Female Receptivity, Embryonic Diapause, and Superfetation in the European Badger (Meles Meles): Implications for the Reproductive Tactics of Males and Females

Total Page:16

File Type:pdf, Size:1020Kb

Female Receptivity, Embryonic Diapause, and Superfetation in the European Badger (Meles Meles): Implications for the Reproductive Tactics of Males and Females University of Groningen Female receptivity embryonic diapause, and superfetation in the European badger (Meles Meles): Implications for the reproductive tactics of males and females Yamaguchi, N; Dugdale, Hannah L.; Macdonald, DW Published in: Quarterly review of biology DOI: 10.1086/503923 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2006 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Yamaguchi, N., Dugdale, H. L., & Macdonald, DW. (2006). Female receptivity embryonic diapause, and superfetation in the European badger (Meles Meles): Implications for the reproductive tactics of males and females. Quarterly review of biology, 81(1), 33-48. https://doi.org/10.1086/503923 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Volume 81, No. 1 THE QUARTERLY REVIEW OF BIOLOGY March 2006 FEMALE RECEPTIVITY, EMBRYONIC DIAPAUSE, AND SUPERFETATION IN THE EUROPEAN BADGER (MELES MELES): IMPLICATIONS FOR THE REPRODUCTIVE TACTICS OF MALES AND FEMALES Nobuyuki Yamaguchi Wildlife Conservation Research Unit, University of Oxford Tubney House, Abingdon Road, Tubney, Abingdon OX13 5QL United Kingdom e-mail: [email protected] Hannah L. Dugdale Wildlife Conservation Research Unit, University of Oxford Tubney House, Abingdon Road, Tubney, Abingdon OX13 5QL United Kingdom e-mail: [email protected] David W. Macdonald Wildlife Conservation Research Unit, University of Oxford Tubney House, Abingdon Road, Tubney, Abingdon OX13 5QL United Kingdom e-mail: [email protected] keywords blastocyst, delayed implantation, mate guarding, progesterone, superfecundation abstract The European badger Meles meles is thought to mate throughout the year, with two mating peaks occurring in late winter/spring and summer/autumn. After mating, fertilized ova enter embryonic diapause (delayed implantation) at the blastocyst stage, which lasts up to eleven months. Even if mating is successful, however, the estrous cycle may continue during embryonic diapause, which sug- gests that female badgers are capable of superfetation (conception during pregnancy). This may increase female fitness by facilitating polyandry, and reduce the risk of infanticide by resident males through paternity confusion. Detailed understanding of female receptivity, specifically the association of super- fetation with embryonic diapause, may explain field observations of seemingly inconsistent reproductive The Quarterly Review of Biology, March 2006, Vol. 81, No. 1 Copyright ᭧ 2006 by The University of Chicago. All rights reserved. 0033-5770/2006/8101-0002$15.00 33 This content downloaded from 129.125.136.103 on June 13, 2018 01:26:22 AM All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c). 34 THE QUARTERLY REVIEW OF BIOLOGY Volume 81 tactics of male badgers with regard to, for instance, whether or not they guard mates or defend territories. The combination of embryonic diapause and superfetation may occur in other mustelids; if so, the sociobiology of mustelids will need re-evaluating, and the Mustelidae may prove to be a good model taxon for studies of sexual conflict in the reproduction of eutherian mammals. ATURAL SELECTION and sexual se- flict in American mink reproduction, and this N lection act on both sexes. However, em- phenomenon may occur in other members of phasis on sexual selection as a directional evo- the Mustelidae (Thom et al. 2004b; Yamagu- lutionary force acting on males has diverted chi et al. 2004). The Mustelidae is unusual attention from the selective processes acting amongst eutherian families (placental mam- on females, whose discrete mating tactics may mals), as not only is it comprised of approxi- have masked the extent of the potential for mately one-third of the species known to reproductive conflict between the sexes (Zeh exhibit embryonic diapause (Mead 1981; and Zeh 2003). Recent evidence suggests Sandell 1990; Ben-David 1998; Renfree and that the reproductive interests of males and Shaw 2000; Thom et al. 2004a), but also all females frequently differ, thereby generat- additional transitions of the evolution of em- ing sexual conflict rather than cooperation bryonic diapause amongst the Carnivora oc- (Chapman et al. 2003; Montrose et al. 2004). cur within the Mustelidae (Lindenfors et al. This is highlighted in polyandrous mating sys- 2003). The possible connections between tems, which