Anaplasma Phagocytophilum

Total Page:16

File Type:pdf, Size:1020Kb

Anaplasma Phagocytophilum EFFECTOR BOTTLENECK: MICROBIAL REPROGRAMMING OF HUMAN NEUTROPHIL TRANSCRIPTION BY ANAPLASMA PHAGOCYTOPHILUM by Sara H Sinclair A dissertation submitted to the Johns Hopkins University in conformity with the requirements of the degree of Doctor of Philosophy. Baltimore, MD March 2015 Abstract Anaplasma phagocytophilum, the causative agent of human granulocytic anaplasmosis, is an obligate intracellular bacterium that infects human neutrophils. Once infected, the neutrophil shows marked functional aberrations, notably reduced antimicrobial activity, delayed apoptosis, and increased proinflammatory responses. The altered functions allow for bacterial propagation and spread to new host cells. Many of the observed phenotypic changes of the neutrophil are a result of transcriptional alterations. Furthermore, AnkA, a bacterial-derived effector localizes to the nucleus where it directly binds DNA, such as at the promoter of CYBB which encodes the NADPH oxidase component gp91phox. Binding of AnkA at CYBB results in downregulated transcription. Furthermore, histone deacetylase 1 (HDAC) activity is important for bacterial propagation and downregulation of multiple host defense genes. While the lab previously focused on characterizing the interaction between AnkA, CYBB, and HDAC1, we felt the data strongly suggested that A. phagocytophilum must have additional transcription-regulating effectors (nucleomodulins) to act on a global scale and to explain the magnitude of phenotypic changes observed within the neutrophil during the course of infection. A bioinformatic screen of the A. phagocytophilum genome for genes which could encode putative eukaryotic nuclear localization signals, and mass spectrometry of proteins in the infected cell nucleus yielded nearly 50 candidate nucleomodulins. Tracking of cellular localization with GFP-fusion peptides confirmed nuclear localization of seven genes, one of which (APH_0455) is also a type IV secretion substrate. Close investigation of microarray data gathered in 2005 comparing A. phagocytophilum-infected and uninfected neutrophils showed that large chromosomal ii territories were coordinately regulated. In addition, infected neutrophils were characterized by genome hypermethylation. Together these data further suggested that A. phagocytophilum infection influences transcriptional programs on a global scale, rather than relying solely on cis interactions and that AnkA likely is not the sole nucleomodulin at work. iii Acknowledgements I would like to thank my mentor Dr. J Stephen Dumler for always permitting me to work independently and being supportive of my ideas. His guidance and encouragement allowed me to grow into the scientist I am today. I needed to learn for myself when I had pursued something too long, and how to move on to the next questions. I would also like to thank the following current and former lab members for their continuous support both in and out of the lab: Kristen Bankert, Marguerite Lichay, Dennis Grab, Kyoung-Sung Choi, Diana Scorpio, Cindy Chen, Emily Clemens, Olga Nikolskaia, Lucy Hritzo, Carlos Borroto, and Jose Carlos Garcia-Garcia. I could not have asked for a better group of individuals to work with, and I have made life-long friends in the process. Additionally, I would like to thank my committee members Drs. Frank DeLeo, Stephen Baylin, and Srinivasan Yegnasubramanian for their insight and thoughtful criticism. Thank you to my family for encouraging me to leave Idaho and pursue graduate school. Without their love and support I would not have pursued research or a PhD. I would also like to thank my husband Dylan for moving across the country to support me and push me to work hard. Lastly, I would like to thank my friends who have been like family to me over the last five years. I know that I have made life-long friendships and connections and I would not be finishing now without their help. Between my friends and the lab, my PhD experience was both an enjoyable and fruitful experience. iv Table of Contents Chapter 1: The Effector Bottleneck: Chromatin Remodeling of Host Cell DNA via Epigenetic Mechanisms .......................................................................................................................... 1 References: ............................................................................................................................................. 5 Chapter 2: Anaplasma phagocytophilum: A model intracellular pathogen ............................. 7 Anaplasma phagocytophilum ............................................................................................................ 8 AnkA of Anaplasma phagocytophilum ....................................................................................... 10 References: .......................................................................................................................................... 13 Chapter 3: Anaplasma phagocytophilum induces genome-wide transcriptional changes in its host cell via chromatin remodeling ............................................................................................. 16 More than a cis interation ............................................................................................................... 17 Anaplasma phagocytophilum infection is associated with transcriptional changes over megabases in the human genome ................................................................................................. 21 References: .......................................................................................................................................... 