Field-Controllable Spin-Hall Effect of Light in Optical Crystals: A

Total Page:16

File Type:pdf, Size:1020Kb

Field-Controllable Spin-Hall Effect of Light in Optical Crystals: A www.nature.com/scientificreports OPEN Field-controllable Spin-Hall Efect of Light in Optical Crystals: A Conoscopic Mueller Matrix Analysis Received: 31 October 2017 C. T. Samlan & Nirmal K. Viswanathan Accepted: 11 January 2018 Electric-feld applied perpendicular to the direction of propagation of paraxial beam through an Published: xx xx xxxx optical crystal dynamically modifes the spin-orbit interaction (SOI), leading to the demonstration of controllable spin-Hall efect of light (SHEL). The electro- and piezo-optic efects of the crystal modifes the radially symmetric spatial variation in the fast-axis orientation of the crystal, resulting in a complex pattern with diferent topologies due to the symmetry-breaking efect of the applied feld. This introduces spatially-varying Pancharatnam-Berry type geometric phase on to the paraxial beam of light, leading to the observation of SHEL in addition to the spin-to-vortex conversion. A wave-vector resolved conoscopic Mueller matrix measurement and analysis provides a frst glimpse of the SHEL in the biaxial crystal, identifed via the appearance of weak circular birefringence. The emergence of feld-controllable fast-axis orientation of the crystal and the resulting SHEL provides a new degree of freedom for afecting and controlling the spin and orbital angular momentum of photons to unravel the rich underlying physics of optical crystals and aid in the development of active photonic spin-Hall devices. Te collective and signifcant role played by the amplitude, phase and polarization of an electromagnetic wave in enriching the fundamental understanding of light feld and quanta (photons), is not more evident than in the spin-orbit interaction (SOI) of light – a study of the mutual infuence of the spin angular momentum (SAM) and the intrinsic and extrinsic orbital angular momentum (OAM) of light1. Te concept of SOI of light frst proposed and demonstrated by Zel′dovich et al.2, continues to be a research topic of signifcant importance, as evinced in the authoritative and comprehensive recent review articles3–5. Broadly, the SOI efect results in the spin-dependent redistribution of light intensity due to space- or wavevector-variant geometric phase. In systems with rotational symmetry, the SOI leads to spin-to-orbital angular momentum conversion (SOC) and the generation of optical vortex beams; breaking of which results in the spin-Hall Efect of light (SHEL), a spin-dependent redistribution of light intensity in the transverse plane. Of the innumerable efects and devices enabled by the SOI phenomenon, the direct manifestation of SHEL is reported in a verity of systems such as planar dielectric interface6, smoothly inhomogeneous medium2,7 and metasurfaces8, and reviewed recently in ref.9, which is of interest to us here. Te observation of SHEL is attributed to two ‘seemingly’ diferent mechanisms: the geometric phase gradient arising from spin-redirection (Rytov-Vladimirskii-Berry, RVB) phase, related to variation in the direction of propagation of a paraxial light beam due to medium inhomogeneity and the Pancharatnam-Berry (PB) phase associated with the manipulation of the state-of-polarization (SoP) of light via varying fast axis orientation8–10. Te gradient in RVB and PB phases along any linear direction respectively, in the momentum space and real space manifest themselves as SHEL in the real and momentum space and have been investigated independently in a variety of systems6–16. Te interplay between the SAM and the extrinsic OAM (trajectory) of paraxial light beam resulting in the SHEL is typically studied by invoking symmetry breaking11–16. Tough the RVB phase induced SHEL has been widely investi- gated in refection and transmission at a refractive index boundary6,11–13, the frst observation of its PB phase counterpart arising due to paraxial light propagation through a tilted anisotropic wave plate was only recently reported by us16. Accordingly, breaking of the rotation symmetry of a c-cut uniaxial crystal due to the application of electric feld across it provides an ideal system for investigating the PB phase induced controllable SHEL. Te problem in hand can be mathematically quite challenging despite the development of a new formalism based on optical singularities17. Nevertheless, the demonstration of important features of the treatment for transparent and School of Physics, University of Hyderabad, Hyderabad, 500046, India. Correspondence and requests for materials should be addressed to N.K.V. (email: [email protected]) SCIENTIFIC REPORTS | (2018) 8:2002 | DOI:10.1038/s41598-018-20402-4 1 www.nature.com/scientificreports/ Figure 1. (a) Index ellipsoid of a biaxial crystal and (b) its fast-axes orientation in the stereographic projection shows diferent topologies. chiral crystal are evident from our experimental results. Which also provides answer