Reflection and Transmission from Biaxially Anisotropic - Isotropic Interfaces

Total Page:16

File Type:pdf, Size:1020Kb

Reflection and Transmission from Biaxially Anisotropic - Isotropic Interfaces Syracuse University SURFACE Electrical Engineering and Computer Science College of Engineering and Computer Science 2013 Reflection and transmission from biaxially anisotropic - Isotropic interfaces Jennifer W. Graham Syracuse University, [email protected] Jay K. Lee Syracuse University, [email protected] Follow this and additional works at: https://surface.syr.edu/eecs Part of the Electrical and Computer Engineering Commons Recommended Citation J. W. Graham and J. K. Lee, "Reflection and transmission from biaxially anisotropic - Isotropic interfaces," Progress in Electromagnetics Research, vol. 136, pp. 681-702, 2013. This Article is brought to you for free and open access by the College of Engineering and Computer Science at SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science by an authorized administrator of SURFACE. For more information, please contact [email protected]. Progress In Electromagnetics Research, Vol. 136, 681{702, 2013 REFLECTION AND TRANSMISSION FROM BIAXIALLY ANISOTROPIC | ISOTROPIC INTERFACES Jennifer W. Graham* and Jay K. Lee Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse, NY 13244, USA Abstract|In this paper we explore electromagnetic behavior of arbitrarily oriented biaxially anisotropic media; speci¯cally with respect to reection and transmission. The reection and transmission of electromagnetic waves incident upon half-space and two-layer interfaces are investigated. The waves may be incident from either the isotropic region or the biaxial region. The biaxial medium considered may be aligned with a principal coordinate system or may be arbitrarily oriented. Critical angle and Brewster angle e®ects are also analyzed. 1. INTRODUCTION The study of biaxially anisotropic (or biaxial) materials is of increasing interest. There are several naturally occurring materials with biaxial properties. When we ignore this biaxial nature, we are unable to accurately predict the behavior of circuits using these materials. However, more interesting is the current research in material science. Much of this research has been fueled by electromagnetic interests in a variety of metamaterials. Some studies have shown these materials to have biaxial properties [1, 2]. Despite these interests, theoretical analysis of electromagnetic behavior in biaxial media has not been rigorously studied. Many authors have studied reection and transmission in complex materials. Bianisotropic media (in which there is cross-coupling between electric and magnetic ¯elds [3]) has garnered particular attention [4, 5]. In [4] Tsalamengas provides a formulation to compute the reection and transmission of an arbitrarily polarized wave incident upon a general bianisotropic slab. This slab is described by four tensors, with no limitations on the tensors Received 8 November 2012, Accepted 7 January 2013, Scheduled 1 February 2013 * Corresponding author: Jennifer W. Graham ([email protected]). 682 Graham and Lee themselves. Therefore, this formulation could be used to evaluate reection and transmission coe±cients of an arbitrarily oriented biaxial slab. However, we have only one tensor and this formulation is unnecessary. Further, Tsalamengas does not analyze the results or provide numerical examples. In [5] Semchenko and Khakhomov derive and compute reection and transmission coe±cients for unrotated uniaxial bianisotropic material and explore the varying incident wave polarizations. Lee [6] studied wave behavior in tilted and untilted uniaxial media including a detailed study of reection and transmission from an isotropic-uniaxial interface. Metamaterials, recently a hot research area, have also been studied for their reective and refractive characteristics. Grzegorczyk et al. [1, 2] provide an extensive study of the behavior of waves incident upon metamaterial layers. Their work is particularly relevant because they ¯rst consider a general bianisotropic medium (with biaxial permittivity and permeability tensors), and then apply the properties of left-handed materials. Therefore, their formulation is general but their results are speci¯c to negative epsilon materials. In fact, the inclusions used to create negative epsilon (or mu) materials make the material anisotropic in general so it is important to understand the anisotropic behaviors. A few researchers have considered reection and transmission from biaxial boundaries. Stamnes and Sithambaranathan [7] considered reection and refraction from a plane interface separating an isotropic and a biaxial medium. In their paper, they consider only the unrotated biaxial medium with a diagonal permittivity tensor. Further, they do not present numerical results but rather the formulation of the resulting ¯elds when a plane TE (transverse electric) or TM (transverse magnetic) wave is incident on the interface. Abdulhalim [8] presents a 2 £ 2 matrix approach to solving for reection and transmission coe±cients from biaxial