The Distribution of Carbohydrase Activities in the Small Intestine in Early Weaned Calves

Total Page:16

File Type:pdf, Size:1020Kb

The Distribution of Carbohydrase Activities in the Small Intestine in Early Weaned Calves The Distribution of Carbohydrase Activities in the Small Intestine in Early Weaned Calves Toshikazu MIYASHIGEand Shigefusa YAHATA Chugoku National Agricultural Experiment Station, Oda-shi 694-01 (Received December 8, 1980) Abstract 1. The carbohydrase activities of the small intestine of early weaned calves were compared with those of nursing ones at 26 weeks of age. 2. In the early weaned calves, the pH value of content of the caecum was observed to be lower than that of the nursing ones, suggesting that more soluble carbohydrates would have escaped from ruminal fermentation and reached the caecum. 3. The values of maltase and iso maltase activities of the early weaned calves were not different from those of the nursing ones. However, maltase activity of the early weaned calves distributed more constantly with relatively high level all over the small intestine. Lactase activity of the early weaned calves was almost the same as that of the nursing ones. Dextranase and amylase activities were also found in the small intestine of the early weaned calves. Jpn. J. Zootech. Sci., 52 (7): 532-536, 1981 In the previous study1) with nursing calves, it was shown that intestinal maltase activity was very low and did not increase with age. But the pattern of the distri- bution of maltase activity in the small intestine apparently changed with age and higher activity of maltase was found in the lower part of the small intestine at 26 weeks of age. Although the meaning of this change is not known, it is supposed that the change of the pattern would be correlated with the increase of solid food intake. The purpose of the present study is to observe the effect of early weaning of beef calves on the activities of intestinal carbohydrases, especially those related to break- down of starch, and their distributions. Materials and Methods Four calves of Japanese Black Cattle were used. The calves were removed from their dams at one week of age and then were offered milk substitute until 6 weeks of age. Concentrates (25.2% crude protein, 4.5% crude fiber and 47.8% crude starch in dry matter) and hay (7.2% crude protein, 38.3% crude fiber and 13.8% crude starch in dry matter) were offered ad libitum at 9 a.m. every day. All calves were killed at 26 weeks of age. The time of killing was fixed at 1 p.m. The mucosa of the small intestine for enzyme assay were taken exactly from the middle of each quarter of the whole length. These sampling sites were at 13, 38, 63 and 88% of the whole length of the small intestine measured from the pylorus. The contents of each part of the small intestine and the caecum and colon were Jpn. J. Zootech. Sci., 52 (7): 532-536 532 1981 Intestinal Carbohydrase of Early Weaned Calves taken for pH measurement. The procedure of preparation of mucosal homogenate was the same as described previously1). Enzyme activities of lactase (EC 3. 2. 1. 23), maltase (EC 3. 2. 1. 20), isomaltase (EC 3. 2. 1. 10), dextranase (EC 3. 2. 1. 11)and α-amylase (EC 3. 2. 1. 1) were measured by the methods of DAHLQVIST2,3). One unit of activity of the former three is defined as that which hydrolyses 1μmol disaccharide in one minute at 37℃. _One unit of activity of the latter two is that which liberates reducing groups corresponding to 1mg of maltose in one minute at 37℃. The protein contents of homogenates were assayed by the method of LOWRY et al.4). Table 1. Body weights and relative tissue weights of the reticulo- rumen, abomasum, small intestine and large intestine to the body wei- ghts in early weaned calves and nursing ones1) 1) Mean±S. E. 