to the non-conservation of total angular momentum (TAM) of the electromagnetic feld propagating at an angle with reference to the symmetry-axis of an optical crystal18,19. Standard experimental techniques of Stokes polarimetry and quantum weak measurement6,16 not readily suitable for measuring the weak SHEL due to the complex PB phase gradient across the beam cross-section due to spatially-varying complex fast axis orientation of the crystal. We develop and demonstrate a wavevector resolved conoscopic Mueller matrix analysis (CMMA) to map the complex topo- logical pattern of the crystal fast-axis orientation and its transformation and the resulting appearance of SHEL by measuring the circular birefringence as its manifestation. Te efect observed varies across the interaction region, and is enhanced due to the applied electric feld, which demonstrates the feld-controllable nature of the SHEL. Te results are of signifcance due to emerging interest in the control and tunability of SHEL via diferent mechanisms15,20–22. To experimentally investigate the feld-controlled SHEL, we use Potassium Dihydrogen Phosphate (KDP) crystal, an important class of hydrogen-bonded ferroelectric crystal and one of the most widely investigated opto- electronic material for its linear and nonlinear optical effects and their applications23–25. For KDP crystal, non-centrosymmetric, with tetragonal structure (point group 42m) and 4-fold inversion symmetry are not the only possibility26,27. Being an electro-optic as well as a piezo-optic medium, the radially symmetric fast-axis ori- entation of the uniaxial structure gets modifed considerably with the application of external electric feld in transverse direction to the propagation of light. Te non-vanishing electro-optic coefcient (r41), piezo-electric constant (d14) and strain-optic constant (p55) of the KDP crystal all together contribute to the changes in the fast axis direction as well as the principal refractive index values26–32. Te corresponding transformation in the index ellipsoid of the KDP crystal from uniaxial tetragonal to biaxial orthorhombic and to biaxial monoclinic can be expressed as, nx 00 no 00 00n = 00n y o 00nz 00ne no 00 ⇒ 00nn+ 32E η oox 32 00nnee− Exη np01/ dE o 55 14 x ⇒ + 32 00nnooExη 1/ pdEn0 − nE32η 55 14 xxee (1) 2 2 2 rn41 o ne where, η = 2 2 and the applied electric feld is along the x-axis (Ex). Te of-diagonal elements in the last 2 nno − e matrix can be assumed to be negligible for lower values of Ex. Tus, under the infuence of external feld, the fast axis orientation of the KDP crystal gets modifed signifcantly from radial symmetry as shown in Fig. 1(b). Te corresponding ferroelectric-to-paraelectric phase transition leading to low-dimensional symmetry, including a centrosymmetric and biaxial orthorhombic (Fdd2) and monoclinic (2/m) crystal structures and a build-up of crystal structure asymmetry with reference to the optic-axis have been reported28–32. The partially broken SCIENTIFIC REPORTS | (2018) 8:2002 | DOI:10.1038/s41598-018-20402-4 2 www.nature.com/scientificreports/ Figure 2. Schematic illustration of the analogy between (a) spatial walk-of of o-mode and e-modes due to linear birefringence and (b) SHEL due to induced circular birefringence. Optic-axis of the crystal is indicated by purple color arrow. rotational symmetry is evident from the scheme of fast-axis orientation in the momentum space (via stereo- graphic projection) given in Fig. 1(b), which exhibit diferent topologies, marked in diferent colors at diferent regions. Tis feature of the feld-induced transformation of the crystal structure is found to be highly desirable for the demonstration of simultaneously present SOI and controllable observation of SHEL. Te complex topology of the fast-axis orientation (μ) perceived by the spread of wavevectors in a paraxial optical beam, as it propagates through a biaxial crystal is given by33 1 − sin2φθcos μ = 1 tan 2 2 Δ−sincθφos2cosθ (2) where θ is the angle between the wavevector and the c-axis of the KDP crystal and φ is the azimuthal coordinate of the stereographic projection plane (Fig. 1(b)). It is important to note here the electric feld Ex dependency of μ 22 2222 through the asymmetric term Δ, given by Δ= nnzy()−−nnxx/(nnyz). To understand the SOI of light in optical crystals, consider circularly polarized (CP) paraxial light beam prop- agating along Z-axis, making an angle θc with the optic-axes of the biaxial crystal (Fig. 1(a)). Diferent local topol- ogies in the fast-axis orientation, shown in Fig. 1(b), leads to diferent manifestation of the SOI. To exemplify this, we consider the plane wave component σ± in the paraxial beam, which makes an angle θ with the z-axis. Te fnal state, afer propagation through the crystal, can be expressed in the right- (R), σ+ and lef- (L), σ− CP basis as34 δ δ ±i2μ Eiout = cos σ± + sin σ e 2 2 (3) where δ is the phase retardation experienced by the linear polarization component of the plane wave due to linear birefringence of the crystal. Te second term in eqn.
