Sorting out the Complexity of SR Protein Functions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Serine Arginine-Rich Protein-Dependent Suppression Of
Serine͞arginine-rich protein-dependent suppression of exon skipping by exonic splicing enhancers El Che´ rif Ibrahim*, Thomas D. Schaal†, Klemens J. Hertel‡, Robin Reed*, and Tom Maniatis†§ *Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115; †Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138; and ‡Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697-4025 Contributed by Tom Maniatis, January 28, 2005 The 5 and 3 splice sites within an intron can, in principle, be joined mechanisms by which exon skipping is prevented. Our data to those within any other intron during pre-mRNA splicing. How- reveal that splicing to the distal 3Ј splice site is suppressed by ever, exons are joined in a strict 5 to 3 linear order in constitu- proximal exonic sequences and that SR proteins are required for tively spliced pre-mRNAs. Thus, specific mechanisms must exist to this suppression. Thus, SR protein͞exonic enhancer complexes prevent the random joining of exons. Here we report that insertion not only function in exon and splice-site recognition but also play of exon sequences into an intron can inhibit splicing to the a role in ensuring that 5Ј and 3Ј splice sites within the same intron .downstream 3 splice site and that this inhibition is independent of are used, thus suppressing exon skipping intron size. The exon sequences required for splicing inhibition were found to be exonic enhancer elements, and their inhibitory Materials and Methods activity requires the binding of serine͞arginine-rich splicing fac- Construction of Plasmids. -
The Solution Structure of Dead End Bound to AU-Rich RNA Reveals an Unprecedented Mode of Tandem RRM-RNA Recognition Required for Mrna Repression
bioRxiv preprint doi: https://doi.org/10.1101/572156; this version posted March 9, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The solution structure of Dead End bound to AU-rich RNA reveals an unprecedented mode of tandem RRM-RNA recognition required for mRNA repression Authors Malgorzata M. Duszczyk1*, Harry Wischnewski2, Tamara Kazeeva1, Fionna E. Loughlin1,4, Christine von Schroetter1, Ugo Pradère3, Jonathan Hall3, Constance Ciaudo2*, Frédéric H.-T. Allain1,5* Affiliations 1Institute of Molecular Biology and Biophysics and 2Institute of Molecular Health Sciences, Department of Biology, 3Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland 4Present Address: Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800 VIC, Australia 5Lead Contact Contact Information *To whom correspondence should be addressed. E-mail: [email protected] (M.M.D.), [email protected] (C.C.), [email protected] (F.H.- T.A.) Abstract Dead End (DND1) is an RNA-binding protein essential for germline development through its role in the clearance of AU-rich mRNAs. Here, we present the solution structure of its tandem RNA Recognition Motifs (RRMs) bound to AU-rich RNA. The structure reveals how an NYAYUNN element is recognized in agreement with recent genome-wide studies. RRM1 acts as a main binding platform, including unusual helical and -hairpin extensions to the canonical RRM fold. -
Identification of the RNA Recognition Element of the RBPMS Family of RNA-Binding Proteins and Their Transcriptome-Wide Mrna Targets
Downloaded from rnajournal.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Identification of the RNA recognition element of the RBPMS family of RNA-binding proteins and their transcriptome-wide mRNA targets THALIA A. FARAZI,1,5 CARL S. LEONHARDT,1,5 NEELANJAN MUKHERJEE,2 ALEKSANDRA MIHAILOVIC,1 SONG LI,3 KLAAS E.A. MAX,1 CINDY MEYER,1 MASASHI YAMAJI,1 PAVOL CEKAN,1 NICHOLAS C. JACOBS,2 STEFANIE GERSTBERGER,1 CLAUDIA BOGNANNI,1 ERIK LARSSON,4 UWE OHLER,2 and THOMAS TUSCHL1,6 1Laboratory of RNA Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA 2Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany 3Biology Department, Duke University, Durham, North Carolina 27708, USA 4Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, SE-405 