boundaries but does not present any numerical results. The most extensive work to date on reection and transmission characteristics in biaxial media is presented by Landry and Maldonado [9, 10]; they study half space reection and transmission characteristics for biaxial-biaxial, isotropic-biaxial and biaxial- isotropic con¯gurations. They also study 2-layered and multi-layered problems. Their approach is considerably di®erent than the approach presented here. The direction and magnitude of the reected and refracted waves are treated separately in the half-space case and the 2-layered case is treated by formulating each bounce the incident wave undergoes to compute reection and transmission coe±cients. The multi-layered problem is treated similarly. In our approach, we expand the plane waves in each medium Progress In Electromagnetics Research, Vol. 136, 2013 683 then apply the boundary conditions. We use material parameters to determine the directions of each expansion wave and then apply boundary conditions to solve for the magnitude. We apply this treatment to both the half-space and 2-layered problems. This is a familiar and straightforward formulation. Another di®erence is that we de¯ne the electric ¯eld vectors in each medium based on the known material parameters (permittivity matrix and rotation matrix) while Landry uses the refractive index and a set of angles to de¯ne the relationship between the wave vector and ¯elds. Landry uses a formulation more commonly used in the physics and optics communities and not familiar to most electrical engineers. Our approach is also more general than the approach used in [9, 10]. Finally, we expand upon this research by analyzing the Brewster angle e®ect and critical angle as functions of permittivity and rotation angles. We begin by de¯ning the material parameters in Section 1.1. In Section 2, we de¯ne the half-space reection and transmission coe±cients of each incident wave on either side of an isotropic-biaxial boundary. We use these results to analyze the critical angle, an analysis that was not considered in [9, 10]. We then go on to formulate the 2- layer case in Section 3 with a wave incident from one isotropic layer onto the biaxial layer. We use these results to analyze the Brewster angle e®ect which was also not presented in [9, 10]. Conclusions are drawn in Section 4. 1.1. Biaxially Anisotropic Medium De¯nitions The de¯ning property of electrically biaxial media is the permittivity tensor. Unlike isotropic materials (with only one permittivity) and uniaxial materials (with 2 di®erent permittivities), biaxially anisotropic materials have three unique values in the permittivity tensor as in " # "x 0 0 "¹ = 0 "y 0 (1) 0 0 "z Equation (1) represents a biaxial medium whose principal axes are aligned with the laboratory coordinate system. If, however, the biaxial medium is not aligned with some reference coordinate system, the permittivity tensor would not be as simple. We can obtain the tensor for an arbitrarily oriented biaxial medium by applying rotations (Mudaliar and Lee [11]) to the tensor in Equation (1). If the permittivity tensor shown in (1) lies in the double-primed coordinate system, we can transform to the unprimed (laboratory) coordinate system through two rotations: the ¯rst about the x00 axis by an angle 684 Graham and Lee z' z'' z', z ψ1 ψ2 y' y y'' ψ2 ψ x' 1 y' x'',x' x (a) (b) Figure 1. Rotation diagrams. 0 Ã1, and the second about the z axis by an angle Ã2, as shown in Figures 1(a) and (b), resulting in a full permittivity matrix with all nine elements non-zero in the unprimed system. The permittivity tensor now is the full matrix where 2 ¡ 2 2 ¢ 2 "xx = "x cos Ã2 + "y cos Ã1 + "z sin Ã1 sin Ã2 ¡ 2 2 ¢ "xy = ¡"x + "y cos Ã1 + "z sin Ã1 sin Ã2 cos Ã2 "xz = ("z ¡ "y) sin Ã1 cos Ã1 sin Ã2 2 ¡ 2 2 ¢ 2 "yy = "x sin Ã2 + "y cos Ã1 + "z sin Ã1 cos Ã2 (2) "yz = ("z ¡ "y) sin Ã1 cos Ã1 cos Ã2 2 2 "zz = "y sin Ã1 + "z cos Ã1 "yx = "xy;"zx = "xz;"zy = "yz Another important electromagnetic property of biaxially anisotropic media is birefringence. If a wave is incident upon a biaxial medium, two characteristic waves will be refracted, the so called a-wave and b-wave [11]. 2. HALF SPACE REFLECTION AND TRANSMISSION COEFFICIENTS In general, the study of half-space (one interface) reection and trans- mission problems can be broken down into four main con¯gurations as noted by Pettis [12, Appendix G]. These con¯gurations are listed in Table 1. To derive the half-space reection and transmission coe±cients, we formulate the ¯elds in each region of interest, apply the boundary conditions and solve for the reection and transmission coe±cients. Progress In Electromagnetics Research, Vol. 136, 2013 685 Table 1. Half-space con¯gurations. Case Con¯guration horizontal or vertical wave downward 1 incident on isotropic-biaxial interface a-wave or b-wave upward incident 2 on biaxial-isotropic interface a-wave or b-wave downward incident 3 on biaxial-isotropic interface horizontal or vertical wave upward 4 incident on isotropic-biaxial interface Figure 2. A-wave incident upon biaxial-isotropic interface.