may be the norm across various embryonic diapause and superfetation, and taxa (Chapman et al. 2003; Zeh and Zeh their importance with regards to sexual con- 2003). Such sexual conflict is manifested as a flict in the Mustelidae, merit consideration. “tug-of-war” at both precopulatory and post- The aim of this paper is to shed light on the copulatory stages, with males attempting to importance of female reproductive physiol- monopolize access to the females’ ova and ogy for the evolution of reproductive tactics manipulate their physiology, while females at- of both sexes by focusing on another mus- tempt to control their own reproductive op- telid, the European badger Meles meles, for tions (Chapman et al. 2003; Zeh and Zeh which relatively robust information is avail- 2003; Hosken and Stockley 2004; Martin et al. able in terms of its ecology, behavior, and re- 2004). Therefore, it is important to under- productive physiology. stand the mechanisms through which males and females achieve reproductive success Distribution and Social Organization (Zeh and Zeh 2003). The European badger (Meles meles)isa Understanding sociobiology requires knowl- large, stocky mustelid that weighs around 10 edge of the tactics that maximize individual kg. It is widely distributed across Eurasia, survival and reproductive success, which are from the U.K. to Japan and from Palestine to determined by the availability of food and the Russian Arctic Circle. It exhibits large shelter for both sexes and the receptivity of variation in social organization, being solitar- females for males (Macdonald 1983; Sandell ily, pair, or small group living in many parts 1989). In spite of the theoretically accepted of Eurasia and group living in parts of the importance of the pattern of female receptiv- U.K. This is unique among badgers as all oth- ity, empirical information, particularly on re- ers are solitary (e.g., the American badger productive physiology and endocrinology, is Taxidea taxus; Macdonald 2001). Social groups rudimentary for many species. Furthermore, of badgers can be composed of up to 30 in- it has recently been suggested that the un- dividuals that share a large communal “sett” usual reproductive phenomenon of superfe- or den (a network of underground tunnels tation (conception during pregnancy; Shack- and chambers; Neal and Cheeseman 1996; elford 1952) that occurs in female American Johnson et al. 2002). However, cooperative mink Mustela vison may, in combination with behaviors amongst group members are less embryonic diapause (delayed implantation developed than those seen in highly social of embryos), play a crucial role in sexual con- mammalian species such as wolves Canis lupus This content downloaded from 129.125.136.103 on June 13, 2018 01:26:22 AM All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c). March 2006 EUROPEAN BADGER REPRODUCTION 35 (da Silva et al. 1994; Woodroffe and Macdon- ald 2000; Macdonald et al. 2002b; Revilla and Palomares 2002; Rogers et al. 2003). Cur- rently a considerable bias exists in the litera- ture on Meles meles because a disproportionate number of studies have been conducted in the U.K. where these badgers live in social groups. The reported reproductive biology thus may not be applicable throughout its range (Neal and Cheeseman 1996; Johnson et al. 2002). The identity of the population Figure 1. Seasonal Variation in Testes Weight from which data were derived is therefore and the Proportion of Males with Spermatozoa specified throughout this paper. The generally high levels of testicular activity as shown by testes weight (bar chart) and the proportion Mating and Birth of animals with spermatozoa (solid line) among adult Since the classic work of Neal and Harrison males in their third year or older. Testes weight is the (1958), based on about 85 animals from average wet weight of testes combined with epididy- southern England, post mortem studies of mides, both with and without spermatozoa. the reproductive
Recommended publications
  • Some Environmental Factors Influencing Rearing of the Spruce