30, Sweden ABSTRACT Recent studies implicated the RNA-binding protein with multiple splicing (RBPMS) family of proteins in oocyte, retinal ganglion cell, heart, and gastrointestinal smooth muscle development. These RNA-binding proteins contain a single RNA recognition motif (RRM), and their targets and molecular function have not yet been identified. We defined transcriptome-wide RNA targets using photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) in HEK293 cells, revealing exonic mature and intronic pre-mRNA binding sites, in agreement with the nuclear and cytoplasmic localization of the proteins. Computational and biochemical approaches defined the RNA recognition element (RRE) as a tandem CAC trinucleotide motif separated by a variable spacer region. Similar to other mRNA-binding proteins, RBPMS family of proteins relocalized to cytoplasmic stress granules under oxidative stress conditions suggestive of a support function for mRNA localization in large and/or multinucleated cells where it is preferentially expressed. -
Binding Specificities of Human RNA Binding Proteins Towards Structured
bioRxiv preprint doi: https://doi.org/10.1101/317909; this version posted March 1, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Binding specificities of human RNA binding proteins towards structured and linear 2 RNA sequences 3 4 Arttu Jolma1,#, Jilin Zhang1,#, Estefania Mondragón4,#, Teemu Kivioja2, Yimeng Yin1, 5 Fangjie Zhu1, Quaid Morris5,6,7,8, Timothy R. Hughes5,6, Louis James Maher III4 and Jussi 6 Taipale1,2,3,* 7 8 9 AUTHOR AFFILIATIONS 10 11 1Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden 12 2Genome-Scale Biology Program, University of Helsinki, Helsinki, Finland 13 3Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom 14 4Department of Biochemistry and Molecular Biology and Mayo Clinic Graduate School of 15 Biomedical Sciences, Mayo Clinic College of Medicine and Science, Rochester, USA 16 5Department of Molecular Genetics, University of Toronto, Toronto, Canada 17 6Donnelly Centre, University of Toronto, Toronto, Canada 18 7Edward S Rogers Sr Department of Electrical and Computer Engineering, University of 19 Toronto, Toronto, Canada 20 8Department of Computer Science, University of Toronto, Toronto, Canada 21 #Authors contributed equally 22 *Correspondence: [email protected] 23 24 25 SUMMARY 26 27 Sequence specific RNA-binding proteins (RBPs) control many important 28 processes affecting gene expression. They regulate RNA metabolism at multiple 29 levels, by affecting splicing of nascent transcripts, RNA folding, base modification, 30 transport, localization, translation and stability. Despite their central role in most 31 aspects of RNA metabolism and function, most RBP binding specificities remain 32 unknown or incompletely defined. -
Psc1: a Protein with Multiple Roles in Rna Metabolism
PSC1: A PROTEIN WITH MULTIPLE ROLES IN RNA METABOLISM Thesis submitted to the University of Adelaide for the degree of Doctor of Philosophy Philippa Davey, B.Sc.(Hons) March 2014 The Department of Molecular Biosciences, Discipline of Biochemistry, Faculty of Sciences, The University of Adelaide, Adelaide, South Australia, 5005. AUSTRALIA TABLE OF CONTENTS THESIS SUMMARY ..................................................................................................... i STATEMENT ................................................................... Error! Bookmark not defined. ACKNOWLEDGEMENTS ......................................................................................... iii CHAPTER 1: INTRODUCTION ................................................................................ 1 1.1 PSC1 IS A DEVELOPMENTALLY REGULATED GENE ................................................... 2 1.2 THE PSC1 PROTEIN SEQUENCE SUGGESTS A ROLE FOR PSC1 IN RNA METABOLISM 7 1.2.1 PSC1 CONTAINS AN RNA RECOGNITION MOTIF .................................................... 7 1.2.2 PSC1 CONTAINS AN RS DOMAIN .......................................................................... 9 1.2.3 ADDITIONAL PSC1 DOMAINS SUPPORT A ROLE IN RNA METABOLISM ............... 10 1.2.3.1 The N domain ............................................................................................ 10 1.2.3.2 Zinc finger motif ........................................................................................ 11 1.2.3.3 C-terminal repeat motifs .......................................................................... -