27 Chapter 4: Global DNA methylation changes and differential gene expression in Anaplasma phagocytophilum-infected neutrophils. .................................................................... 29 Abstract ................................................................................................................................................ 30 Introduction ......................................................................................................................................... 31 Methods ................................................................................................................................................ 34 Results: ................................................................................................................................................. 41 Discussion ........................................................................................................................................... 59 Conclusion ........................................................................................................................................... 64 References ........................................................................................................................................... 65 Chapter 5: Bioinformatic and mass spectrometry identification of Anaplasma phagocytophilum proteins translocated into host cell nuclei .................................................... 70 Abstract ................................................................................................................................................ 71 Introduction ......................................................................................................................................... 72 v Methods ................................................................................................................................................ 74 Results .................................................................................................................................................. 85 Discussion ........................................................................................................................................... 98 Conclusion ......................................................................................................................................... 104 References: ........................................................................................................................................ 109 Chapter 6: Comparison and characterization of granulocyte cell models for Anaplasma phagocytophilum infection ............................................................................................................... 112 Abstract .............................................................................................................................................. 113 Introduction ....................................................................................................................................... 114 Materials and Methods .................................................................................................................. 117 Results ................................................................................................................................................ 123 Discussion ......................................................................................................................................... 136 References ......................................................................................................................................... 141 Chapter 7: Conclusions and Future Directions ........................................................................... 145 Curriculum Vitae ................................................................................................................................
Recommended publications
  • Official Nh Dhhs Health Alert
    THIS IS AN OFFICIAL NH DHHS HEALTH ALERT Distributed by the NH Health Alert Network [email protected] May 18, 2018, 1300 EDT (1:00 PM EDT) NH-HAN 20180518 Tickborne Diseases in New Hampshire Key Points and Recommendations: 1. Blacklegged ticks transmit at least five different infections in New Hampshire (NH): Lyme disease, Anaplasma, Babesia, Powassan virus, and Borrelia miyamotoi. 2. NH has one of the highest rates of Lyme disease in the nation, and 50-60% of blacklegged ticks sampled from across NH have been found to be infected with Borrelia burgdorferi, the bacterium that causes Lyme disease. 3. NH has experienced a significant increase in human cases of anaplasmosis, with cases more than doubling from 2016 to 2017. The reason for the increase is unknown at this time. 4. The number of new cases of babesiosis also increased in 2017; because Babesia can be transmitted through blood transfusions in addition to tick bites, providers should ask patients with suspected babesiosis whether they have donated blood or received a blood transfusion. 5. Powassan is a newer tickborne disease which has been identified in three NH residents during past seasons in 2013, 2016 and 2017. While uncommon, Powassan can cause a debilitating neurological illness, so providers should maintain an index of suspicion for patients presenting with an unexplained meningoencephalitis. 6. Borrelia miyamotoi infection usually presents with a nonspecific febrile illness similar to other tickborne diseases like anaplasmosis, and has recently been identified in one NH resident. Tests for Lyme disease do not reliably detect Borrelia miyamotoi, so providers should consider specific testing for Borrelia miyamotoi (see Attachment 1) and other pathogens if testing for Lyme disease is negative but a tickborne disease is still suspected.
