Lecture 3: Crystal Optics Homogeneous, Anisotropic Media Introduction Outline material equations for homogeneous anisotropic media ~ ~ 1 Homogeneous, Anisotropic Media D = E B~ = µH~ 2 Crystals tensors of rank 2, written as 3 by 3 matrices 3 Plane Waves in Anisotropic Media : dielectric tensor 4 Wave Propagation in Uniaxial Media µ: magnetic permeability tensor examples: 5 Reflection and Transmission at Interfaces crystals, liquid crystals external electric, magnetic fields acting on isotropic materials (glass, fluids, gas) anisotropic mechanical forces acting on isotropic materials Christoph U. Keller, Utrecht University,
[email protected] Lecture 3: Crystal Optics 1 Christoph U. Keller, Utrecht University,
[email protected] Lecture 3: Crystal Optics 2 Properties of Dielectric Tensor Uniaxial Materials Maxwell equations imply symmetric dielectric tensor isotropic materials: n = n = n 0 1 x y z 11 12 13 for any coordinate system T = = @ 12 22 23 A anisotropic materials: 13 23 33 nx 6= ny 6= nz symmetric tensor of rank 2 ) coordinate system exists where uniaxial materials: nx = ny 6= nz tensor is diagonal ordinary index of refraction: orthogonal axes of this coordinate system: principal axes no = nx = ny elements of diagonal tensor: principal dielectric constants extraordinary index of refraction: n = n 3 principal indices of refraction in coordinate system spanned by e z principal axes rotation of coordinate system 0 2 1 around z does not change nx 0 0 ~ 2 ~ anything D = @ 0 ny 0 A E 2 0 0 nz most materials used in polarimetry are (almost) uniaxial x, y, z because principal axes form Cartesian coordinate system Christoph U.