2) taken from our earlier work1) Results Table 1 shows the body weights and the relative tissue weights of the reticulo- rumen, abomasum, small intestine and large intestine to the body weights in early weaned calves, and also in nursing ones taken from our earlier work1). The tissue weight of the reticulo-rumen of the early weaned calves was significantly greater than that of the nursing ones (P<0.01). However, there were no significant differences between those calves in other tissue weights. The enzyme activities of mucosa and the pH values of contents from different sites of the small intestine and from the caecum and colon are shown in Table 2. Lactase activity of the early weaned calves seemed to be quite similar to that of the nursing ones. Much differences were not observed between the calves of early weaning and of nursing in the activities of maltase and isomaltase. In the early weaned calves, however, maltase activity with relatively high level was distributed more constantly all over the small intestine. It was apparent that the activities of dextranase and amylase were also found in the small intestinal mucosa. Amylase activity showed a tendency to increase in the lower part of the small intestine, although there were great variations among individuals. The change of pH in the small intestine of the early weaned calves was similar to that of the nursing ones. 533 MIYASHIGE and YAHATA Table 2. Carbohydrase activities of mucosa and pH values of contents from different. sites of the small intestine and from the caecum and colon in early weaned calves and nursing ones at 26 weeks of age1) 1) Mean±S. E. of four and three animals for early weaning and nursing, respectively. 2) taken from our earlier work1) However, the pH in the caecum of the former was significantly lower than that of the latter (P<0.05). Discussion In our early weaned calves, the tissue weight of the reticulo-rumen showed remarkable development compared with that of nursing ones and a large quantity of intake of solid food, especially concentrates, was observed. Our finding of distinctly lower pH value of the caecal content in the early weaned calves suggests that there would be more soluble carbohydrates bypassed the ruminal digestion and reached the caecum. However, the values of maltase and isomaltase activities of the early weaned calves were not much different from those of the nursing ones, suggesting almost no dietary effect. SIDDONS5)also reported a similar result, in which no marked differ- ences were observed in carbohydrase activities including maltase and lactase at ages of 101 and 114 days between calves that had been fed solely on milk and those that had been given a concentrate-hay diet from weaning at 6 weeks of age. But, there 534 Intestinal Carbohydrase of Early Weaned Calves was also our finding that in the small intestine, more constant distribution of maltase activity with relatively high level, which seemed to be rather similar to that of fattening steers reported earlier1), was observed in the early weaned calvescompared with that in the nursing ones. This pattern of the distribution of the activity in the early weaned calves seemed to be dependent on much larger intake of concentrates and suggests probably some change of the digestive and absorptive regions of starch or its products of hydrolysis in the small intestine, although much increase of the digestive capacity by this enzymecould not be expected. It was reported that the activities of disaccharidases in the small intestine of rats exhibited circadian fluctuationswhich were closelyrelated to the cycle of feed intake6). In early weaning system, calves would show a different eating habit compared with those in nursing system. But a perfect shift of time eating feed in day cannot be considered