    S AN ABSTRACT OF THE THESIS OF Gary Boyd Pitman for the M. S. in ENTOMOLOGY (Degree) (Major) Date thesis is presented y Title SOME ENVIRONMENTAL FACTORS INFLUENCING REARING OF THE SPRUCE BUDWORM, Choristoneura fumiferana (Clem.) (LEPIDOPTERA: TORTRICIDAE) UNDER LABORATORY CONDITIONS. Abstract approved , (Major Professor) The purpose of this study was to determine the effects of controlled environmental factors upon the development of the spruce budworm (Choristoneura fumiferana Clem.) and to utilize the information for im- proving mass rearing procedures. A standard and a green form of the bud - worm occurring in the Pacific Northwest were compared morphologically and as to their suitability for mass rearing. " An exploratory study demonstrated that both forms of the budworm could be reared in quantity in the laboratory under conditions outlined by Stehr, but that greater survival and efficiency of production would be needed for mass rearing purposes. Further experimentation revealed that, by manipulating environmental factors during the rearing process, the number of budworm generations could be increased from one that occurs normally to nearly three per year. For the standard form of the budworm, procedures were developed for in- creasing laboratory stock twelvefold per generation. Productivity of the green form was much less, indicating that the standard form may be better suited for laboratory rearing in quantity. Recommended rearing procedures consist of the following steps. Egg masses should be incubated at temperatures between 70 and 75 °F and a relative humidity near 77 percent. Under these conditions, embryo matur- ation and hibernacula site selection require approximately 8 to 9 days. The larvae should be left at incubation conditions for no longer than three weeks.
    [Show full text]
  • Baylisascariasis
    Baylisascariasis Importance Baylisascaris procyonis, an intestinal nematode of raccoons, can cause severe neurological and ocular signs when its larvae migrate in humans, other mammals and birds. Although clinical cases seem to be rare in people, most reported cases have been Last Updated: December 2013 serious and difficult to treat. Severe disease has also been reported in other mammals and birds. Other species of Baylisascaris, particularly B. melis of European badgers and B. columnaris of skunks, can also cause neural and ocular larva migrans in animals, and are potential human pathogens. Etiology Baylisascariasis is caused by intestinal nematodes (family Ascarididae) in the genus Baylisascaris. The three most pathogenic species are Baylisascaris procyonis, B. melis and B. columnaris. The larvae of these three species can cause extensive damage in intermediate/paratenic hosts: they migrate extensively, continue to grow considerably within these hosts, and sometimes invade the CNS or the eye. Their larvae are very similar in appearance, which can make it very difficult to identify the causative agent in some clinical cases. Other species of Baylisascaris including B. transfuga, B. devos, B. schroeder and B. tasmaniensis may also cause larva migrans. In general, the latter organisms are smaller and tend to invade the muscles, intestines and mesentery; however, B. transfuga has been shown to cause ocular and neural larva migrans in some animals. Species Affected Raccoons (Procyon lotor) are usually the definitive hosts for B. procyonis. Other species known to serve as definitive hosts include dogs (which can be both definitive and intermediate hosts) and kinkajous. Coatimundis and ringtails, which are closely related to kinkajous, might also be able to harbor B.
    [Show full text]
  • Integrating Black Bear Behavior, Spatial Ecology, and Population Dynamics in a Human-Dominated Landscape: Implications for Management
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 8-2017 Integrating Black Bear Behavior, Spatial Ecology, and Population Dynamics in a Human-Dominated Landscape: Implications for Management Jarod D. Raithel Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Ecology and Evolutionary Biology Commons Recommended Citation Raithel, Jarod D., "Integrating Black Bear Behavior, Spatial Ecology, and Population Dynamics in a Human- Dominated Landscape: Implications for Management" (2017). All Graduate Theses and Dissertations. 6633. https://digitalcommons.usu.edu/etd/6633 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. INTEGRATING BLACK BEAR BEHAVIOR, SPATIAL ECOLOGY, AND POPULATION DYNAMICS IN A HUMAN-DOMINATED LANDSCAPE: IMPLICATIONS FOR MANAGEMENT by Jarod D. Raithel A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Ecology Approved: _______________________ _______________________ Lise M. Aubry, Ph.D. Melissa J. Reynolds-Hogland, Ph.D. Major Professor Committee Member _______________________ _______________________ David N. Koons, Ph.D. Eric M. Gese, Ph.D. Committee Member Committee Member _______________________ _______________________ Joseph M. Wheaton, Ph.D. Mark R. McLellan, Ph.D. Committee Member Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2017 ii Copyright Jarod Raithel 2017 All Rights Reserved iii ABSTRACT Integrating Black Bear Behavior, Spatial Ecology, and Population Dynamics in a Human-Dominated Landscape: Implications for Management by Jarod D.
