3 Periodic Trends

Total Page:16

File Type:pdf, Size:1020Kb

3 Periodic Trends C.5C: Periodic Trends Matter and the Periodic Table Periodic Trends 3 C.5C: Periodic Trends Matter and the Periodic Table Atomic Radii Periodic Trends 2 C.5C: Periodic Trends Matter and the Periodic Table Ionic Radii Periodic Trends 1 Periodic Trends Matter and the Periodic Table Periodic Table 1 Periodic Trends Matter and the Periodic Table Periodic Table 1 Periodic Table Trends Practice Question Each rectangle represents the Periodic Table. Label one rectangle “Atomic Radii”, one rectangle “Ionic Radii”, one rectangle “Electronegativity/Electron Affinity”, and one rectangle “Ionization Energy”. Draw TWO arrows on each labeled indicating the trends. **Indicate if the arrow is increasing or decreasing. Example Increasing Valance Electrons Match each of the four trends listed to its description by writing the correct letter of the description next to the trend’s name. Trends _____ Ionic Radius _____ Electronegativity _____ Ionization Energy _____ Atomic Radius Descriptions A. The amount of energy needed to remove an electron from a neutral atom B. The radius of a neutral atom C. The radius of a positive or negative ion D. The ability of an element to attract electrons when forming a chemical bond Answer the following questions using your notes as a guide. 1. Which element below has the smallest atomic radius? _______________ Beryllium(Be) Oxygen(O) Sodium(Na) Fluorine(F) 2. Which element below has the smallest ionic radius? _________________ Lithium(Li) Sodium(Na) Rubidium(Rb) Potassium(K) 3. Which element below has the lowest electronegativity? ______________ Calcium(Ca) Gallium(Ga) Selenium(Se) Bromine(Br) 4. Which element below has the highest ionization energy? _____________ Strontium(Sr) Beryllium(Be) Magnesium(Mg) Calcium(Ca) 5. Which element has the highest electronegativity on the Periodic Table? 6. Which representative element has the largest atomic radius? 7. Place the elements below in order of decreasing ionization energy. Aluminum(Al) Chlorine(Cl) Magnesium(Mg) Sulfur (S) [largest] __________ __________ __________ __________ [smallest] 8. Place the elements in order of increasing atomic radius. Gallium(Ga) Nitrogen(N) Indium(In) Tellurium(Te) [smallest] __________ __________ __________ __________ [largest] 9. Choose which of the two is larger, the atom or its ion. A. Magnesium atom (Mg) OR Magnesium ion (Mg2+) ________________ B. Oxygen atom (O) OR Oxygen ion (O2-) ________________ .
Recommended publications
  • Modeling the Shape of Ions in Pyrite-Type Crystals
    Crystals 2014, 4, 390-403; doi:10.3390/cryst4030390 OPEN ACCESS crystals ISSN 2073-4352 www.mdpi.com/journal/crystals Article Modeling the Shape of Ions in Pyrite-Type Crystals Mario Birkholz IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany; E-Mail: [email protected]; Tel.: +49-335-56250 Received: 13 April 2014; in revised form: 22 August 2014 / Accepted: 26 August 2014 / Published: 3 September 2014 Abstract: The geometrical shape of ions in crystals and the concept of ionic radii are re-considered. The re-investigation is motivated by the fact that a spherical modelling is justified for p valence shell ions on cubic lattice sites only. For the majority of point groups, however, the ionic radius must be assumed to be an anisotropic quantity. An appropriate modelling of p valence ions then has to be performed by ellipsoids. The approach is tested for pyrite-structured dichalcogenides MX2, with chalcogen ions X = O, S, Se and Te. The latter are found to exhibit the shape of ellipsoids being compressed along the <111> symmetry axes, with two radii r|| and describing their spatial extension. Based on this ansatz, accurate interatomic M–X distances can be derived and a consistent geometrical model emerges for pyrite-structured compounds. Remarkably, the volumes of chalcogen ions are found to vary only little in different MX2 compounds, suggesting the ionic volume rather than the ionic radius to behave as a crystal-chemical constant. Keywords: ionic radius; ionic shape; bonding distance; ionic volume; pyrite-type compounds; di-chalcogenides; di-oxides; di-sulfides; di-selenides; di-tellurides 1.
    [Show full text]
  • A Study of the Hydration of the Alkali Metal Ions in Aqueous Solution
    Article pubs.acs.org/IC A Study of the Hydration of the Alkali Metal Ions in Aqueous Solution Johan Mahler̈ and Ingmar Persson* Department of Chemistry, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden *S Supporting Information ABSTRACT: The hydration of the alkali metal ions in aqueous solution has been studied by large angle X-ray scattering (LAXS) and double difference infrared spectroscopy (DDIR). The structures of the dimethyl sulfoxide solvated alkali metal ions in solution have been determined to support the studies in aqueous solution. The results of the LAXS and DDIR mea- surements show that the sodium, potassium, rubidium and cesium ions all are weakly hydrated with only a single shell of water molecules. The smaller lithium ion is more strongly hydrated, most probably with a second hydration shell present. The influence of the rubidium and cesium ions on the water structure was found to be very weak, and it was not possible to quantify this effect in a reliable way due to insufficient separation of the O−D stretching bands of partially deuterated water bound to these metal ions and the O−D stretching bands of the bulk water. Aqueous solutions of sodium, potassium and cesium iodide and cesium and lithium hydroxide have been studied by LAXS and M−O bond distances have been determined fairly accurately except for lithium. However, the number of water molecules binding to the alkali metal ions is very difficult to determine from the LAXS measurements as the number of distances and the temperature factor are strongly correlated.