between those calves under the same feeding system of concentrates and hay. The early weaned calves possessedalmost the same activity of lactase in the small intestine as the nursing ones did, suggesting that lactose from dam's milkis notvery important to regulate intestinal lactase activity. The mucosal homogenates of the small intestine showed the activities of dex- tranase and amylase, as also reported by SIDDONS5)and TOOFANIANet al.7). However, it is known that there is an adsorption of pancreatic amylaseonto the mucosa in all areas of the small intestine, where a process of membrane-digestiontakes place8). It would be predicted, therefore, that these activities originated from adsorbed enzyme. References 1) MIYASHIGE,T. and S. YAHATA,Jpn. J. Zootech. Sci., 51: 58-68. 1980. 2) DAHLQVIST,A., Anal. Biochem., 7: 18-25. 1964. 3) DAHLQVIST,A., Biochem. J., 78: 282-288. 1961. 4) LOWRY, O.H., N. J. ROSEBROUGH,A. L. FARR and R. J. RANDALL,J. Biol. Chem., 193: 265- 275. 1951. 5) SIDDONS,R. C., Biochem. J., 108: 839-844. 1968. 6) SAITO, M., E. MURAKAMI,T. NISHIDA, Y. FUJISAWAand M. SUDA, J. Biochem., 78: 475-480. 1975. 7) TOOFANIAN,F., D. E. KIDDERand F. W. G. HILL, Br. vet. J., 130: 19-21. 1974. 8) SHREEVE, W. W., Physiological Chemistry of Carbohydrates in Mammals. 38-52. W. B. Saunders Company. Philadelphia. 1974. 535 MIYASHIGE and YAHATA 早 期 離 乳 子 牛 に お け るcarbohydrase活 性 の 小 腸 内 分 布 宮 重 俊 一 ・八 幡 林 芳 中国農業試験場,大 田市694-01 早 期離 乳 に と も な う飼料 採 食 量 の 増 加 が 子 牛 の小 腸 粘 を示 してい る.し か し,早 期 離乳 子 牛 のmaltaseやiso- 膜carbohydrase活 性 にお よぼ す影 響 を 調 べ た.用 い た maltaseの 活性は 哺 乳 子 牛 と あ ま り変わ らな かっ た.た 4頭 の 子牛(黒 毛和 種)は6週 齢 で 離 乳 し,26週 齢 で 屠 だ,maltase活性 の 小 腸 内 分 布 を み る と哺 乳子 牛 で は小 殺 した.こ の間,毎 日午前9時 に 濃 厚 飼 料 と乾草 を十 分 腸 下 部 で 高 くな る傾 向 が認 め られ た の に,早 期 離 乳 子牛 な 量 給 与 して 自由 に採 食 させ,ま た,屠 殺 は午 後1時 か で は 比較 的高 い活 性 が小 腸 全 体 に 一 様 に 観 察 され た.小 ら実 施 した.酵 素 活 性 測 定 の た め の粘 膜 は,小 腸 を 四 等 腸 に流 入 す るで ん ぷ ん や そ の 加水 分解 産 物 の増 加 に と も 分 してそ の 各 中 央 部 か らそれ ぞ れ 採 取 した.ま た,小 腸 な い,そ の 消 化 吸収 部位 の 変 化 を 示 唆 す る も の で あ ろ 各 部位 か ら と盲 腸 お よび 結 腸 か らpH測 定 の た め 内 容 物 う.早 期 離 乳 子 牛 のlactase活 性 は 哺 乳 子 牛 と変わ らず, を 採 取 した.得 られ た 分 析結 果 は 同 週 齢 の3頭 の 哺乳 子 離 乳 の影響 は ま った く認 め られ な か った.ま た,小 腸 粘 牛 の結 果(既 報)と 比 較 した.早 期 離 乳 子牛 の 盲腸 内容 膜 に は低 い な が らもdextranaseお よびamylaseの 活性 物 のpHは 哺 乳 子 牛 に比 べ て 明 らか に低 く,ル ー メ ン発 が認 め られ た.
Recommended publications
  • Effect of a Multi-Carbohydrase and Phytase Complex on the Ileal And
    animals Article Effect of a Multi-Carbohydrase and Phytase Complex on the Ileal and Total Tract Digestibility of Nutrients in Cannulated Growing Pigs 1, 2, 1, 1 1 3 Jia-Cheng Yang y, Li Wang y, Ya-Kuan Huang y, Lei Zhang , Rui Ma , Si Gao , Chang-Min Hu 4, Jlali Maamer 5, Cozannet Pierre 5, Aurélie Preynat 5, Xin Gen Lei 6 and Lv-Hui Sun 1,* 1 Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; [email protected] (J.-C.Y.); [email protected] (Y.-K.H.); [email protected] (L.Z.); [email protected] (R.M.) 2 Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; [email protected] 3 Demonstration Center of Hubei Province for Experimental Animal Science Education, Huazhong Agricultural University, Wuhan 430070, China; [email protected] 4 College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; [email protected] 5 Adisseo France S.A.S., Center of Expertise in Research and Nutrition, 03600 Commentry, France; [email protected] (J.M.); [email protected] (C.P.); [email protected] (A.P.) 6 Department of Animal Science, Cornell University, Ithaca, NY 14853, USA; [email protected] * Correspondence: [email protected]; Tel.: +86-130-0712-1983 These authors contributed equally to this work. y Received: 6 July 2020; Accepted: 14 August 2020; Published: 17 August 2020 Simple Summary: It is well accepted that monogastric livestock lack phytase in their gastrointestinal tracts.