Sorting out the Complexity of SR Protein Functions
Downloaded from rnajournal.cshlp.org on February 6, 2009 - Published by Cold Spring Harbor Laboratory Press RNA (2000), 6:1197–1211+ Cambridge University Press+ Printed in the USA+ Copyright © 2000 RNA Society+ REVIEW Sorting out the complexity of SR protein functions BRENTON R. GRAVELEY Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA INTRODUCTION been clear whether all of these activities occur during the removal of each intron+ Recent studies now sug- Members of the serine/arginine-rich (SR) protein fam- gest that all of the proposed SR protein functions are ily have multiple functions in the pre-mRNA splicing carried out during each round of splicing, and at least reaction+ In addition to being required for the removal some of these functions are performed by independent of constitutively spliced introns, SR proteins can func- SR protein molecules+ This review discusses recent tion to regulate alternative splicing both in vitro and in advances in understanding the diverse functions of SR vivo (Ge & Manley, 1990; Krainer et al+, 1990a; Fu proteins in metazoan pre-mRNA splicing and presents et al+, 1992; Zahler et al+, 1993a; Caceres et al+, 1994; a model that takes these new findings into account+ Wang & Manley, 1995)+ In the cell, SR proteins migrate Although the reader should keep in mind that the ac- from speckles—subnuclear domains that may function tivity of SR proteins in vivo can be influenced by mod- as storage sites for certain splicing factors—to -
Functional Control of HIV-1 Post-Transcriptional Gene Expression by Host Cell Factors
Functional control of HIV-1 post-transcriptional gene expression by host cell factors DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Amit Sharma, B.Tech. Graduate Program in Molecular Genetics The Ohio State University 2012 Dissertation Committee Dr. Kathleen Boris-Lawrie, Advisor Dr. Anita Hopper Dr. Karin Musier-Forsyth Dr. Stephen Osmani Copyright by Amit Sharma 2012 Abstract Retroviruses are etiological agents of several human and animal immunosuppressive disorders. They are associated with certain types of cancer and are useful tools for gene transfer applications. All retroviruses encode a single primary transcript that encodes a complex proteome. The RNA genome is reverse transcribed into DNA, integrated into the host genome, and uses host cell factors to transcribe, process and traffic transcripts that encode viral proteins and act as virion precursor RNA, which is packaged into the progeny virions. The functionality of retroviral RNA is governed by ribonucleoprotein (RNP) complexes formed by host RNA helicases and other RNA- binding proteins. The 5’ leader of retroviral RNA undergoes alternative inter- and intra- molecular RNA-RNA and RNA-protein interactions to complete multiple steps of the viral life cycle. Retroviruses do not encode any RNA helicases and are dependent on host enzymes and RNA chaperones. Several members of the host RNA helicase superfamily are necessary for progressive steps during the retroviral replication. RNA helicase A (RHA) interacts with the redundant structural elements in the 5’ untranslated region (UTR) of retroviral and selected cellular mRNAs and this interaction is necessary to facilitate polyribosome formation and productive protein synthesis. -
Srsf10 and the Minor Spliceosome Control Tissue-Specific and Dynamic
