution of maltase activity in the small intestine apparently changed with age and higher activity of maltase was found in the lower part of the small intestine at 26 weeks of age. Although the meaning of this change is not known, it is supposed that the change of the pattern would be correlated with the increase of solid food intake.
    [Show full text]
  • Effect of a Multi-Carbohydrase and Phytase Complex on the Ileal And
    animals Article Effect of a Multi-Carbohydrase and Phytase Complex on the Ileal and Total Tract Digestibility of Nutrients in Cannulated Growing Pigs 1, 2, 1, 1 1 3 Jia-Cheng Yang y, Li Wang y, Ya-Kuan Huang y, Lei Zhang , Rui Ma , Si Gao , Chang-Min Hu 4, Jlali Maamer 5, Cozannet Pierre 5, Aurélie Preynat 5, Xin Gen Lei 6 and Lv-Hui Sun 1,* 1 Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; [email protected] (J.-C.Y.); [email protected] (Y.-K.H.); [email protected] (L.Z.); [email protected] (R.M.) 2 Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; [email protected] 3 Demonstration Center of Hubei Province for Experimental Animal Science Education, Huazhong Agricultural University, Wuhan 430070, China; [email protected] 4 College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; [email protected] 5 Adisseo France S.A.S., Center of Expertise in Research and Nutrition, 03600 Commentry, France; [email protected] (J.M.); [email protected] (C.P.); [email protected] (A.P.) 6 Department of Animal Science, Cornell University, Ithaca, NY 14853, USA; [email protected] * Correspondence: [email protected]; Tel.: +86-130-0712-1983 These authors contributed equally to this work. y Received: 6 July 2020; Accepted: 14 August 2020; Published: 17 August 2020 Simple Summary: It is well accepted that monogastric livestock lack phytase in their gastrointestinal tracts.
    [Show full text]
  • Exogenous Enzymes As Zootechnical Additives in Animal Feed: a Review
    catalysts Review Exogenous Enzymes as Zootechnical Additives in Animal Feed: A Review Brianda Susana Velázquez-De Lucio 1, Edna María Hernández-Domínguez 1, Matilde Villa-García 1, Gerardo Díaz-Godínez 2, Virginia Mandujano-Gonzalez 3, Bethsua Mendoza-Mendoza 4 and Jorge Álvarez-Cervantes 1,* 1 Cuerpo Académico Manejo de Sistemas Agrobiotecnológicos Sustentables, Posgrado Biotecnología, Universidad Politécnica de Pachuca, Zempoala 43830, Hidalgo, Mexico; [email protected] (B.S.V.-D.L.); [email protected] (E.M.H.-D.); [email protected] (M.V.-G.) 2 Centro de Investigación en Ciencias Biológicas, Laboratorio de Biotecnología, Universidad Autónoma de Tlaxcala, Tlaxcala 90000, Tlaxcala, Mexico; [email protected] 3 Ingeniería en Biotecnología, Laboratorio Biotecnología, Universidad Tecnológica de Corregidora, Santiago de Querétaro 76900, Querétaro, Mexico; [email protected] 4 Instituto Tecnológico Superior del Oriente del Estado de Hidalgo, Apan 43900, Hidalgo, Mexico; [email protected] * Correspondence: [email protected]; Tel.: +52-771-5477510 Abstract: Enzymes are widely used in the food industry. Their use as a supplement to the raw Citation: Velázquez-De Lucio, B.S.; material for animal feed is a current research topic. Although there are several studies on the Hernández-Domínguez, E.M.; application of enzyme additives in the animal feed industry, it is necessary to search for new Villa-García, M.; Díaz-Godínez, G.; enzymes, as well as to utilize bioinformatics tools for the design of specific enzymes that work in Mandujano-Gonzalez, V.; certain environmental conditions and substrates. This will allow the improvement of the productive Mendoza-Mendoza, B.; Álvarez-Cervantes, J.