    [Show full text]
  • Exogenous Enzymes As Zootechnical Additives in Animal Feed: a Review
    catalysts Review Exogenous Enzymes as Zootechnical Additives in Animal Feed: A Review Brianda Susana Velázquez-De Lucio 1, Edna María Hernández-Domínguez 1, Matilde Villa-García 1, Gerardo Díaz-Godínez 2, Virginia Mandujano-Gonzalez 3, Bethsua Mendoza-Mendoza 4 and Jorge Álvarez-Cervantes 1,* 1 Cuerpo Académico Manejo de Sistemas Agrobiotecnológicos Sustentables, Posgrado Biotecnología, Universidad Politécnica de Pachuca, Zempoala 43830, Hidalgo, Mexico; [email protected] (B.S.V.-D.L.); [email protected] (E.M.H.-D.); [email protected] (M.V.-G.) 2 Centro de Investigación en Ciencias Biológicas, Laboratorio de Biotecnología, Universidad Autónoma de Tlaxcala, Tlaxcala 90000, Tlaxcala, Mexico; [email protected] 3 Ingeniería en Biotecnología, Laboratorio Biotecnología, Universidad Tecnológica de Corregidora, Santiago de Querétaro 76900, Querétaro, Mexico; [email protected] 4 Instituto Tecnológico Superior del Oriente del Estado de Hidalgo, Apan 43900, Hidalgo, Mexico; [email protected] * Correspondence: [email protected]; Tel.: +52-771-5477510 Abstract: Enzymes are widely used in the food industry. Their use as a supplement to the raw Citation: Velázquez-De Lucio, B.S.; material for animal feed is a current research topic. Although there are several studies on the Hernández-Domínguez, E.M.; application of enzyme additives in the animal feed industry, it is necessary to search for new Villa-García, M.; Díaz-Godínez, G.; enzymes, as well as to utilize bioinformatics tools for the design of specific enzymes that work in Mandujano-Gonzalez, V.; certain environmental conditions and substrates. This will allow the improvement of the productive Mendoza-Mendoza, B.; Álvarez-Cervantes, J.
    [Show full text]
  • Collection of Information on Enzymes a Great Deal of Additional Information on the European Union Is Available on the Internet
    European Commission Collection of information on enzymes A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server (http://europa.eu.int). Luxembourg: Office for Official Publications of the European Communities, 2002 ISBN 92-894-4218-2 © European Communities, 2002 Reproduction is authorised provided the source is acknowledged. Final Report „Collection of Information on Enzymes“ Contract No B4-3040/2000/278245/MAR/E2 in co-operation between the Federal Environment Agency Austria Spittelauer Lände 5, A-1090 Vienna, http://www.ubavie.gv.at and the Inter-University Research Center for Technology, Work and Culture (IFF/IFZ) Schlögelgasse 2, A-8010 Graz, http://www.ifz.tu-graz.ac.at PROJECT TEAM (VIENNA / GRAZ) Werner Aberer c Maria Hahn a Manfred Klade b Uli Seebacher b Armin Spök (Co-ordinator Graz) b Karoline Wallner a Helmut Witzani (Co-ordinator Vienna) a a Austrian Federal Environmental Agency (UBA), Vienna b Inter-University Research Center for Technology, Work, and Culture - IFF/IFZ, Graz c University of Graz, Department of Dermatology, Division of Environmental Dermatology, Graz Executive Summary 5 EXECUTIVE SUMMARY Technical Aspects of Enzymes (Chapter 3) Application of enzymes (Section 3.2) Enzymes are applied in various areas of application, the most important ones are technical use, manufacturing of food and feedstuff, cosmetics, medicinal products and as tools for re- search and development. Enzymatic processes - usually carried out under mild conditions - are often replacing steps in traditional chemical processes which were carried out under harsh industrial environments (temperature, pressures, pH, chemicals). Technical enzymes are applied in detergents, for pulp and paper applications, in textile manufacturing, leather industry, for fuel production and for the production of pharmaceuticals and chiral substances in the chemical industry.
    [Show full text]
  • Biochemical Characterization of Digestive Carbohydrases in the Rose Sawfly, Arge Rosae Linnaeus (Hymenoptera: Argidae)
    J. Crop Prot. 2013, 2 (3): 305-318 ______________________________________________________ Biochemical characterization of digestive carbohydrases in the rose sawfly, Arge rosae Linnaeus (Hymenoptera: Argidae) Moloud Gholamzadeh Chitgar1, Seyed Mohammad Ahsaei2, Mohammad Ghadamyari1*, Mahbobe Sharifi1, Vahid Hosseini Naveh2 and Hadi Sheikhnejad1 1. Department of Plant Protection, Faculty of Agricultural Science, University of Guilan, Rasht, Iran. 2. Department of Plant protection, Faculty of Agricultural Sciences & Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran. Abstract: The rose sawfly, Arge rosae Linnaeus, is one of the most destructive pests of rose bushes in the north of Iran. Nowadays, many attempts have been made to reduce pesticide application by looking for new methods of pest control. A non chemical method for controlling insect pests including A. rosae can be achieved by using genetically engineered plants expressing carbohydrase inhibitors. Therefore, in present study we characterized biochemical properties of digestive carbohydrases in the gut of A. rosae for achieving a new method for control of this pest. The specific activity of α-amylase in the digestive system of last larval instars of A. rosae was obtained as 9.46 ± 0.06 μmol min-1 mg-1 protein. Also, the optimal pH and temperature for α-amylase were found to be at pH 8 and 50 °C. As calculated from Lineweaver-Burk plots, the Km and Vmax values for α-amylase were 0.82 mg/ml and 7.32 µmol min-1 mg-1 protein, respectively, when starch was used as substrate. The effects of ions on amylolytic activity showed that Mg2+ and Na+ significantly increased amylase activity, whereas SDS and EDTA decreased the enzyme activity.