SHORT REPORT Srsf10 and the minor spliceosome control tissue-specific and dynamic SR protein expression Stefan Meinke1, Gesine Goldammer1, A Ioana Weber1,2, Victor Tarabykin2, Alexander Neumann1†, Marco Preussner1*, Florian Heyd1* 1Freie Universita¨ t Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany; 2Institute of Cell Biology and Neurobiology, Charite´-Universita¨ tsmedizin Berlin, corporate member of Freie Universita¨ t Berlin, Humboldt-Universita¨ t zu Berlin, and Berlin Institute of Health, Berlin, Germany Abstract Minor and major spliceosomes control splicing of distinct intron types and are thought to act largely independent of one another. SR proteins are essential splicing regulators mostly connected to the major spliceosome. Here, we show that Srsf10 expression is controlled through an autoregulated minor intron, tightly correlating Srsf10 with minor spliceosome abundance across different tissues and differentiation stages in mammals. Surprisingly, all other SR proteins also correlate with the minor spliceosome and Srsf10, and abolishing Srsf10 autoregulation by Crispr/ Cas9-mediated deletion of the autoregulatory exon induces expression of all SR proteins in a human cell line. Our data thus reveal extensive crosstalk and a global impact of the minor spliceosome on major intron splicing. *For correspondence: [email protected] (MP); [email protected] (FH) Introduction Present address: †Omiqa Alternative splicing (AS) is a major mechanism that controls gene expression (GE) and expands the Corporation, c/o Freie proteome diversity generated from a limited number of primary transcripts (Nilsen and Graveley, Universita¨ t Berlin, Altensteinstraße, Germany 2010). Splicing is carried out by a multi-megadalton molecular machinery called the spliceosome of which two distinct complexes exist. -
SR Proteins: a Conserved Family of Pre-Mrna Splicing Factors
Downloaded from genesdev.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press SR proteins: a conserved family of pre-mRNA splicing factors Alan M. Zahler, William S. Lane/ John A. Stolk, and Mark B. Roth^ Fred Hutchinson Cancer Research Center, Division of Basic Sciences, Seattle, Washington 98104 USA; ^Harvard Microchemistry Facility, Cambridge, Massachusetts 02138 USA We demonstrate that four different proteins from calf thymus are able to restore splicing in the same splicing-deficient extract using several different pre-mRNA substrates. These proteins are members of a conserved family of proteins recognized by a monoclonal antibody that binds to active sites of RNA polymerase II transcription. We purified this family of nuclear phosphoproteins to apparent homogeneity by two salt precipitations. The family, called SR proteins for their serine- and arginine-rich carboxy-terminal domains, consists of at least five different proteins with molecular masses of 20, 30, 40, 55, and 75 kD. Microsequencing revealed that they are related but not identical. In four of the family members a repeated protein sequence that encompasses an RNA recognition motif was observed. We discuss the potential role of this highly conserved, functionally related set of proteins in pre-mRNA splicing. [Key Words: SR proteins; alternative splicing; RNA splicing; splicing factors] Received lanuary 21, 1992; revised version accepted March 2, 1992. Studies of mRNAs from many different tissues and de high levels of spliceosomal components, including sites velopmental stages show that regulation of RNA pro of RNA polymerase II transcription on lampbrush chro cessing can lead to the expression of multiple proteins mosomes and B "snurposomes" in oocyte nuclei, and from single genes (Smith et al. -
Protection Against Retrovirus Pathogenesis by SR Protein Inhibitors
Protection against retrovirus pathogenesis by SR protein inhibitors. Anne Keriel, Florence Mahuteau-Betzer, Chantal Jacquet, Marc Plays, David Grierson, Marc Sitbon, Jamal Tazi To cite this version: Anne Keriel, Florence Mahuteau-Betzer, Chantal Jacquet, Marc Plays, David Grierson, et al.. Protec- tion against retrovirus pathogenesis by SR protein inhibitors.. PLoS ONE, Public Library of Science, 2009, 4 (2), pp.e4533. 