    [Show full text]
  • Exploiting Bacterial 'Sweet Tooth' May Help Image and Diagnose Infections 15 April 2021
    Exploiting bacterial 'sweet tooth' may help image and diagnose infections 15 April 2021 scourge behind the "Black Death" pandemic of plague in the 14th century that wiped out 75% of the world's population. Enterobacterales bacteria also have been tagged by the U.S. Centers for Disease Control and Prevention as "urgent and serious antibiotic resistance threats" because of their frequent mutations to drug-resistant strains. The new diagnostic tool is described in a paper published April 14, 2021, in Science Translational Medicine. It emerged from a creative combination of existing PET scan technology—a sophisticated 3D visualization system for imaging diseases such as cancer—with sorbitol, a molecule used in making sugar-free foods. The method capitalizes on the fondness for sorbitol of Gram-negative bacteria (a classification of bacteria based on their resistance to a specific staining procedure) such as Three-dimensional imaging showing soft tissue infection Enterobacterales and the fact that other with Enterobacterales in a female patient. Credit: A.A. microorganisms, cancers and human cells do not Ordonez et al., Science Translational Medicine (2021) absorb it. "We converted an already available radioactive imaging tracer into an isotope-tagged sorbitol In the movie Mary Poppins, the title character sings molecule that would light up clusters of Gram- that "a spoonful of sugar helps the medicine go negative bacteria within the body during a PET down." Now, Johns Hopkins Medicine researchers scan," says study senior author Sanjay Jain, M.D., have shown how a radioactive sugar—combined professor of pediatrics, and radiology and with a widely used imaging technology—could soon radiological medicine at the Johns Hopkins help physicians make the medicine work better by University School of Medicine; and professor of enabling them to rapidly detect and monitor international health at the Johns Hopkins infections from the largest group of bacterial Bloomberg School of Public Health.
    [Show full text]
  • Downloaded 13 April 2017); Using Diamond
    bioRxiv preprint doi: https://doi.org/10.1101/347021; this version posted June 14, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 2 3 4 5 Re-evaluating the salty divide: phylogenetic specificity of 6 transitions between marine and freshwater systems 7 8 9 10 Sara F. Pavera, Daniel J. Muratorea, Ryan J. Newtonb, Maureen L. Colemana# 11 a 12 Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, USA 13 b School of Freshwater Sciences, University of Wisconsin Milwaukee, Milwaukee, Wisconsin, USA 14 15 Running title: Marine-freshwater phylogenetic specificity 16 17 #Address correspondence to Maureen Coleman, [email protected] 18 bioRxiv preprint doi: https://doi.org/10.1101/347021; this version posted June 14, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 19 Abstract 20 Marine and freshwater microbial communities are phylogenetically distinct and transitions 21 between habitat types are thought to be infrequent. We compared the phylogenetic diversity of 22 marine and freshwater microorganisms and identified specific lineages exhibiting notably high or 23 low similarity between marine and freshwater ecosystems using a meta-analysis of 16S rRNA 24 gene tag-sequencing datasets. As expected, marine and freshwater microbial communities 25 differed in the relative abundance of major phyla and contained habitat-specific lineages; at the 26 same time, however, many shared taxa were observed in both environments. 27 Betaproteobacteria and Alphaproteobacteria sequences had the highest similarity between 28 marine and freshwater sample pairs.
    [Show full text]
  • Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
    Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae
    [Show full text]
  • Characterization of Environmental and Cultivable Antibiotic- Resistant Microbial Communities Associated with Wastewater Treatment
    antibiotics Article Characterization of Environmental and Cultivable Antibiotic- Resistant Microbial Communities Associated with Wastewater Treatment Alicia Sorgen 1, James Johnson 2, Kevin Lambirth 2, Sandra M. Clinton 3 , Molly Redmond 1 , Anthony Fodor 2 and Cynthia Gibas 2,* 1 Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; [email protected] (A.S.); [email protected] (M.R.) 2 Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; [email protected] (J.J.); [email protected] (K.L.); [email protected] (A.F.) 3 Department of Geography & Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-704-687-8378 Abstract: Bacterial resistance to antibiotics is a growing global concern, threatening human and environmental health, particularly among urban populations. Wastewater treatment plants (WWTPs) are thought to be “hotspots” for antibiotic resistance dissemination. The conditions of WWTPs, in conjunction with the persistence of commonly used antibiotics, may favor the selection and transfer of resistance genes among bacterial populations. WWTPs provide an important ecological niche to examine the spread of antibiotic resistance. We used heterotrophic plate count methods to identify Citation: Sorgen, A.; Johnson, J.; phenotypically resistant cultivable portions of these bacterial communities and characterized the Lambirth, K.; Clinton,