    [Show full text]
  • The Mechanism of Carbohydrase Action 5
    246 Biochem. J. (1960) 76, 246 The Mechanism of Carbohydrase Action 5. ACTION OF HUMAN SALIVARY a-AMYLASE ON AMYLOPECTIN AND GLYCOGEN* By P. J. P. ROBERTSt AND W. J. W-HELANt Chemistry Department, University College of North Wales, Bangor (Received 11 January 1960) When human salivary oc-amylase acts on whole if any, esterified phosphorus (Schoch, 1953). It was pre- starch (amylose+amylopectin) there is produced pared from hand-sorted single-cross Tapicorn seed, (Bear a mixture of fermentable and unfermentable Hybrid Co., Decatur, Illinois, U.S.A.) as by Schoch (1957). sugars (Myrback, 1948). The fermentable sugars Buffers. These were 0-2 m-sodium acetate-acetic acid consist of maltose, maltotriose and/or glucose (see (pH 7.0) and 0-2M-sodiunm citrate-citric acid (pH 7-0). below). The non-fermentable sugars (a-limit Methods dextrins) are a mixture of higher oigosaccharides. Digests. Waxy-maize starch was moistened with ethanol Since the amylose component of starch, which and dissolved in 0-6N-sodium hydroxide by heating in a consists essentially only of 1:4-linked a-glucose boiling-water bath for 5 min. After cooling, the alkali was units, can be converted by the amylase completely neutralized to phenolphthalein either with sulphuric acid into maltose and maltotriose (Whelan & Roberts, [digests (1) and (2), see below] or hydrochloric acid [digest 1953) the a-limit dextrins must arise from the (3)]. Glycogen and the enzymes were dissolved in water. amylopectin component and may be assumed to After the substrate had dissolved, the buffer was added and contain the a-1:6-bonds which constitute the points then the enzyme.
    [Show full text]
  • Glycoside Hydrolases Degrade Polymicrobial Bacterial Biofilms In
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Texas A&amp;M Repository EXPERIMENTAL THERAPEUTICS crossm Glycoside Hydrolases Degrade Polymicrobial Bacterial Biofilms in Wounds Downloaded from Derek Fleming,a,b Laura Chahin,a* Kendra Rumbaugha,b,c Departments of Surgerya and Immunology and Molecular Microbiologyb and TTUHSC Surgery Burn Center of Research Excellence,c Texas Tech University Health Sciences Center, Lubbock, Texas, USA ABSTRACT The persistent nature of chronic wounds leaves them highly susceptible to invasion by a variety of pathogens that have the ability to construct an extracel- Received 15 September 2016 Returned for lular polymeric substance (EPS). This EPS makes the bacterial population, or biofilm, modification 15 October 2016 Accepted 15 November 2016 up to 1,000-fold more antibiotic tolerant than planktonic cells and makes wound Accepted manuscript posted online 21 healing extremely difficult. Thus, compounds which have the ability to degrade bio- November 2016 http://aac.asm.org/ films, but not host tissue components, are highly sought after for clinical applica- Citation Fleming D, Chahin L, Rumbaugh K. tions. In this study, we examined the efficacy of two glycoside hydrolases, ␣-amylase 2017. Glycoside hydrolases degrade polymicrobial bacterial biofilms in wounds. and cellulase, which break down complex polysaccharides, to effectively disrupt Antimicrob Agents Chemother 61:e01998-16. Staphylococcus aureus and Pseudomonas aeruginosa monoculture and coculture bio- https://doi.org/10.1128/AAC.01998-16. films. We hypothesized that glycoside hydrolase therapy would significantly reduce Copyright © 2017 American Society for EPS biomass and convert bacteria to their planktonic state, leaving them more sus- Microbiology.