Recommended publications
  • Lecture 26 – Propagation of Light Spring 2013 Semester Matthew Jones Midterm Exam
    Physics 42200 Waves & Oscillations Lecture 26 – Propagation of Light Spring 2013 Semester Matthew Jones Midterm Exam Almost all grades have been uploaded to http://chip.physics.purdue.edu/public/422/spring2013/ These grades have not been adjusted Exam questions and solutions are available on the Physics 42200 web page . Outline for the rest of the course • Polarization • Geometric Optics • Interference • Diffraction • Review Polarization by Partial Reflection • Continuity conditions for Maxwell’s Equations at the boundary between two materials • Different conditions for the components of or parallel or perpendicular to the surface. Polarization by Partial Reflection • Continuity of electric and magnetic fields were different depending on their orientation: – Perpendicular to surface = = – Parallel to surface = = perpendicular to − cos + cos − cos = cos + cos cos = • Solve for /: − = !" + !" • Solve for /: !" = !" + !" perpendicular to cos − cos cos = cos + cos cos = • Solve for /: − = !" + !" • Solve for /: !" = !" + !" Fresnel’s Equations • In most dielectric media, = and therefore # sin = = = = # sin • After some trigonometry… sin − tan − = − = sin + tan + ) , /, /01 2 ) 45/ 2 /01 2 * = - . + * = + * )+ /01 2+32* )+ /01 2+32* 45/ 2+62* For perpendicular and parallel to plane of incidence. Application of Fresnel’s Equations • Unpolarized light in air ( # = 1) is incident
    [Show full text]
  • The Fresnel Equations and Brewster's Law
    The Fresnel Equations and Brewster's Law Equipment Optical bench pivot, two 1 meter optical benches, green laser at 543.5 nm, 2 10cm diameter polarizers, rectangular polarizer, LX-02 photo-detector in optical mount, thick acrylic block, thick glass block, Phillips multimeter, laser mount, sunglasses. Purpose To investigate polarization by reflection. To understand and verify the Fresnel equations. To explore Brewster’s Law and find Brewster’s angle experimentally. To use Brewster’s law to find Brewster’s angle. To gain experience working with optical equipment. Theory Light is an electromagnetic wave, of which fundamental characteristics can be described in terms of the electric field intensity. For light traveling along the z-axis, this can be written as r r i(kz−ωt) E = E0e (1) r where E0 is a constant complex vector, and k and ω are the wave number and frequency respectively, with k = 2π / λ , (2) λ being the wavelength. The purpose of this lab is to explore the properties the electric field in (1) at the interface between two media with indices of refraction ni and nt . In general, there will be an incident, reflected and transmitted wave (figure 1), which in certain cases reduce to incident and reflected or incident and transmitted only. Recall that the angles of the transmitted and reflected beams are described by the law of reflection and Snell’s law. This however tells us nothing about the amplitudes of the reflected and transmitted Figure 1 electric fields. These latter properties are defined by the Fresnel equations, which we review below.
    [Show full text]
  • Chapter 6 Light at Interfaces – Law of Reflection and Refraction
    Chapter 6 Light at Interfaces – Law of Reflection and Refraction Part I Introduction Law of Reflection and Refraction Law of Reflection and Refraction normal Law of reflection: i r i r n1 n2 Law of refraction “Snell’s Law”: sin n t i 2 sint n1 Incident, reflected, refracted, and surface normal in same plane Huygens’ Principle Every point on a wavefront may be regarded as a secondary source of wavelets Huygens’ Principle Law of refraction Fermat’s Principle The path a beam of light takes between two points is the one which is traversed in the least time Law of reflection Fermat’s Principle Law of refraction SO OP t vi vt h2 x2 b2 (a x)2 t vi vt To minimize t(x) with respect to x, dt x (a x) dx 2 2 2 2 vi h x vt b (a x) 0. sin sin Thus, i t , vi vt so, ni sini nt sint Fermat’s Principle For a ray passing through a multilayer (m layers) material s s s t 1 2 m v1 v2 vm Then 1 m t ni si , c i1 The summation is known as the optical path length (OPL) traversed by the ray. P (OPL) S n(s)ds. The route light travels having the smallest optical path length EM Wave Point of View Light is an electromagnetic wave, obeys the Maxwell’s equations Plane of incidence: formed by k and the normal of the interface plane normal EB k EM Wave Point of View i(tkr) E E0e i(tkr) B B0e E cB 1.
