Field-Controllable Spin-Hall Effect of Light in Optical Crystals: A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 4 Supplement: Anisotropic Media
CN Chapter 4 CT Supplement: Anisotropic Media In Section 2.4 of “CBGL,” we discuss how crystal birefringence can be used to achieve phasematching. Readers familiar with the behavior of anisotropic media will have understood the crystallographic and optical properties underlying that discussion. For those readers who might be less familiar with some of these concepts, this chapter of the online supplement will provide some of the needed background. In Section 2.3 of “CBGL,” we stated that the linear change in electric displacement D due to an applied electric field E was given by D = oE + PL, where the linear (1) (1) polarization was given by PL = oχ E, so that we could also write D = o E, where (1) (1) =1+χ . In general, the vector representing the polarization PL may have an arbitrary direction and magnitude with respect to the applied electric field E,so that the relationship between PL and E must be written in some arbitrary x − y − z coordinate system as: (1) (1) (1) PL,x χxx χxy χxz Ex (1) (1) (1) PL,y = o χyx χyy χyz Ey (4.1) (1) (1) (1) PL,z χzx χzy χzz Ez However, it is possible to find a coordinate system in which this χ tensor, and the corresponding permittivity tensor (1) become diagonal. In that system, called the “principal axis” system, we can write: (1) xx 00 (1) (1) = 0 yy 0 (4.2) (1) 00zz We will often express this tensor in a form that uses refractive indices instead of 1 CHAPTER 4 — MANUSCRIPT permittivity: 2 nx 00 (1) 2 = 0 ny 0 (4.3) 2 00nz C The Principal Axes and Crystal Symmetry This permittivity tensor contains within it information about how the phase velocity of light waves in our nonlinear material varies with the direction of propagation and the polarization of the wave. -
1 Crystal Optics
1 1 Crystal Optics 1.1 Introduction Crystal optics is the branch of optics that describes the behavior of electromag- netic waves in anisotropic media, that is, media (such as crystals) in which light behaves differently depending on the direction in which the light is propagating. The characteristic phenomena of crystals that are studied in crystal optics include double refraction (birefringence), polarization of light, rotation of the plane of polarization, etc. The phenomenon of double refraction was first observed in crystals of Ice- land spar by the Danish scientist E. Bartholin in 1669. This date is considered the beginning of crystal optics. Problems of the absorption and emission of light by crystals are studied in crystal spectroscopy. The effect of electric and magnetic fields, mechanical stress, and ultrasound waves on the optical properties of crys- tals are studied in electro-optics, magneto-optics, photoelasticity, acousto-optics, and photorefractivity, which are based on the fundamental laws of crystal optics. Since the lattice constant (of the order of 10 Å) is much smaller than the wave- length of visible light (4000–7000 Å), a crystal may be regarded as a homoge- neous but anisotropic medium. The optical anisotropy of crystals is caused by the anisotropy of the force field of particle interaction. The nature of the field is related to crystal symmetry. All crystals, except crystals of the cubic system, are optically anisotropic. 1.2 Index Ellipsoid or Optical Indicatrix In isotropic materials, the electric field displacement vector D is parallel to the electric field vector E,relatedbyD = 0 rE = 0E + P,where 0 is the permittivity of free space, r is the unitless relative dielectric constant, and P is the material polarization vector. -
Measurement of Refractive Index in Non-Planar Surfaces with a Conoscopic Mueller Microscope
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials dʼinvestigació i docència en els termes establerts a lʼart. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix lʼautorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No sʼautoritza la seva reproducció o altres formes dʼexplotació efectuades amb finalitats de lucre ni la seva comunicació pública des dʼun lloc aliè al servei TDX. Tampoc sʼautoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. -
2 Crystal Optics
2 Crystal Optics 2.1 Polarization In this section, we review some basic properties of electromagnetism in crystalline me- dia. In particular, we introduce the notion and classification of the polarization of an EM-wave in a homogeneous medium. We consider monochromatic plane waves (time- harmonic plane waves) that propagate in z-direction. E (z, t ) = Re Aei( kr −ωt ) (2.1) with complex amplitude A = A xˆ + A yˆ, A , A C. (2.2) x y x y ∈ In the above equation, we have introduced the unit vectors a long the x- and y-direction, xˆ and yˆ, respectively. Furthermore, we decompose the wave vector k into its magnitude k and direction kˆ. Without loss of generality, we assume that the wave vector points along the z-axis (we can always choose the orientation of our coordinate system in that way): 0 k = k kˆ and kˆ = 0 = zˆ (2.3) · 1 iϕi also Ai = ai e , for i = x, y. (2.4) ∈R E =a cos ( kz ωt + ϕ ) (2.5) ⇒ x x − x E = a cos ( kz ωt + ϕ ) (2.6) y y − y E2 E2 E E x y ϕ x y 2 ϕ 2 + 2 2 cos = sin (2.7) ⇒ ax ay − axay with ϕ = ϕ ϕ . (2.8) x − y The above manipulations give the following picture: If we keep z fixed, then the direc- tion of E rotates (as a function of time t) in the xy -plane and traces out the so-called polarization ellipse. There are two special cases, which we discuss below: 21 2 Crystal Optics Linearly polarized light : ax =0 or ay = 0 or (2.9) ϕ = 0 or ϕ = π ay Ey = Ex (2.10) ⇒ ± ax In this case, the polarization ellipse degenerates into a line. -
Magyarbangol Geológiai Szótár
KÁZMÉR MIKLÓS MAGYARBANGOL GEOLÓGIAI SZÓTÁR BUDAPEST 2019 A szótár elkészültét az Eötvös Loránd Tudományegyetem támogatta Lektorálta Papp Gábor 6 Dictionaries are like watches, the worst is better than none, and the best cannot be expected to go quite true. Samuel Johnson, 1784 Bevezetés A jelen MagyarBangol Geológiai Szótár az 1995-ben megjelent AngolBmagyar Geológiai Szótár kiegészítésének készült. Címszóanyaga annak megfelelő, mintegy 17.000 szó és szókapcsolat. A két szótár egymásnak nem tükörképe: a magyar és az angol megfelelők esetenként jelentősen eltérő jelentéstani terjedelme miatt valamennyi szópárt manuális ellenőrzésnek kellett alávetni, szükség esetén módosítva a jelentést, törölve, ill. beillesztve szinonímákat. A szótár nemcsak a szélesebb értelemben vett földtan szókincsét tartalmazza, hanem azokat a szavakat is, amelyekkel egy geológus szakmunkákat olvasva találkozhat (laboratóriumi eszközök, terepmunka eszközei, geofizikai alapszókincs, mászaki szavak, mélyfúrási, bányászati terminológia, alapvetÅ matematikai, fizikai, kémiai, biológiai szókincs stb). Köszönetnyilvánítás Számos szó és kifejezés B részben új B magyar megfelelÅjét javasolta Báldi Katalin, Bérczi Szaniszló, Haas János, ifj. Lorberer Árpád, Kercsmár Zsolt, Kondorosy Szabolcs, Kóródy Gergely, Kovács József Szilamér, Kovácsné Bodor Petra, Kern Zoltán, Mádlné Szőnyi Judit, Mikes Tamás, Mindszenty Andrea, Nagy Zoltán, Palotai Márton, Papp Gábor, Pelikán Pál, Szafián Péter, Török Kálmán és Váczi Tamás. Mindnyájuknak e helyen köszönöm meg segítségüket. Végül