    [Show full text]
  • Mammalia, Carnivora) from the Blancan of Florida
    THREE NEW PROCYONIDS (MAMMALIA, CARNIVORA) FROM THE BLANCAN OF FLORIDA Laura G. Emmert1,2 and Rachel A. Short1,3 ABSTRACT Fossils of the mammalian family Procyonidae are relatively abundant at many fossil localities in Florida. Analysis of specimens from 16 late Blancan localities from peninsular Florida demonstrate the presence of two species of Procyon and one species of Nasua. Procyon gipsoni sp. nov. is slightly larger than extant Procyon lotor and is distinguished by five dental characters including a lack of a crista between the para- cone and hypocone on the P4, absence of a basin at the lingual intersection of the hypocone and protocone on the P4, and a reduced metaconule on the M1. Procyon megalokolos sp. nov. is significantly larger than extant P. lotor and is characterized primarily by morphology of the postcrania, such as an expanded and posteriorly rotated humeral medial epicondyle, more prominent tibial tuberosity, and more pronounced radioulnar notch. Other than larger size, the dentition of P. megalokolos falls within the range of variation observed in extant P. lotor, suggesting that it may be an early member of the P. lotor lineage. Nasua mast- odonta sp. nov. has a unique accessory cusp on the m1 as well as multiple morphological differences in the dentition and postcrania, such as close appression of the trigonid of the m1 and a less expanded medial epicondyle of the humerus. We also synonymize Procyon rexroadensis, formerly the only known Blancan Procyon species in North America, with P. lotor due to a lack of distinct dental morphological features observed in specimens from its type locality in Kansas.
    [Show full text]
  • Reproductionreview
    REPRODUCTIONREVIEW Focus on Implantation Embryonic diapause and its regulation Flavia L Lopes, Joe¨lle A Desmarais and Bruce D Murphy Centre de Recherche en Reproduction Animale, Faculte´ de Me´decine Ve´te´rinaire, Universite´ de Montre´al, 3200 rue Sicotte, St-Hyacinthe, Quebec, Canada J2S7C6 Correspondence should be addressed to B D Murphy; Email: [email protected] Abstract Embryonic diapause, a condition of temporary suspension of development of the mammalian embryo, occurs due to suppres- sion of cell proliferation at the blastocyst stage. It is an evolutionary strategy to ensure the survival of neonates. Obligate dia- pause occurs in every gestation of some species, while facultative diapause ensues in others, associated with metabolic stress, usually lactation. The onset, maintenance and escape from diapause are regulated by cascades of environmental, hypophyseal, ovarian and uterine mechanisms that vary among species and between the obligate and facultative condition. In the best- known models, the rodents, the uterine environment maintains the embryo in diapause, while estrogens, in combination with growth factors, reinitiate development. Mitotic arrest in the mammalian embryo occurs at the G0 or G1 phase of the cell cycle, and may be due to expression of a specific cell cycle inhibitor. Regulation of proliferation in non- mammalian models of diapause provide clues to orthologous genes whose expression may regulate the reprise of proliferation in the mammalian context. Reproduction (2004) 128 669–678 Introduction recently been discussed in depth (Dey et al. 2004). In this presentation we address the characteristics of the embryo Embryonic diapause, also known as discontinuous devel- in diapause and focus on the mechanisms of regulation of opment or, in mammals, delayed implantation, is among this phenomenon, including the environmental and meta- the evolutionary strategies that ensure successful repro- bolic stimuli that induce and terminate this condition, the duction.