    [Show full text]
  • The Physiology and Biochemistry of the Digestion System of Termites from the Genus Anacanthotermes Jacobson, 1904
    International Journal of Biology; Vol. 11, No. 4; 2019 ISSN 1916-9671 E-ISSN 1916-968X Published by Canadian Center of Science and Education The Physiology and Biochemistry of the Digestion System of Termites from the Genus Anacanthotermes Jacobson, 1904 Ikram I. Abdullaev1, Manzura B. Doschanova1, Zafar Sh. Matyakubov2, Abdulla I. Iskandarov2, & Feruza R. Rakhimbaeva2 1 Khorezm Academy of Mamun, Khiva, Uzbekistan 2 Urgench State University (UrSU), Urgench, Uzbekistan Correspondence: Ikram Abdullaev, Chairman Khorezm Academy of Mamun, 220900, Khiva, Uzbekistan. Tel: 998-362-375-8051. E-mail: [email protected] Received: June 12, 2019 Accepted: July 5, 2019 Online Published: July 9, 2019 doi:10.5539/ijb.v11n4p1 URL: https://doi.org/10.5539/ijb.v11n4p1 Abstract A variety of morphological and functional features of the digestive system of termites is associated with their nutritional adaptation. Wood is mostly the food of termites’ adult larvae, workers and young nymphs. The salivary and intestinal enzymes play an important part in this process. The physiology and biochemistry of the digestion system of termites from the genus Anacanthotermes is still not fully studied. In the present research, we studied the activity of some carbohydrases in termites’ salivary glands. Our data show that the activity of exocellulase in adult termites is 1.5 times more that in young individuals and 3 times more active than in nymphs, while the exocellulase in soldiers remains inactive. Moreover, the activity of celluloses in the intestine of A. turkestanicus is still not fully studied. We observed that exocellulase is involved in the digestion of food polymers in the castes of termites-workers, nymphs and soldiers.
    [Show full text]
  • KS3 Science Textbook Sample
    Contents Enquiry processes 6 More on planning how to answer a question 2 10 Critique claims and justify opinions 10 7 More on analysing and evaluating 4 11 Risks and benefits 12 8 Communication 6 12 Review theories 1 14 9 Evidence and sources 8 13 Review theories 2 16 1: Forces Part 2 Opener 18 1.3 Contact forces 1.4 Pressure 1.3.1 Friction and drag 20 1.4.1 Pressure in gases 26 1.3.2 Squashing and stretching 22 1.4.2 Pressure in liquids 28 1.3.3 Turning forces 24 1.4.3 Stress on solids 30 Part 2 Summary and Questions 32 2: Electromagnets Part 2 Opener 34 2.3 Magnetism 2.4 Electromagnets 2.3.1 Magnets and magnetic fields 36 2.4.1 Electromagnets 38 2.4.2 Using electromagnets 40 Part 2 Summary and Questions 42 3: Energy Part 2 Opener 44 3.3 Work 3.4 Heating and cooling 3.3.1 Work, energy, and machines 46 3.4.1 Energy and temperature 48 3.4.2 Energy transfer: particles 50 3.4.3 Energy transfer: radiation and insulation 52 Part 2 Summary and Questions 54 4: Waves Part 2 Opener 56 4.3 Wave effects 4.4 Wave properties 4.3.1 Sound waves, water waves, and energy 58 4.4.1 Modelling waves 62 4.3.2 Radiation and energy 60 Part 2 Summary and Questions 64 5: Matter Part 2 Opener 66 5.3 Elements 5.4 Periodic Table 5.3.1 Elements 68 5.4.1 The Periodic Table 78 5.3.2 Atoms 70 5.4.2 The elements of Group 1 80 5.3.3 Compounds 72 5.4.3 The elements of Group 7 82 5.3.4 Chemical formulae 74 5.4.4 The elements of Group 0 84 5.3.5 Polymers 76 Part 2 Summary and Questions 86 ii 6: Reactions Part 2 Opener 88 6.3 Types of reaction 6.4 Chemical energy 6.3.1 Atoms
    [Show full text]
  • Carbohydrase and Phytase Supplementation in Diets for Semi-Heavy Laying Hens