    [Show full text]
  • Electromagnetic Waves
    Electromagnetic Waves Lecture34: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Electromagnetic wave at the interface between two dielectric media We have so far discussed the propagation of electromagnetic wave in an isotropic, homogeneous, dielectric medium, such as in air or vacuum. In this lecture, we woulddiscuss what happens when a plane electromagnetic wave is incident at the interface between two dielectric media. For being specific, we will take one of the medium to be air or vacuum and the other to be a dielectric such as glass. We have come across this in school in connection with the reflection and transmission of light waves at such an interface. In this lecture, we would investigate this problem from the point of view of electromagnetic theory. Let us choose the interface to be the xy plane (z=0). The angles of incidence, reflection and refraction are the angles made by the respective propagation vectors with the common normal at the interface. 1 We have indicated the propation vectors in the apprpriate medium by capital letters I, R and T so as not to confuse with the notation for the position vector and time t. The principle that we use to establish the laws of reflection⃗ and refraction is the continuity of the tangential components of the electric field at the interface, as discussed extensively during the course of these lectures. Let us represent the component of the electric field parallel to the interface by the superscript . We then have, ∥ 0 exp + 0 exp = 0 exp ∥ ∥ This equation� ���⃗ ⋅ must⃗ − remain� valid at� all����⃗ points⋅ ⃗ − in the� interface � and ����⃗ at⋅ ⃗all− times.� That is obviously possible if the exponential factors is the same for all the three terms or if they differe at best by a constant phase factor.
    [Show full text]
  • Experiments for B. Tech. 1St Year Physics Laboratory Department Of
    Experiments for B. Tech. 1st Year Physics Laboratory Experiment No. 12 Brewster’s Angle Aim : To determine the of Brewster’s angle for glass using a polarized monochromatic light source. Apparatus Required: He laser, dial fitted polarizer, photo detector, micro ammeter, rotational mount, glass plate, constant power supply . Formula Used : Brewsters angle for a given pair of medium is 푛 θB = 휃 = 푡푎푛 ( ) 푛 Where n1 and n2 are refractive index of medium 1 and 2 respectively Principle: When light moves between two media of differing refractive index (n), some of the light is reflected from the surface of the denser material. This reflected ray’s intensity changes with change in the incident angle (휃) at the interface of two mediums. At one specific angle of incidence of light only perpendicular vibrations of electric field vectors are reflected whereas parallel vibrations are restricted or polarized. This loss in light intensity is due to polarization by reflection and the angle of incidence for which reflected ray is polarized is called the Brewster's angle θ (also known as the Polarization angle). B This phenomenon of polarization by reflection is illustrated in the figure below. Figure1. Polarization by reflection and Brewster's angle (θ ) B Department of Physics, IIT Roorkee © 1 Experiments for B. Tech. 1st Year Physics Laboratory The fraction of the incident light that is reflected depends on both the angle of incidence and the polarization direction of the incident light. The functions that describe the reflection of light polarized parallel and perpendicular to the plane of incidence are called the Fresnel Equations.
    [Show full text]
  • A Study of Reflection and Transmission of Birefringent Retarders
    JUST, Vol. IV, No. 1, 2016 Trent University A study of reflection and transmission of birefringent retarders James Godfrey Keywords Optics — Computational Physics — Theoretical Physics Champlain College 1. Interference in Rotating Waveplates The transmitted intensity of along each axis must be con- sidered separately, since equation (1-1) dictates that the re- 1.1 Research Goal flectance of the fast- and slow-axis components of the incident The objective of this project was to obtain a realistic theoreti- light will be different. The reflectance along the fast axis (Ro) cal prediction of the transmission curve for linearly-polarized and slow axis (Rs) are may be expressed: light incident normal on a [birefringent] retarder that behaves 2 as a Fabry-Perot etalon. The birefringent retarder considered n f − ni is a slab of birefringent crystal cut with the optic axis in the Ro = n f + ni face of the slab, and with parallel faces, and the waveplate has 2 no coating of any kind. ns − ni Rs = (1-2) Results of this project hoped to possibly explain the results ns + ni of work done by a previous student, Nolan Woodley, for his Physics project course in the 2013/14 academic year. In his Assuming the sides of the etalon are essentially paral- project, Woodley took many polarimeter scans which had a lel, the retarder may now be treated as a low-finesse (low- roughly sinusoidal shape [as they should], but adjacent peaks reflectance, R << 1) Fabry-Perot etalon. Their coefficients of of different heights. These differing heights were completely finesse (Fo and Fs, respectively) will also be different: unexplained, and not predicted by theory.