    [Show full text]
  • Collection of Information on Enzymes a Great Deal of Additional Information on the European Union Is Available on the Internet
    European Commission Collection of information on enzymes A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server (http://europa.eu.int). Luxembourg: Office for Official Publications of the European Communities, 2002 ISBN 92-894-4218-2 © European Communities, 2002 Reproduction is authorised provided the source is acknowledged. Final Report „Collection of Information on Enzymes“ Contract No B4-3040/2000/278245/MAR/E2 in co-operation between the Federal Environment Agency Austria Spittelauer Lände 5, A-1090 Vienna, http://www.ubavie.gv.at and the Inter-University Research Center for Technology, Work and Culture (IFF/IFZ) Schlögelgasse 2, A-8010 Graz, http://www.ifz.tu-graz.ac.at PROJECT TEAM (VIENNA / GRAZ) Werner Aberer c Maria Hahn a Manfred Klade b Uli Seebacher b Armin Spök (Co-ordinator Graz) b Karoline Wallner a Helmut Witzani (Co-ordinator Vienna) a a Austrian Federal Environmental Agency (UBA), Vienna b Inter-University Research Center for Technology, Work, and Culture - IFF/IFZ, Graz c University of Graz, Department of Dermatology, Division of Environmental Dermatology, Graz Executive Summary 5 EXECUTIVE SUMMARY Technical Aspects of Enzymes (Chapter 3) Application of enzymes (Section 3.2) Enzymes are applied in various areas of application, the most important ones are technical use, manufacturing of food and feedstuff, cosmetics, medicinal products and as tools for re- search and development. Enzymatic processes - usually carried out under mild conditions - are often replacing steps in traditional chemical processes which were carried out under harsh industrial environments (temperature, pressures, pH, chemicals). Technical enzymes are applied in detergents, for pulp and paper applications, in textile manufacturing, leather industry, for fuel production and for the production of pharmaceuticals and chiral substances in the chemical industry.
    [Show full text]
  • Biochemical Characterization of Digestive Carbohydrases in the Rose Sawfly, Arge Rosae Linnaeus (Hymenoptera: Argidae)
    J. Crop Prot. 2013, 2 (3): 305-318 ______________________________________________________ Biochemical characterization of digestive carbohydrases in the rose sawfly, Arge rosae Linnaeus (Hymenoptera: Argidae) Moloud Gholamzadeh Chitgar1, Seyed Mohammad Ahsaei2, Mohammad Ghadamyari1*, Mahbobe Sharifi1, Vahid Hosseini Naveh2 and Hadi Sheikhnejad1 1. Department of Plant Protection, Faculty of Agricultural Science, University of Guilan, Rasht, Iran. 2. Department of Plant protection, Faculty of Agricultural Sciences & Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran. Abstract: The rose sawfly, Arge rosae Linnaeus, is one of the most destructive pests of rose bushes in the north of Iran. Nowadays, many attempts have been made to reduce pesticide application by looking for new methods of pest control. A non chemical method for controlling insect pests including A. rosae can be achieved by using genetically engineered plants expressing carbohydrase inhibitors. Therefore, in present study we characterized biochemical properties of digestive carbohydrases in the gut of A. rosae for achieving a new method for control of this pest. The specific activity of α-amylase in the digestive system of last larval instars of A. rosae was obtained as 9.46 ± 0.06 μmol min-1 mg-1 protein. Also, the optimal pH and temperature for α-amylase were found to be at pH 8 and 50 °C. As calculated from Lineweaver-Burk plots, the Km and Vmax values for α-amylase were 0.82 mg/ml and 7.32 µmol min-1 mg-1 protein, respectively, when starch was used as substrate. The effects of ions on amylolytic activity showed that Mg2+ and Na+ significantly increased amylase activity, whereas SDS and EDTA decreased the enzyme activity.
    [Show full text]
  • The Mechanism of Carbohydrase Action 5
    246 Biochem. J. (1960) 76, 246 The Mechanism of Carbohydrase Action 5. ACTION OF HUMAN SALIVARY a-AMYLASE ON AMYLOPECTIN AND GLYCOGEN* By P. J. P. ROBERTSt AND W. J. W-HELANt Chemistry Department, University College of North Wales, Bangor (Received 11 January 1960) When human salivary oc-amylase acts on whole if any, esterified phosphorus (Schoch, 1953). It was pre- starch (amylose+amylopectin) there is produced pared from hand-sorted single-cross Tapicorn seed, (Bear a mixture of fermentable and unfermentable Hybrid Co., Decatur, Illinois, U.S.A.) as by Schoch (1957). sugars (Myrback, 1948). The fermentable sugars Buffers. These were 0-2 m-sodium acetate-acetic acid consist of maltose, maltotriose and/or glucose (see (pH 7.0) and 0-2M-sodiunm citrate-citric acid (pH 7-0). below). The non-fermentable sugars (a-limit Methods dextrins) are a mixture of higher oigosaccharides. Digests. Waxy-maize starch was moistened with ethanol Since the amylose component of starch, which and dissolved in 0-6N-sodium hydroxide by heating in a consists essentially only of 1:4-linked a-glucose boiling-water bath for 5 min. After cooling, the alkali was units, can be converted by the amylase completely neutralized to phenolphthalein either with sulphuric acid into maltose and maltotriose (Whelan & Roberts, [digests (1) and (2), see below] or hydrochloric acid [digest 1953) the a-limit dextrins must arise from the (3)]. Glycogen and the enzymes were dissolved in water. amylopectin component and may be assumed to After the substrate had dissolved, the buffer was added and contain the a-1:6-bonds which constitute the points then the enzyme.