Recommended publications
  • Chapter 4 Supplement: Anisotropic Media
    CN Chapter 4 CT Supplement: Anisotropic Media In Section 2.4 of “CBGL,” we discuss how crystal birefringence can be used to achieve phasematching. Readers familiar with the behavior of anisotropic media will have understood the crystallographic and optical properties underlying that discussion. For those readers who might be less familiar with some of these concepts, this chapter of the online supplement will provide some of the needed background. In Section 2.3 of “CBGL,” we stated that the linear change in electric displacement D due to an applied electric field E was given by D = oE + PL, where the linear (1) (1) polarization was given by PL = oχ E, so that we could also write D = o E, where (1) (1) =1+χ . In general, the vector representing the polarization PL may have an arbitrary direction and magnitude with respect to the applied electric field E,so that the relationship between PL and E must be written in some arbitrary x − y − z coordinate system as: (1) (1) (1) PL,x χxx χxy χxz Ex (1) (1) (1) PL,y = o χyx χyy χyz Ey (4.1) (1) (1) (1) PL,z χzx χzy χzz Ez However, it is possible to find a coordinate system in which this χ tensor, and the corresponding permittivity tensor (1) become diagonal. In that system, called the “principal axis” system, we can write: (1) xx 00 (1) (1) = 0 yy 0 (4.2) (1) 00zz We will often express this tensor in a form that uses refractive indices instead of 1 CHAPTER 4 — MANUSCRIPT permittivity: 2 nx 00 (1) 2 = 0 ny 0 (4.3) 2 00nz C The Principal Axes and Crystal Symmetry This permittivity tensor contains within it information about how the phase velocity of light waves in our nonlinear material varies with the direction of propagation and the polarization of the wave.
    [Show full text]
  • 1 Crystal Optics
    1 1 Crystal Optics 1.1 Introduction Crystal optics is the branch of optics that describes the behavior of electromag- netic waves in anisotropic media, that is, media (such as crystals) in which light behaves differently depending on the direction in which the light is propagating. The characteristic phenomena of crystals that are studied in crystal optics include double refraction (birefringence), polarization of light, rotation of the plane of polarization, etc. The phenomenon of double refraction was first observed in crystals of Ice- land spar by the Danish scientist E. Bartholin in 1669. This date is considered the beginning of crystal optics. Problems of the absorption and emission of light by crystals are studied in crystal spectroscopy. The effect of electric and magnetic fields, mechanical stress, and ultrasound waves on the optical properties of crys- tals are studied in electro-optics, magneto-optics, photoelasticity, acousto-optics, and photorefractivity, which are based on the fundamental laws of crystal optics. Since the lattice constant (of the order of 10 Å) is much smaller than the wave- length of visible light (4000–7000 Å), a crystal may be regarded as a homoge- neous but anisotropic medium. The optical anisotropy of crystals is caused by the anisotropy of the force field of particle interaction. The nature of the field is related to crystal symmetry. All crystals, except crystals of the cubic system, are optically anisotropic. 1.2 Index Ellipsoid or Optical Indicatrix In isotropic materials, the electric field displacement vector D is parallel to the electric field vector E,relatedbyD = 0 rE = 0E + P,where 0 is the permittivity of free space, r is the unitless relative dielectric constant, and P is the material polarization vector.