    [Show full text]
  • Ecology of the European Badger (Meles Meles) in the Western Carpathian Mountains: a Review
    Wildl. Biol. Pract., 2016 Aug 12(3): 36-50 doi:10.2461/wbp.2016.eb.4 REVIEW Ecology of the European Badger (Meles meles) in the Western Carpathian Mountains: A Review R.W. Mysłajek1,*, S. Nowak2, A. Rożen3, K. Kurek2, M. Figura2 & B. Jędrzejewska4 1 Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawińskiego 5a, 02-106 Warszawa, Poland. 2 Association for Nature “Wolf”, Twardorzeczka 229, 34-324 Lipowa, Poland. 3 Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland. 4 Mammal Research Institute, Polish Academy of Sciences, Waszkiewicza 1c, 17-230 Białowieża, Poland. * Corresponding author email: [email protected]. Keywords Abstract Altitudinal Gradient; This article summarizes the results of studies on the ecology of the European Diet Composition; badger (Meles meles) conducted in the Western Carpathians (S Poland) Meles meles; from 2002 to 2010. Badgers inhabiting the Carpathians use excavated setts Mustelidae; (53%), caves and rock crevices (43%), and burrows under human-made Sett Utilization; constructions (4%) as permanent shelters. Excavated setts are located up Spatial Organization. to 640 m a.s.l., but shelters in caves and crevices can be found as high as 1,050 m a.s.l. Badger setts are mostly located on slopes with southern, eastern or western exposure. Within their territories, ranging from 3.35 to 8.45 km2 (MCP100%), badgers may possess 1-12 setts. Family groups are small (mean = 2.3 badgers), population density is low (2.2 badgers/10 km2), as is reproduction (0.57 young/year/10 km2). Hunting by humans is the main mortality factor (0.37 badger/year/10 km2).
    [Show full text]
  • Eradication of Stoats (Mustela Erminea) from Secretary Island, New Zealand
    McMurtrie, P.; K-A. Edge, D. Crouchley, D. Gleeson, M.J. Willans, and A.J. Veale. Eradication of stoats (Mustela erminea) from Secretary Island, New Zealand Eradication of stoats (Mustela erminea) from Secretary Island, New Zealand P. McMurtrie1, K-A. Edge1, D. Crouchley1, D. Gleeson2, M. J. Willans3, and A. J. Veale4 1Department of Conservation, Te Anau Area Office, PO Box 29, Lakefront Drive, Te Anau 0640, New Zealand. <[email protected]>. 2Landcare Research, PB 92170, Auckland, NZ. 3The Wilderness, RD Te Anau-Mossburn Highway, Te Anau, NZ. 4School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, NZ. Abstract Stoats (Mustelia erminea) are known to be good swimmers. Following their liberation into New Zealand, stoats reached many of the remote coastal islands of Fiordland after six years. Stoats probably reached Secretary Island (8140 ha) in the late 1800s. Red deer (Cervus elaphus) are the only other mammalian pest present on Secretary Island; surprisingly, rodents have never established. The significant ecological values of Secretary Island have made it an ideal target for restoration. The eradication of stoats from Secretary Island commenced in 2005. Nine-hundred-and-forty-five stoat trap tunnels, each containing two kill traps, were laid out along tracks at a density of 1 tunnel per 8.6 ha. Traps were also put in place on the adjacent mainland and stepping-stone islands to reduce the probability of recolonisation. Pre-baiting was undertaken twice, first in June and then in early July 2005. In late July, the traps were baited, set and cleared twice over 10 days.