    [Show full text]
  • A Case Series of Diarrheal Diseases Associated with Yersinia Frederiksenii
    Article A Case Series of Diarrheal Diseases Associated with Yersinia frederiksenii Eugene Y. H. Yeung Department of Medical Microbiology, The Ottawa Hospital General Campus, The University of Ottawa, Ottawa, ON K1H 8L6, Canada; [email protected] Abstract: To date, Yersinia pestis, Yersinia enterocolitica, and Yersinia pseudotuberculosis are the three Yersinia species generally agreed to be pathogenic in humans. However, there are a limited number of studies that suggest some of the “non-pathogenic” Yersinia species may also cause infections. For instance, Yersinia frederiksenii used to be known as an atypical Y. enterocolitica strain until rhamnose biochemical testing was found to distinguish between these two species in the 1980s. From our regional microbiology laboratory records of 18 hospitals in Eastern Ontario, Canada from 1 May 2018 to 1 May 2021, we identified two patients with Y. frederiksenii isolates in their stool cultures, along with their clinical presentation and antimicrobial management. Both patients presented with diarrhea, abdominal pain, and vomiting for 5 days before presentation to hospital. One patient received a 10-day course of sulfamethoxazole-trimethoprim; his Y. frederiksenii isolate was shown to be susceptible to amoxicillin-clavulanate, ceftriaxone, ciprofloxacin, and sulfamethoxazole- trimethoprim, but resistant to ampicillin. The other patient was sent home from the emergency department and did not require antimicrobials and additional medical attention. This case series illustrated that diarrheal disease could be associated with Y. frederiksenii; the need for antimicrobial treatment should be determined on a case-by-case basis. Keywords: Yersinia frederiksenii; Yersinia enterocolitica; yersiniosis; diarrhea; microbial sensitivity tests; Citation: Yeung, E.Y.H. A Case stool culture; sulfamethoxazole-trimethoprim; gastroenteritis Series of Diarrheal Diseases Associated with Yersinia frederiksenii.
    [Show full text]
  • Insights Into the Pathogenicity of Burkholderia Pseudomallei
    REVIEWS Melioidosis: insights into the pathogenicity of Burkholderia pseudomallei W. Joost Wiersinga*, Tom van der Poll*, Nicholas J. White‡§, Nicholas P. Day‡§ and Sharon J. Peacock‡§ Abstract | Burkholderia pseudomallei is a potential bioterror agent and the causative agent of melioidosis, a severe disease that is endemic in areas of Southeast Asia and Northern Australia. Infection is often associated with bacterial dissemination to distant sites, and there are many possible disease manifestations, with melioidosis septic shock being the most severe. Eradication of the organism following infection is difficult, with a slow fever-clearance time, the need for prolonged antibiotic therapy and a high rate of relapse if therapy is not completed. Mortality from melioidosis septic shock remains high despite appropriate antimicrobial therapy. Prevention of disease and a reduction in mortality and the rate of relapse are priority areas for future research efforts. Studying how the disease is acquired and the host–pathogen interactions involved will underpin these efforts; this review presents an overview of current knowledge in these areas, highlighting key topics for evaluation. Melioidosis is a serious disease caused by the aerobic, rifamycins, colistin and aminoglycosides), but is usually Gram-negative soil-dwelling bacillus Burkholderia pseu- susceptible to amoxicillin-clavulanate, chloramphenicol, domallei and is most common in Southeast Asia and doxycycline, trimethoprim-sulphamethoxazole, ureido- Northern Australia. Melioidosis is responsible for 20% of penicillins, ceftazidime and carbapenems2,4. Treatment all community-acquired septicaemias and 40% of sepsis- is required for 20 weeks and is divided into intravenous related mortality in northeast Thailand. Reported cases are and oral phases2,4. Initial intravenous therapy is given likely to represent ‘the tip of the iceberg’1,2, as confirmation for 10–14 days; ceftazidime or a carbapenem are the of disease depends on bacterial isolation, a technique that drugs of choice.