    [Show full text]
  • Measurement of Refractive Index in Non-Planar Surfaces with a Conoscopic Mueller Microscope
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials dʼinvestigació i docència en els termes establerts a lʼart. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix lʼautorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No sʼautoritza la seva reproducció o altres formes dʼexplotació efectuades amb finalitats de lucre ni la seva comunicació pública des dʼun lloc aliè al servei TDX. Tampoc sʼautoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral.
    [Show full text]
  • 2 Crystal Optics
    2 Crystal Optics 2.1 Polarization In this section, we review some basic properties of electromagnetism in crystalline me- dia. In particular, we introduce the notion and classification of the polarization of an EM-wave in a homogeneous medium. We consider monochromatic plane waves (time- harmonic plane waves) that propagate in z-direction. E (z, t ) = Re Aei( kr −ωt ) (2.1) with complex amplitude A = A xˆ + A yˆ, A , A C. (2.2) x y x y ∈ In the above equation, we have introduced the unit vectors a long the x- and y-direction, xˆ and yˆ, respectively. Furthermore, we decompose the wave vector k into its magnitude k and direction kˆ. Without loss of generality, we assume that the wave vector points along the z-axis (we can always choose the orientation of our coordinate system in that way): 0 k = k kˆ and kˆ = 0 = zˆ (2.3) · 1 iϕi also Ai = ai e , for i = x, y. (2.4) ∈R E =a cos ( kz ωt + ϕ ) (2.5) ⇒ x x − x E = a cos ( kz ωt + ϕ ) (2.6) y y − y E2 E2 E E x y ϕ x y 2 ϕ 2 + 2 2 cos = sin (2.7) ⇒ ax ay − axay with ϕ = ϕ ϕ . (2.8) x − y The above manipulations give the following picture: If we keep z fixed, then the direc- tion of E rotates (as a function of time t) in the xy -plane and traces out the so-called polarization ellipse. There are two special cases, which we discuss below: 21 2 Crystal Optics Linearly polarized light : ax =0 or ay = 0 or (2.9) ϕ = 0 or ϕ = π ay Ey = Ex (2.10) ⇒ ± ax In this case, the polarization ellipse degenerates into a line.
    [Show full text]
  • Magyarbangol Geológiai Szótár
    KÁZMÉR MIKLÓS MAGYARBANGOL GEOLÓGIAI SZÓTÁR BUDAPEST 2019 A szótár elkészültét az Eötvös Loránd Tudományegyetem támogatta Lektorálta Papp Gábor 6 Dictionaries are like watches, the worst is better than none, and the best cannot be expected to go quite true. Samuel Johnson, 1784 Bevezetés A jelen MagyarBangol Geológiai Szótár az 1995-ben megjelent AngolBmagyar Geológiai Szótár kiegészítésének készült. Címszóanyaga annak megfelelő, mintegy 17.000 szó és szókapcsolat. A két szótár egymásnak nem tükörképe: a magyar és az angol megfelelők esetenként jelentősen eltérő jelentéstani terjedelme miatt valamennyi szópárt manuális ellenőrzésnek kellett alávetni, szükség esetén módosítva a jelentést, törölve, ill. beillesztve szinonímákat. A szótár nemcsak a szélesebb értelemben vett földtan szókincsét tartalmazza, hanem azokat a szavakat is, amelyekkel egy geológus szakmunkákat olvasva találkozhat (laboratóriumi eszközök, terepmunka eszközei, geofizikai alapszókincs, mászaki szavak, mélyfúrási, bányászati terminológia, alapvetÅ matematikai, fizikai, kémiai, biológiai szókincs stb). Köszönetnyilvánítás Számos szó és kifejezés B részben új B magyar megfelelÅjét javasolta Báldi Katalin, Bérczi Szaniszló, Haas János, ifj. Lorberer Árpád, Kercsmár Zsolt, Kondorosy Szabolcs, Kóródy Gergely, Kovács József Szilamér, Kovácsné Bodor Petra, Kern Zoltán, Mádlné Szőnyi Judit, Mikes Tamás, Mindszenty Andrea, Nagy Zoltán, Palotai Márton, Papp Gábor, Pelikán Pál, Szafián Péter, Török Kálmán és Váczi Tamás. Mindnyájuknak e helyen köszönöm meg segítségüket. Végül
    [Show full text]