    Acta Scientiarum http://www.uem.br/acta ISSN printed: 1806-2636 ISSN on-line: 1807-8672 Doi: 10.4025/actascianimsci.v36i3.21952 Carbohydrase and phytase supplementation in diets for semi-heavy laying hens Adriano Geraldo1*, Karina Rodrigues Aurora Gomes1, Édison José Fassani2, Antonio Gilberto Bertechini2, Sérgio Domingos Simão1 and Filipe Soares Nogueira1 1Departamento de Ciências Agrárias, Instituto Federal de Educação Ciência e Tecnologia de Minas Gerais, Fazenda Varginha, km 05, Rodovia Bambuí-Medeiros, Cx. Postal 05, 38900-000, Bambuí, Minas Gerais, Brazil. 2Departamento de Zootecnia, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil. *Author for correspondence. E-mail: [email protected] ABSTRACT. This study was conducted in order to evaluate the association of phytase with an enzymatic complex comprised of carbohydrases (α-galactosidase, galactomannan, xylanase and β-glucanase) in nutrition reduction diets for semi-heavy laying hens and its effect on egg performance and egg quality. Four hundred Isa Brown laying hens with 42 to 57 weeks of age were distributed in an entirely random experiment with five treatments and 8 repetitions, during five production periods of 21 days. Variables studied: egg production, feed intake, mean egg weight, feed conversion, Haugh unit, percentage of yolk, egg white and albumen, yolk color, eggshell thickness and specific gravity. There was a significant interaction (p < 0.05) between treatments and experimental periods for feed intake. There were no significant effects (p > 0.05) of treatment on production, egg weight or internal and external egg quality. Treatment effects on feed conversion showed better values for hens fed with the control diet. The levels of nutrient reduction used in the diets with or without enzyme supplementation did not provide good results with regard to feed conversion and feed intake.
    [Show full text]
  • Production of Dextrose and Maltose Syrups Using an Enzyme Derived from Rice
    Europaisches Patentamt J European Patent Office © Publication number: 0 127 291 Office europeen des brevets A1 (12) EUROPEAN PATENT APPLICATION @ Application number: 84302289.8 © Int. CI.3: C 12 P 19/20 C 12 P 19/22 © Date of filing: 04.04.84 © inventor: © Priority: 20.05.83 US 496386 Line, William F. 5200 S. Tuckaway Blvd. Greenfield Wisconsin 53221 (US) © of of Date publication application: © 05.12.84 Bulletin 84/49 Inventor: Chaudhary, Vinod K. 9496 North Green Bay Road Brown Deer Wisconsin © Designated Contracting States: 53029(US) DE FR GB @ Inventor: Chicoye, Etzer © Applicant: Miller Brewing Company 4374 N. Menomonee River Parkway Milwaukee 3939 W. Highland Boulevard Wisconsin 53225(US) Milwaukee Wisconsin 53223(US) © Inventor: Mizerak, Robert J. N8 3071 0 Cherokee Trail Waukesha Wisconsin 531 86(US) © Representative: Wynne-Jones, John Vaughan et al, Wynne-Jones, Laine & James 22, Rodney Road Cheltenham Gloucestershire GL50 1 JJ(GB) © Production of dextrose and maltose syrups using an enzyme derived from rice. ©A A sugar syrup is prepared by saccharifying a thinned starch hydrolyzate at a pH of about 4.5 to about 7 and a temperature above about 45°C with a heat-stable pullulanase obtained from rice, and an @-1,4a-1,4 carbohydrase.Thecarbohydrase. The pullulan- ase employed is free of maltase and transglucosidase activities. In a preferred embodiment, a dextrose syrup is prepared by saccharifying the thinned starch hydrolyzate with glucoamylase and the rice debranching enzyme at a pH of about 5 and at a temperature of about 55°C. A method of preparing a maltose syrup using the rice debranching enzyme is also disclosed.