    [Show full text]
  • Histone Methylases As Novel Drug Targets. Focus on EZH2 Inhibition. Catherine BAUGE1,2,#, Céline BAZILLE 1,2,3, Nicolas GIRARD1
    Histone methylases as novel drug targets. Focus on EZH2 inhibition. Catherine BAUGE1,2,#, Céline BAZILLE1,2,3, Nicolas GIRARD1,2, Eva LHUISSIER1,2, Karim BOUMEDIENE1,2 1 Normandie Univ, France 2 UNICAEN, EA4652 MILPAT, Caen, France 3 Service d’Anatomie Pathologique, CHU, Caen, France # Correspondence and copy request: Catherine Baugé, [email protected], EA4652 MILPAT, UFR de médecine, Université de Caen Basse-Normandie, CS14032 Caen cedex 5, France; tel: +33 231068218; fax: +33 231068224 1 ABSTRACT Posttranslational modifications of histones (so-called epigenetic modifications) play a major role in transcriptional control and normal development, and are tightly regulated. Disruption of their control is a frequent event in disease. Particularly, the methylation of lysine 27 on histone H3 (H3K27), induced by the methylase Enhancer of Zeste homolog 2 (EZH2), emerges as a key control of gene expression, and a major regulator of cell physiology. The identification of driver mutations in EZH2 has already led to new prognostic and therapeutic advances, and new classes of potent and specific inhibitors for EZH2 show promising results in preclinical trials. This review examines roles of histone lysine methylases and demetylases in cells, and focuses on the recent knowledge and developments about EZH2. Key-terms: epigenetic, histone methylation, EZH2, cancerology, tumors, apoptosis, cell death, inhibitor, stem cells, H3K27 2 Histone modifications and histone code Epigenetic has been defined as inheritable changes in gene expression that occur without a change in DNA sequence. Key components of epigenetic processes are DNA methylation, histone modifications and variants, non-histone chromatin proteins, small interfering RNA (siRNA) and micro RNA (miRNA).
    [Show full text]
  • Detection of Tick-Borne Pathogens of the Genera Rickettsia, Anaplasma and Francisella in Ixodes Ricinus Ticks in Pomerania (Poland)
    pathogens Article Detection of Tick-Borne Pathogens of the Genera Rickettsia, Anaplasma and Francisella in Ixodes ricinus Ticks in Pomerania (Poland) Lucyna Kirczuk 1 , Mariusz Piotrowski 2 and Anna Rymaszewska 2,* 1 Department of Hydrobiology, Faculty of Biology, Institute of Biology, University of Szczecin, Felczaka 3c Street, 71-412 Szczecin, Poland; [email protected] 2 Department of Genetics and Genomics, Faculty of Biology, Institute of Biology, University of Szczecin, Felczaka 3c Street, 71-412 Szczecin, Poland; [email protected] * Correspondence: [email protected] Abstract: Tick-borne pathogens are an important medical and veterinary issue worldwide. Environ- mental monitoring in relation to not only climate change but also globalization is currently essential. The present study aimed to detect tick-borne pathogens of the genera Anaplasma, Rickettsia and Francisella in Ixodes ricinus ticks collected from the natural environment, i.e., recreational areas and pastures used for livestock grazing. A total of 1619 specimens of I. ricinus were collected, including ticks of all life stages (adults, nymphs and larvae). The study was performed using the PCR technique. Diagnostic gene fragments msp2 for Anaplasma, gltA for Rickettsia and tul4 for Francisella were ampli- fied. No Francisella spp. DNA was detected in I. ricinus. DNA of A. phagocytophilum was detected in 0.54% of ticks and Rickettsia spp. in 3.69%. Nucleotide sequence analysis revealed that only one species of Rickettsia, R. helvetica, was present in the studied tick population. The present results are a Citation: Kirczuk, L.; Piotrowski, M.; part of a large-scale analysis aimed at monitoring the level of tick infestation in Northwest Poland.