10.1371/journal.pone.0004533. hal-00368669 HAL Id: hal-00368669 https://hal.archives-ouvertes.fr/hal-00368669 Submitted on 25 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Protection against Retrovirus Pathogenesis by SR Protein Inhibitors Anne Keriel1, Florence Mahuteau-Betzer2, Chantal Jacquet1, Marc Plays1, David Grierson3,Marc Sitbon1*, Jamal Tazi1* 1 Universite´ Montpellier 2 Universite´ Montpellier 1 CNRS, Institut de Ge´ne´tique Mole´culaire de Montpellier (IGMM), UMR5535, IFR122, Montpellier, France, 2 Laboratoire de Pharmaco-chimie, CNRS-Institut Curie, UMR 176 Bat 110 Centre Universitaire, Orsay, France, 3 Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada Abstract Indole derivatives compounds (IDC) are a new class of splicing inhibitors that have a selective action on exonic splicing enhancers (ESE)-dependent activity of individual serine-arginine-rich (SR) proteins. -
HIV-1: to Splice Or Not to Splice, That Is the Question
viruses Review HIV-1: To Splice or Not to Splice, That Is the Question Ann Emery 1 and Ronald Swanstrom 1,2,3,* 1 Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; [email protected] 2 Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA 3 Center for AIDS Research, University of North Carolina, Chapel Hill, NC 27599, USA * Correspondence: [email protected] Abstract: The transcription of the HIV-1 provirus results in only one type of transcript—full length genomic RNA. To make the mRNA transcripts for the accessory proteins Tat and Rev, the genomic RNA must completely splice. The mRNA transcripts for Vif, Vpr, and Env must undergo splicing but not completely. Genomic RNA (which also functions as mRNA for the Gag and Gag/Pro/Pol precursor polyproteins) must not splice at all. HIV-1 can tolerate a surprising range in the relative abundance of individual transcript types, and a surprising amount of aberrant and even odd splicing; however, it must not over-splice, which results in the loss of full-length genomic RNA and has a dramatic fitness cost. Cells typically do not tolerate unspliced/incompletely spliced transcripts, so HIV-1 must circumvent this cell policing mechanism to allow some splicing while suppressing most. Splicing is controlled by RNA secondary structure, cis-acting regulatory sequences which bind splicing factors, and the viral protein Rev. There is still much work to be done to clarify the combinatorial effects of these splicing regulators. These control mechanisms represent attractive targets to induce over-splicing as an antiviral strategy. -
Mrna Export Through an Additional Cap-Binding Complex Consisting of NCBP1 and NCBP3
ARTICLE Received 2 Mar 2015 | Accepted 28 Jul 2015 | Published 18 Sep 2015 DOI: 10.1038/ncomms9192 OPEN mRNA export through an additional cap-binding complex consisting of NCBP1 and NCBP3 Anna Gebhardt1,*, Matthias Habjan1,*, Christian Benda2, Arno Meiler1, Darya A. Haas1, Marco Y. Hein3, Angelika Mann1, Matthias Mann3, Bianca Habermann4 & Andreas Pichlmair1 The flow of genetic information from DNA to protein requires polymerase-II-transcribed RNA characterized by the presence of a 50-cap. The cap-binding complex (CBC), consisting of the nuclear cap-binding protein (NCBP) 2 and its adaptor NCBP1, is believed to bind all capped RNA and to be necessary for its processing and intracellular localization. Here we show that NCBP1, but not NCBP2, is required for cell viability and poly(A) RNA export. We identify C17orf85 (here named NCBP3) as a cap-binding protein that together with NCBP1 forms an alternative CBC in higher eukaryotes. NCBP3 binds mRNA, associates with components of the mRNA processing machinery and contributes to poly(A) RNA export. Loss of NCBP3 can be compensated by NCBP2 under steady-state conditions. However, NCBP3 becomes pivotal under stress conditions, such as virus infection. We propose the existence of an alternative CBC involving NCBP1 and NCBP3 that plays a key role in mRNA biogenesis. 1 Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried, Munich D-82152, Germany. 2 Department of Structural Cell Biology, Max-Planck Institute of Biochemistry, Martinsried, Munich D-82152, Germany. 3 Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Munich D-82152, Germany. 4 Bioinformatics Core Facility, Max-Planck Institute of Biochemistry, Martinsried, Munich D-82152, Germany.