    [Show full text]
  • Malt Carbohydrase
    MALT CARBOHYDRASE Prepared at the 15th JECFA (1971), published in NMRS 50B (1972) and in FNP 52 (1992). An ADI 'not limited' was established at the 15th JECFA (1971) SYNONYMS Malt SOURCES Malt is the product of controlled germination of barley Active principles 1. alpha-Amylase (glycogenase, diastase) 2. ß-Amylase (glycogenase, diastase) Systematic names and 1. 1,4-alpha-D-Glucan glucanohydrolase (EC 3.2.1.1) numbers 2. 1,4-alpha-D-Glucan maltohydrolase (EC 3.2.1.2) Reactions catalyzed 1. Hydrolysis of 1,4-alpha-glucosidic linkages in polysaccharides, (starch, glycogen) yielding dextrins and oligo- and monosaccharides. 2. Hydrolysis of 1,4-alpha-glucosidic linkages in polysaccharides, (starch, glycogen) yielding successively maltose units from the non-reducing ends of the chains. FUNCTIONAL USES Enzyme preparation Used in brewing, baking, manufacture of alcoholic beverages and manufacture of syrups. GENERAL Must conform to the General Specifications for Enzyme Preparations used SPECIFICATIONS in Food Processing (see Volume Introduction) CHARACTERISTICS IDENTIFICATION alpha-Amylase activity The sample shows alpha-amylase activity (Vol. 4) alpha- and ß-amylase The sample shows Diastatic power activity See description under TESTS TESTS IDENTIFICATION TESTS Diastatic power Determination of a diastatic power of malt (combined activity of alpha- and ß-amylase) according to Amer. Soc. Brewing Chem., 6th ed., 162 (1958). Reagents For Digestion of Starch Solution - Acetate buffer solution: Dissolve 68 g of sodium acetate (CH3COONa · 3H2O), reagent grade, in 500 ml of one N acetic acid and make the solution up to one litre with distilled water. - Sodium hydroxide solution: 0.5 N - Special starch: Starch manufactured specifically for diastatic power determination is available from Merck & Co., Rahway, New Jersey.
    [Show full text]
  • An Alpha-Amylase Assay, a Reagent Composition and a Reagent System Therefor
    Patentamt JEuropâischesEuropean Patent Office © Publication number : 0 005 867 Office européen des brevets B2 © NEW EUROPEAN PATENT SPECIFICATION © Date of publication of the new patent spécification : © int. ci* : G 01 N 33/50, C 1 2 Q 1/40 09.07.86 © Application number : 79101791.6 © Date of filing : 06.06.79 © An alpha-amylase assay, a reagent composition and a reagent System therefor. (30)© Priority : 06.06.78 US 912986 © Proprietor : FLOW GENERAL, INC. 7655 Old Springhouse Road © Date of publication of application : Mclean Virginia 22102 (US) 12.12.79 Bulletin 79/25 © Inventor : Nix, Paul Thomas Publication of the grant of the patent : 62 Forest Drive 27.10.82 Bulletin 82/43 Jackson N.J. 08627 (US) Inventor : Goldfarb, Rebecca Dickstein Mention of the opposition décision : 224 Alexander Avenue 09.07.86 Bulletin 86/28 Howell N.J. 07731 (US) Inventor : Morgenstern, Stanley Walter 3805 Route 33 © Designated contracting states : N.J. 07753 DE FR Neptune (US) GB IT Inventor : Stong, Linda Jean 6 Blue Spruce Court R.D. 1 Références cited : Hightstown N.J. 08520 (US) DE-A- 2 705 859 Inventor : Sulick, Lorraine Eilen DE-A- 2 729 636 14 Winding Way FR-A- 2 402 872 Short Hills N.J. 07078 (US) US-A- 3 879 263 Inventor : Trivedi, Ramesh Chandulal Clinical Chemistry, vol. 24, no. 6, (1978), page 1000 110 W.Main Street Freehold N.J. 07728 (US) © Représentative : Vossius Vossius Tauchner Heune- Rauh csi mann Siebertstrasse 4 P.O. Box 86 07 67 D-8000 Mûnchen 86 (DE) <0 00 m o o Jouve, 18, rue St-Denis, 75001 Paris, France This invention relates to reagents and methods for determining alpha-amylase concentration in a body fluid, such as plasma, serum, urine and saliva.
    [Show full text]