    [Show full text]
  • Glycoside Hydrolases Degrade Polymicrobial Bacterial Biofilms In
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Texas A&M Repository EXPERIMENTAL THERAPEUTICS crossm Glycoside Hydrolases Degrade Polymicrobial Bacterial Biofilms in Wounds Downloaded from Derek Fleming,a,b Laura Chahin,a* Kendra Rumbaugha,b,c Departments of Surgerya and Immunology and Molecular Microbiologyb and TTUHSC Surgery Burn Center of Research Excellence,c Texas Tech University Health Sciences Center, Lubbock, Texas, USA ABSTRACT The persistent nature of chronic wounds leaves them highly susceptible to invasion by a variety of pathogens that have the ability to construct an extracel- Received 15 September 2016 Returned for lular polymeric substance (EPS). This EPS makes the bacterial population, or biofilm, modification 15 October 2016 Accepted 15 November 2016 up to 1,000-fold more antibiotic tolerant than planktonic cells and makes wound Accepted manuscript posted online 21 healing extremely difficult. Thus, compounds which have the ability to degrade bio- November 2016 http://aac.asm.org/ films, but not host tissue components, are highly sought after for clinical applica- Citation Fleming D, Chahin L, Rumbaugh K. tions. In this study, we examined the efficacy of two glycoside hydrolases, ␣-amylase 2017. Glycoside hydrolases degrade polymicrobial bacterial biofilms in wounds. and cellulase, which break down complex polysaccharides, to effectively disrupt Antimicrob Agents Chemother 61:e01998-16. Staphylococcus aureus and Pseudomonas aeruginosa monoculture and coculture bio- https://doi.org/10.1128/AAC.01998-16. films. We hypothesized that glycoside hydrolase therapy would significantly reduce Copyright © 2017 American Society for EPS biomass and convert bacteria to their planktonic state, leaving them more sus- Microbiology.
    [Show full text]
  • The Physiology and Biochemistry of the Digestion System of Termites from the Genus Anacanthotermes Jacobson, 1904
    International Journal of Biology; Vol. 11, No. 4; 2019 ISSN 1916-9671 E-ISSN 1916-968X Published by Canadian Center of Science and Education The Physiology and Biochemistry of the Digestion System of Termites from the Genus Anacanthotermes Jacobson, 1904 Ikram I. Abdullaev1, Manzura B. Doschanova1, Zafar Sh. Matyakubov2, Abdulla I. Iskandarov2, & Feruza R. Rakhimbaeva2 1 Khorezm Academy of Mamun, Khiva, Uzbekistan 2 Urgench State University (UrSU), Urgench, Uzbekistan Correspondence: Ikram Abdullaev, Chairman Khorezm Academy of Mamun, 220900, Khiva, Uzbekistan. Tel: 998-362-375-8051. E-mail: [email protected] Received: June 12, 2019 Accepted: July 5, 2019 Online Published: July 9, 2019 doi:10.5539/ijb.v11n4p1 URL: https://doi.org/10.5539/ijb.v11n4p1 Abstract A variety of morphological and functional features of the digestive system of termites is associated with their nutritional adaptation. Wood is mostly the food of termites’ adult larvae, workers and young nymphs. The salivary and intestinal enzymes play an important part in this process. The physiology and biochemistry of the digestion system of termites from the genus Anacanthotermes is still not fully studied. In the present research, we studied the activity of some carbohydrases in termites’ salivary glands. Our data show that the activity of exocellulase in adult termites is 1.5 times more that in young individuals and 3 times more active than in nymphs, while the exocellulase in soldiers remains inactive. Moreover, the activity of celluloses in the intestine of A. turkestanicus is still not fully studied. We observed that exocellulase is involved in the digestion of food polymers in the castes of termites-workers, nymphs and soldiers.