    [Show full text]
  • Polarization Lecture Outline
    1/31/20 Polarization Lecture outline • Why is polarization important? • Classification of polarization • Four ways to polarize EM waves • Polarization in active remote sensing systems 1 1/31/20 Definitions • Polarization is the phenomenon in which waves of light or other radiation are restricted in direction of vibration • Polarization is a property of waves that describes the orientation of their oscillations Coherence and incoherence • Coherent radiation originates from a single oscillator, or a group of oscillators in perfect synchronization (phase- locked, or with a constant phase offset) • e.g., microwave ovens, radars, lasers, radio towers (i.e., artificial sources) • Incoherent radiation originates from independent oscillators that are not phase-locked. Natural radiation is incoherent. 2 1/31/20 Why is polarization important? • Bohren (2006): ‘the only reason the polarization state of light is worth contemplating is that two beams, otherwise identical, may interact differently with matter if their polarization states are different.’ • Interference only occurs when EM waves have a similar frequency, constant phase offset and the same polarization (i.e., they are coherent) • Used by active remote sensing systems (radar, lidar) Classification of polarization • Linear • Circular • Elliptical • ‘Random’ or unpolarized 3 1/31/20 Linear polarization • Plane EM wave – linearly polarized • Trace of electric field vector is linear • Also called plane-polarized light • Convention is to refer to the electric field vector • Weather radars usually
    [Show full text]
  • Fresnel's Equations
    Prof. Raghuveer Parthasarathy University of Oregon Physics 352 – Winter 2008 5 R EFLECTION AND T RANSMISSION (FRESNEL’ S E QUATIONS) The law of reflection (θri= θ , where r and i refer to reflected and incident rays – see Problem Set 3) and Snell’s Law ( nniittsinθ = sinθ , where t refers to the transmitted ray) give the directions of reflected and transmitted rays at boundaries (Figure 5.1). What are the amplitudes of the electromagnetic waves? In other words, how much light is reflected and transmitted? G Figure 5.1. Reflection and refraction at an interface. The incident wave (wavevector ki ) is G G reflected (wavevector kr ) and transmitted (wavevector kt ). What are the amplitudes of the reflected and transmitted waves? Similar questions arise when considering other sorts of waves hitting boundaries – for example waves on the 1D strings we examined last quarter, incident at a boundary between two media with different speeds. In all these situations, transmission and reflection are analyzed by considering the boundary conditions imposed by the junction. As we’ll see, our analysis of electromagnetic waves will reduce in the appropriate limit to that of simple strings. To consider the general case of a plane electromagnetic wave hitting a surface at some angle θi (with respect to the normal), we’ll have to separately consider the components with electric field perpendicular and parallel to the plane of incidence. (The incident, reflected, and transmitted rays all lie in the plane of incidence, POI, which also includes the normal to the surface.) First, some statements that follow from a study of electromagnetism.
    [Show full text]
  • 13. Fresnel's Equations for Reflection and Transmission
    13. Fresnel's Equations for Reflection and Transmission Incident, transmitted, and reflected beams Boundary conditions: tangential fields are continuous Reflection and transmission coefficients The "Fresnel Equations" Brewster's Angle Total internal reflection Power reflectance and transmittance Augustin Fresnel 1788-1827 Posing the problem What happens when light, propagating in a uniform medium, encounters a smooth interface which is the boundary of another medium (with a different refractive index)? k-vector of the incident light nincident boundary First we need to define some ntransmitted terminology. Definitions: Plane of Incidence and plane of the interface Plane of incidence (in this illustration, the yz plane) is the y plane that contains the incident x and reflected k-vectors. z Plane of the interface (y=0, the xz plane) is the plane that defines the interface between the two materials Definitions: “S” and “P” polarizations A key question: which way is the E-field pointing? There are two distinct possibilities. 1. “S” polarization is the perpendicular polarization, and it sticks up out of the plane of incidence I R y Here, the plane of incidence (z=0) is the x plane of the diagram. z The plane of the interface (y=0) T is perpendicular to this page. 2. “P” polarization is the parallel polarization, and it lies parallel to the plane of incidence. Definitions: “S” and “P” polarizations Note that this is a different use of the word “polarization” from the way we’ve used it earlier in this class. reflecting medium reflected light The amount of reflected (and transmitted) light is different for the two different incident polarizations.