    [Show full text]
  • Introduction to Pregnancy in Waiting: Embryonic Diapause in Mammals Proceedings of the Third International Symposium on Embryonic Diapause
    Proceedings of III International Symposium on Embryonic Diapause DOI: 10.1530/biosciprocs.10.001 Introduction to Pregnancy in Waiting: Embryonic Diapause in Mammals Proceedings of the Third International Symposium on Embryonic Diapause BD Murphy1, K Jewgenow2, MB Renfree3, SE Ulbrich4 1Centre de recherche en reproduction et fertilité, Université de Montréal, Canada 2Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany 3School of BioSciences, University of Melbourne, Australia 4Institute of Agricultural Sciences, ETH Zurich, Switzerland The capacity of the mammalian embryo to arrest development during early gestation is a topic that has fascinated biologists for over 150 years. The first known observation of this phenomenon was in a ruminant, the roe deer (Capreolus capreolus) in 1854, later confirmed in a number of studies in the last century [1]. The phenomenon, now known as embryonic diapause, was then found to be present in a wide range of species and across multiple taxa. Since that time, its biological mystery has attracted studies by scientists from around the globe. The First International Symposium on the topic of embryonic diapause in mammals was held in 1963 at Rice University, Houston, Texas. It resulted in a proceedings volume entitled “Delayed Implantation”, edited by A.C. Enders [2]. The symposium was distinguished by the novel recognition of that era that a wide range of species had been identified with embryonic diapause, including rodents, marsupials and carnivores. The emerging technology of the time, particularly structural approaches, permitted new understanding of the events of diapause and embryo reactivation. The newest methods provided key data on the temporal window of implantation in rodents, introduced new physiological approaches, and illustrated some of the first transmission electron microscope investigations of the blastocyst.
    [Show full text]
  • The 2008 IUCN Red Listings of the World's Small Carnivores
    The 2008 IUCN red listings of the world’s small carnivores Jan SCHIPPER¹*, Michael HOFFMANN¹, J. W. DUCKWORTH² and James CONROY³ Abstract The global conservation status of all the world’s mammals was assessed for the 2008 IUCN Red List. Of the 165 species of small carni- vores recognised during the process, two are Extinct (EX), one is Critically Endangered (CR), ten are Endangered (EN), 22 Vulnerable (VU), ten Near Threatened (NT), 15 Data Deficient (DD) and 105 Least Concern. Thus, 22% of the species for which a category was assigned other than DD were assessed as threatened (i.e. CR, EN or VU), as against 25% for mammals as a whole. Among otters, seven (58%) of the 12 species for which a category was assigned were identified as threatened. This reflects their attachment to rivers and other waterbodies, and heavy trade-driven hunting. The IUCN Red List species accounts are living documents to be updated annually, and further information to refine listings is welcome. Keywords: conservation status, Critically Endangered, Data Deficient, Endangered, Extinct, global threat listing, Least Concern, Near Threatened, Vulnerable Introduction dae (skunks and stink-badgers; 12), Mustelidae (weasels, martens, otters, badgers and allies; 59), Nandiniidae (African Palm-civet The IUCN Red List of Threatened Species is the most authorita- Nandinia binotata; one), Prionodontidae ([Asian] linsangs; two), tive resource currently available on the conservation status of the Procyonidae (raccoons, coatis and allies; 14), and Viverridae (civ- world’s biodiversity. In recent years, the overall number of spe- ets, including oyans [= ‘African linsangs’]; 33). The data reported cies included on the IUCN Red List has grown rapidly, largely as on herein are freely and publicly available via the 2008 IUCN Red a result of ongoing global assessment initiatives that have helped List website (www.iucnredlist.org/mammals).
    [Show full text]
  • Embryonic Diapause in Mammals and Dormancy in Embryonic Stem Cells with the European Roe Deer As Experimental Model
    CSIRO PUBLISHING Reproduction, Fertility and Development, 2021, 33, 76–81 https://doi.org/10.1071/RD20256 Embryonic diapause in mammals and dormancy in embryonic stem cells with the European roe deer as experimental model Vera A. van der WeijdenA,*, Anna B. Ru¨eggA,*, Sandra M. Bernal-UlloaA and Susanne E. UlbrichA,B AETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Universitaetstrasse 2, 8092 Zurich, Switzerland. BCorresponding author. Email: [email protected] Abstract. In species displaying embryonic diapause, the developmental pace of the embryo is either temporarily and reversibly halted or largely reduced. Only limited knowledge on its regulation and the inhibition of cell proliferation extending pluripotency is available. In contrast with embryos from other diapausing species that reversibly halt during diapause, embryos of the roe deer Capreolus capreolus slowly proliferate over a period of 4–5 months to reach a diameter of approximately 4 mm before elongation. The diapausing roe deer embryos present an interesting model species for research on preimplantation developmental progression. Based on our and other research, we summarise the available knowledge and indicate that the use of embryonic stem cells (ESCs) would help to increase our understanding of embryonic diapause. We report on known molecular mechanisms regulating embryonic diapause, as well as cellular dormancy of pluripotent cells. Further, we address the promising application of ESCs to study embryonic diapause, and highlight the current knowledge on the cellular microenvironment regulating embryonic diapause and cellular dormancy. Keywords: dormancy, embryonic diapause, embryonic stem cells, European roe deer Capreolus capreolus. Published online 8 January 2021 Embryonic diapause conditions. The roe deer is the only known ungulate exhibiting The time between fertilisation and embryo implantation varies embryonic diapause.