    [Show full text]
  • KS3 Science Textbook Sample
    Contents Enquiry processes 6 More on planning how to answer a question 2 10 Critique claims and justify opinions 10 7 More on analysing and evaluating 4 11 Risks and benefits 12 8 Communication 6 12 Review theories 1 14 9 Evidence and sources 8 13 Review theories 2 16 1: Forces Part 2 Opener 18 1.3 Contact forces 1.4 Pressure 1.3.1 Friction and drag 20 1.4.1 Pressure in gases 26 1.3.2 Squashing and stretching 22 1.4.2 Pressure in liquids 28 1.3.3 Turning forces 24 1.4.3 Stress on solids 30 Part 2 Summary and Questions 32 2: Electromagnets Part 2 Opener 34 2.3 Magnetism 2.4 Electromagnets 2.3.1 Magnets and magnetic fields 36 2.4.1 Electromagnets 38 2.4.2 Using electromagnets 40 Part 2 Summary and Questions 42 3: Energy Part 2 Opener 44 3.3 Work 3.4 Heating and cooling 3.3.1 Work, energy, and machines 46 3.4.1 Energy and temperature 48 3.4.2 Energy transfer: particles 50 3.4.3 Energy transfer: radiation and insulation 52 Part 2 Summary and Questions 54 4: Waves Part 2 Opener 56 4.3 Wave effects 4.4 Wave properties 4.3.1 Sound waves, water waves, and energy 58 4.4.1 Modelling waves 62 4.3.2 Radiation and energy 60 Part 2 Summary and Questions 64 5: Matter Part 2 Opener 66 5.3 Elements 5.4 Periodic Table 5.3.1 Elements 68 5.4.1 The Periodic Table 78 5.3.2 Atoms 70 5.4.2 The elements of Group 1 80 5.3.3 Compounds 72 5.4.3 The elements of Group 7 82 5.3.4 Chemical formulae 74 5.4.4 The elements of Group 0 84 5.3.5 Polymers 76 Part 2 Summary and Questions 86 ii 6: Reactions Part 2 Opener 88 6.3 Types of reaction 6.4 Chemical energy 6.3.1 Atoms
    [Show full text]
  • Carbohydrase and Phytase Supplementation in Diets for Semi-Heavy Laying Hens
    Acta Scientiarum http://www.uem.br/acta ISSN printed: 1806-2636 ISSN on-line: 1807-8672 Doi: 10.4025/actascianimsci.v36i3.21952 Carbohydrase and phytase supplementation in diets for semi-heavy laying hens Adriano Geraldo1*, Karina Rodrigues Aurora Gomes1, Édison José Fassani2, Antonio Gilberto Bertechini2, Sérgio Domingos Simão1 and Filipe Soares Nogueira1 1Departamento de Ciências Agrárias, Instituto Federal de Educação Ciência e Tecnologia de Minas Gerais, Fazenda Varginha, km 05, Rodovia Bambuí-Medeiros, Cx. Postal 05, 38900-000, Bambuí, Minas Gerais, Brazil. 2Departamento de Zootecnia, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil. *Author for correspondence. E-mail: [email protected] ABSTRACT. This study was conducted in order to evaluate the association of phytase with an enzymatic complex comprised of carbohydrases (α-galactosidase, galactomannan, xylanase and β-glucanase) in nutrition reduction diets for semi-heavy laying hens and its effect on egg performance and egg quality. Four hundred Isa Brown laying hens with 42 to 57 weeks of age were distributed in an entirely random experiment with five treatments and 8 repetitions, during five production periods of 21 days. Variables studied: egg production, feed intake, mean egg weight, feed conversion, Haugh unit, percentage of yolk, egg white and albumen, yolk color, eggshell thickness and specific gravity. There was a significant interaction (p < 0.05) between treatments and experimental periods for feed intake. There were no significant effects (p > 0.05) of treatment on production, egg weight or internal and external egg quality. Treatment effects on feed conversion showed better values for hens fed with the control diet. The levels of nutrient reduction used in the diets with or without enzyme supplementation did not provide good results with regard to feed conversion and feed intake.