    [Show full text]
  • Lecture Notes - Optics 3: Double Refraction, Polarized Light
    Lecture Notes - Optics 3: Double Refraction, Polarized Light • Experiment: observations with optical calcite. • Light passing through a calcite crystal is split into two rays. This process, first reported by Erasmus Bartholinus in 1669, is called double refraction. The two rays of light are each plane polarized by the calcite such that the planes of polarization are mutually perpendicular. For normal incidence (a Snell’s law angle of 0°), the two planes of polarization are also perpendicu- lar to the plane of incidence. • For normal incidence (a 0° angle of incidence), Snell’s law predicts that the angle of refraction will be 0°. In the O E case of double refraction of a normally incident ray of light, at least one of the two rays must violate Snell’s Law as we know it. For calcite, one of the two rays does indeed obey Snell’s Law; this ray is called the ordinary ray (or O-ray). The other ray (and any ray that does not obey Snell’s Law) is an extraordinary ray (or E-ray). • For ordinary rays the vibration direction, indicated by the electric vectors in our illustrations, is perpendicular to the ray path. For extraordinary rays, the vibration direction is not perpendicular to the ray path. The direction perpendicular to the vibration direction is called the wave normal. Although Snell’s Law is not satisfied by the ray path for extraordinary rays, it is satisfied by the wave normals of extraordinary rays. In other words, the wave normal direction for the refracted ray is related to the wave normal direction for the incident ray by Snell’s Law.
    [Show full text]
  • CHAPTER 8 INTERACTION of LIGHT and MATTER Point in the Direction of Propagation
    Chapter 8 Interaction of Light and Matter 8.1 Electromagnetic Waves at an Interface A beam of light (implicitly a plane wave) in vacuum or in an isotropic medium propa- gates in the particular fixed direction specified by its Poynting vector until it encoun- ters the interface with a different medium. The light causes the charges (electrons, atoms, or molecules) in the medium to oscillate and thus emit additional light waves thatcantravelinanydirection(overthesphereof4π steradians of solid angle). The oscillating particles vibrate at the frequency of the incident light and re-emit energy as light of that frequency (this is the mechanism of light “scattering”). If the emit- ted light is “out of phase” with the incident light (phase difference ∼= π radians), then the two waves interfere destructively and the original beam is attenuated.± If the attenuation is nearly complete, the incident light is said to be “absorbed.” Scattered light may interfere constructively with the incident light in certain directions, forming beamsthathavebeenreflected and/or transmitted. The constructive interference of the transmitted beam occurs at the angle that satisfies Snell’s law; while that after reflection occurs for θreflected = θincident. The mathematics are based on Maxwell’s equations for the three waves and the continuity conditions that must be satisfied at the boundary. The equations for these three electromagnetic waves are not diffi- cult to derive, though the process is somewhat tedious. The equations determine the properties of light on either side of the interface and lead to the phenomena of: 1. Equal angles of incidence and reflection; 2. Snell’s Law that relates the incident and refracted wave; 3.
    [Show full text]
  • Geometrical Optics
    Geometrical Optics http://physics.tamuk.edu/~suson/html/1402/optics.html Geometrical Optics We have seen that light is an electromagnetic wave. We have also seen that waves can be reflected and refracted by various surfaces placed in the path of the wave. How can we apply this to light? To a high degree of accuracy, we can imagine that light waves move in a straight line, provided that we do not place any obstacle or aperture in the path of the wave that has the same magnitude of dimensions as the wavelength of the wave. If we also disregard the effect of edges on the light wave, we have the special case known as geometrical optics. In this case, we view the light wave as a ray which is always normal to the surface of the wave front. Consider a light ray that is incident on a plane glass surface. We see that the beam is partially reflected and partially transmitted. The transmitted beam is bent both upon entering the surface and upon exiting it. Let q1 be the angle the incident beam makes with the normal to the surface of the glass. Also, let q1' be the angle the reflected beam makes with the normal, q2 be the angle of the beam in the glass surface and q3 be the angle of the beam that exits the glass surface. By experiment, we find that the reflected and refracted rays lie in the plane formed by the incident ray and the normal to the surface at the point of incidence.
    [Show full text]