    [Show full text]
  • Sexually Transmitted Diseases Act)
    Europe’s journal on infectious disease epidemiology, prevention and control © Science Photo Special edition: Sexually transmitted infections August 2012 • Reports highlighting increasing trends of gonorrhoea and syphilis and the threat of drug-resistant gonorrhoea in Europe. www.eurosurveillance.org Editorial team Editorial advisors Based at the European Centre for Albania: Alban Ylli, Tirana Disease Prevention and Control (ECDC), Austria: Reinhild Strauss, Vienna 171 83 Stockholm, Sweden Belgium: Koen De Schrijver, Antwerp Telephone number Belgium: Sophie Quoilin, Brussels +46 (0)8 58 60 11 38 or +46 (0)8 58 60 11 36 Bosnia and Herzogovina: Nina Rodić Vukmir, Banja Luka Fax number Bulgaria: Mira Kojouharova, Sofia +46 (0)8 58 60 12 94 Croatia: TBC, Zagreb Cyprus: Chrystalla Hadjianastassiou, Nicosia E-mail Czech Republic: Bohumir Križ, Prague [email protected] Denmark: Peter Henrik Andersen, Copenhagen Editor-in-chief England and Wales: TBC, London Ines Steffens Estonia: Kuulo Kutsar, Tallinn Finland: Outi Lyytikäinen, Helsinki Scientific editors France: Judith Benrekassa, Paris Kathrin Hagmaier Germany: Jamela Seedat, Berlin Williamina Wilson Greece: Rengina Vorou, Athens Karen Wilson Hungary: Ágnes Csohán, Budapest Assistant editors Iceland: Haraldur Briem, Reykjavik Alina Buzdugan Ireland: Lelia Thornton, Dublin Ingela Söderlund Italy: Paola De Castro, Rome Associate editors Kosovo (under UNSCR 1244/99): Lul Raka, Pristina Andrea Ammon, Stockholm, Sweden Latvia: Jurijs Perevoščikovs, Riga Tommi Asikainen, Frankfurt, Germany
    [Show full text]
  • Identification and Characterization of Putative Nucleomodulins in Mycobacterium Tuberculosis
    IDENTIFICATION AND CHARACTERIZATION OF PUTATIVE NUCLEOMODULINS IN MYCOBACTERIUM TUBERCULOSIS Abstract The nuclear targeting of bacterial proteins that modify host cell gene expression, the so- called nucleomodulins, has emerged as a novel mechanism contributing to virulence of several intracellular pathogens. The goal of this study was to identify nucleomodulins produced by Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), and to investigate their role upon infection of the host. We first performed a screening of Mtb genome in search of genes encoding proteins with putative eukaryotic-like nuclear localization signals (NLS). We identified two genes of Mtb, Rv0229c and Rv3876, encoding proteins that are secreted in the medium by Mtb and are localized into the nucleus when expressed in epithelial cells or in human or murine macrophages. The NLSs of these two proteins were identified and found to be essential for their nuclear localization. The gene Rv0229c, a putative RNase, is present only in pathogen species of the Mtb complex and seems to have been recently acquired by horizontal gene transfer (HGT). Rv3876 appears more widely distributed in mycobacteria, and belongs to a chromosomal region encoding proteins of the type VII secretion system ESX1, essential for virulence. Ongoing studies are currently investigating the dynamics of these proteins upon infection of host cells, and their putative role in the modulation of host cell gene expression and Mtb virulence. ii IDENTIFICATION ET CARACTERISATION DE NUCLEOMODULINES PUTATIVES CHEZ LA BACTERIE MYCOBACTERIUM TUBERCULOSIS Résumé Les nucléomodulines sont des protéines produites par des bactéries parasites intracellulaires et qui sont importées dans le noyau des cellules infectées pour y moduler l’expression génique et contribuer ainsi à la virulence de la bactéries.
    [Show full text]
  • Exploration of Tick-Borne Pathogens and Microbiota of Dog Ticks Collected at Potchefstroom Animal Welfare Society
    Exploration of tick-borne pathogens and microbiota of dog ticks collected at Potchefstroom Animal Welfare Society C Van Wyk orcid.org 0000-0002-5971-4396 Dissertation submitted in fulfilment of the requirements for the degree Master of Science in Environmental Sciences at the North-West University Supervisor: Prof MMO Thekisoe Co-supervisor: Ms K Mtshali Graduation May 2019 24263524 DEDICATION This thesis is dedicated to the late Nettie Coetzee. For her inspiration and lessons to overcome any obstacle that life may present. God called home another angel we all love and miss you. “We are the scientists, trying to make sense of the stars inside us.” -Christopher Poindexter i ACKNOWLEDGEMENTS My sincerest appreciation goes out to my supervisor, Prof. Oriel M.M. Thekisoe, for his support, motivation, guidance, and insightfulness during the duration of this project and been there every step of the way. I would also like to thank my co-supervisor, Ms. Khethiwe Mtshali, for her patience and insightfulness towards the corrections of this thesis. I would like to thank Dr. Stalone Terera and the staff members at PAWS for their aid towards the collection of tick specimens. For the sequencing on the Illumina MiSeq platform and metagenomic data analysis I would like to thank Dr. Moeti O. Taioe, Dr. Charlotte M.S. Mienie, Dr. Danie C. La Grange, and Dr. Marlin J. Mert. I would like to thank the National Research Foundation (NRF) for their financial support by awarding me the S&F- Innovation Masters Scholarship and the North-West University (NWU) for the use of their laboratories.
    [Show full text]