    [Show full text]
  • Molecular Regulation of Paused Pluripotency in Early Mammalian Embryos and Stem Cells
    fcell-09-708318 July 21, 2021 Time: 17:26 # 1 REVIEW published: 27 July 2021 doi: 10.3389/fcell.2021.708318 Molecular Regulation of Paused Pluripotency in Early Mammalian Embryos and Stem Cells Vera A. van der Weijden and Aydan Bulut-Karslioglu* Max Planck Institute for Molecular Genetics, Berlin, Germany The energetically costly mammalian investment in gestation and lactation requires plentiful nutritional sources and thus links the environmental conditions to reproductive success. Flexibility in adjusting developmental timing enhances chances of survival in adverse conditions. Over 130 mammalian species can reversibly pause early embryonic development by switching to a near dormant state that can be sustained for months, a phenomenon called embryonic diapause. Lineage-specific cells are retained during diapause, and they proliferate and differentiate upon activation. Studying diapause thus reveals principles of pluripotency and dormancy and is not only relevant for Edited by: development, but also for regeneration and cancer. In this review, we focus on Alexis Ruth Barr, Medical Research Council, the molecular regulation of diapause in early mammalian embryos and relate it to United Kingdom maintenance of potency in stem cells in vitro. Diapause is established and maintained Reviewed by: by active rewiring of the embryonic metabolome, epigenome, and gene expression in Carla Mulas, communication with maternal tissues. Herein, we particularly discuss factors required at University of Cambridge, United Kingdom distinct stages of diapause to induce, maintain, and terminate dormancy. Harry Leitch, Medical Research Council, Keywords: embryonic diapause, pluripotency, dormancy, metabolism, transcription, miRNA, signaling pathways, United Kingdom stem cells *Correspondence: Aydan Bulut-Karslioglu [email protected] INTRODUCTION Specialty section: Five momentous periods characterize the storyline of most animal life: fertilization, embryonic This article was submitted to development, juvenility, sexual maturation, and reproduction.
    [Show full text]
  • Evolutionary History of Carnivora (Mammalia, Laurasiatheria) Inferred
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.326090; this version posted October 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. 1 Manuscript for review in PLOS One 2 3 Evolutionary history of Carnivora (Mammalia, Laurasiatheria) inferred 4 from mitochondrial genomes 5 6 Alexandre Hassanin1*, Géraldine Véron1, Anne Ropiquet2, Bettine Jansen van Vuuren3, 7 Alexis Lécu4, Steven M. Goodman5, Jibran Haider1,6,7, Trung Thanh Nguyen1 8 9 1 Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, 10 MNHN, CNRS, EPHE, UA, Paris. 11 12 2 Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, 13 United Kingdom. 14 15 3 Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, 16 University of Johannesburg, South Africa. 17 18 4 Parc zoologique de Paris, Muséum national d’Histoire naturelle, Paris. 19 20 5 Field Museum of Natural History, Chicago, IL, USA. 21 22 6 Department of Wildlife Management, Pir Mehr Ali Shah, Arid Agriculture University 23 Rawalpindi, Pakistan. 24 25 7 Forest Parks & Wildlife Department Gilgit-Baltistan, Pakistan. 26 27 28 * Corresponding author. E-mail address: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.326090; this version posted October 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work.
    [Show full text]