    [Show full text]
  • Production of Dextrose and Maltose Syrups Using an Enzyme Derived from Rice
    Europaisches Patentamt J European Patent Office © Publication number: 0 127 291 Office europeen des brevets A1 (12) EUROPEAN PATENT APPLICATION @ Application number: 84302289.8 © Int. CI.3: C 12 P 19/20 C 12 P 19/22 © Date of filing: 04.04.84 © inventor: © Priority: 20.05.83 US 496386 Line, William F. 5200 S. Tuckaway Blvd. Greenfield Wisconsin 53221 (US) © of of Date publication application: © 05.12.84 Bulletin 84/49 Inventor: Chaudhary, Vinod K. 9496 North Green Bay Road Brown Deer Wisconsin © Designated Contracting States: 53029(US) DE FR GB @ Inventor: Chicoye, Etzer © Applicant: Miller Brewing Company 4374 N. Menomonee River Parkway Milwaukee 3939 W. Highland Boulevard Wisconsin 53225(US) Milwaukee Wisconsin 53223(US) © Inventor: Mizerak, Robert J. N8 3071 0 Cherokee Trail Waukesha Wisconsin 531 86(US) © Representative: Wynne-Jones, John Vaughan et al, Wynne-Jones, Laine & James 22, Rodney Road Cheltenham Gloucestershire GL50 1 JJ(GB) © Production of dextrose and maltose syrups using an enzyme derived from rice. ©A A sugar syrup is prepared by saccharifying a thinned starch hydrolyzate at a pH of about 4.5 to about 7 and a temperature above about 45°C with a heat-stable pullulanase obtained from rice, and an @-1,4a-1,4 carbohydrase.Thecarbohydrase. The pullulan- ase employed is free of maltase and transglucosidase activities. In a preferred embodiment, a dextrose syrup is prepared by saccharifying the thinned starch hydrolyzate with glucoamylase and the rice debranching enzyme at a pH of about 5 and at a temperature of about 55°C. A method of preparing a maltose syrup using the rice debranching enzyme is also disclosed.
    [Show full text]
  • Malt Carbohydrase
    MALT CARBOHYDRASE Prepared at the 15th JECFA (1971), published in NMRS 50B (1972) and in FNP 52 (1992). An ADI 'not limited' was established at the 15th JECFA (1971) SYNONYMS Malt SOURCES Malt is the product of controlled germination of barley Active principles 1. alpha-Amylase (glycogenase, diastase) 2. ß-Amylase (glycogenase, diastase) Systematic names and 1. 1,4-alpha-D-Glucan glucanohydrolase (EC 3.2.1.1) numbers 2. 1,4-alpha-D-Glucan maltohydrolase (EC 3.2.1.2) Reactions catalyzed 1. Hydrolysis of 1,4-alpha-glucosidic linkages in polysaccharides, (starch, glycogen) yielding dextrins and oligo- and monosaccharides. 2. Hydrolysis of 1,4-alpha-glucosidic linkages in polysaccharides, (starch, glycogen) yielding successively maltose units from the non-reducing ends of the chains. FUNCTIONAL USES Enzyme preparation Used in brewing, baking, manufacture of alcoholic beverages and manufacture of syrups. GENERAL Must conform to the General Specifications for Enzyme Preparations used SPECIFICATIONS in Food Processing (see Volume Introduction) CHARACTERISTICS IDENTIFICATION alpha-Amylase activity The sample shows alpha-amylase activity (Vol. 4) alpha- and ß-amylase The sample shows Diastatic power activity See description under TESTS TESTS IDENTIFICATION TESTS Diastatic power Determination of a diastatic power of malt (combined activity of alpha- and ß-amylase) according to Amer. Soc. Brewing Chem., 6th ed., 162 (1958). Reagents For Digestion of Starch Solution - Acetate buffer solution: Dissolve 68 g of sodium acetate (CH3COONa · 3H2O), reagent grade, in 500 ml of one N acetic acid and make the solution up to one litre with distilled water. - Sodium hydroxide solution: 0.5 N - Special starch: Starch manufactured specifically for diastatic power determination is available from Merck & Co., Rahway, New Jersey.
    [Show full text]