    [Show full text]
  • CHEM 1A03 UNIT 3: Periodic Trends Introduction
    CHEM 1A03 UNIT 3: Periodic Trends Introduction Hey! Thanks for opening up this Chemistry Periodic Trends Review! The education team at WebStraw McMaster has put together a comprehensive breakdown for you that covers all the key concepts for Chemistry Periodic Trends Members of our team have taken the course in previous years, and we understand better than anyone else what specific ideas and concepts tend to trip students up throughout the semester. We are essentially offering you the key takeaways from the course, after having completed the course ourselves. Before you read further, also keep in mind that these review packages are not meant to be a tool for you to learn the course from scratch. The content presented below was designed with the assumption that you already have a preliminary understanding of Periodic Trends. Our goal is to help give you a more in-depth understanding of key outcomes, as well as to help you see how concepts relate/connect to one another within the scope of the course as a whole. We do our best to cover every topic within the unit; however, some testable outcomes may not be discussed. With that said, best of luck in your studying! Remember to make good use of your time, but to also take breaks as well. Yousef Abumustafa & Julia Ma The WebStraw McMaster Chemistry team WebStraw McMaster Periodic properties of elements The periodic table is divided into called columns called groups that group elements with similar chemical/physical properties together and rows called periods that group elements with the same
    [Show full text]
  • Atomic and Ionic Radii of Elements 1–96 Martinrahm,*[A] Roald Hoffmann,*[A] and N
    DOI:10.1002/chem.201602949 Full Paper & Elemental Radii Atomic and Ionic Radii of Elements 1–96 MartinRahm,*[a] Roald Hoffmann,*[a] and N. W. Ashcroft[b] Abstract: Atomic and cationic radii have been calculated for tive measureofthe sizes of non-interacting atoms, common- the first 96 elements, together with selected anionicradii. ly invoked in the rationalization of chemicalbonding, struc- The metric adopted is the average distance from the nucleus ture, and different properties. Remarkably,the atomic radii where the electron density falls to 0.001 electrons per bohr3, as defined in this way correlate well with van der Waals radii following earlier work by Boyd. Our radii are derived using derived from crystal structures. Arationalizationfor trends relativistic all-electron density functional theory calculations, and exceptionsinthose correlations is provided. close to the basis set limit. They offer asystematic quantita- Introduction cule,[2] but we prefer to follow through with aconsistent pic- ture, one of gauging the density in the atomic groundstate. What is the size of an atom or an ion?This question has been The attractivenessofdefining radii from the electron density anatural one to ask over the centurythat we have had good is that a) the electron density is, at least in principle, an experi- experimental metricinformation on atoms in every form of mental observable,and b) it is the electron density at the out- matter,and (more recently) reliable theory for thesesame ermost regionsofasystem that determines Pauli/exchange/ atoms. And the momentone asks this question one knows same-spinrepulsions, or attractive bondinginteractions, with that there is no unique answer.Anatom or ion coursing down achemical surrounding.
    [Show full text]
  • Periodic Trends and the S-Block Elements”, Chapter 21 from the Book Principles of General Chemistry (Index.Html) (V
    This is “Periodic Trends and the s-Block Elements”, chapter 21 from the book Principles of General Chemistry (index.html) (v. 1.0M). This book is licensed under a Creative Commons by-nc-sa 3.0 (http://creativecommons.org/licenses/by-nc-sa/ 3.0/) license. See the license for more details, but that basically means you can share this book as long as you credit the author (but see below), don't make money from it, and do make it available to everyone else under the same terms. This content was accessible as of December 29, 2012, and it was downloaded then by Andy Schmitz (http://lardbucket.org) in an effort to preserve the availability of this book. Normally, the author and publisher would be credited here. However, the publisher has asked for the customary Creative Commons attribution to the original publisher, authors, title, and book URI to be removed. Additionally, per the publisher's request, their name has been removed in some passages. More information is available on this project's attribution page (http://2012books.lardbucket.org/attribution.html?utm_source=header). For more information on the source of this book, or why it is available for free, please see the project's home page (http://2012books.lardbucket.org/). You can browse or download additional books there. i Chapter 21 Periodic Trends and the s-Block Elements In previous chapters, we used the principles of chemical bonding, thermodynamics, and kinetics to provide a conceptual framework for understanding the chemistry of the elements. Beginning in Chapter 21 "Periodic Trends and the ", we use the periodic table to guide our discussion of the properties and reactions of the elements and the synthesis and uses of some of their commercially important compounds.
    [Show full text]
  • Periodic Activity of Metals Periodic Trends and the Properties of the Elements SCIENTIFIC
    Periodic Activity of Metals Periodic Trends and the Properties of the Elements SCIENTIFIC Introduction Elements are classified based on similarities, differences, and trends in their properties, including their chemical reactions. The reactions of alkali and alkaline earth metals with water are pretty spectacular chemical reactions. Mixtures bubble and boil, fizz and hiss, and may even smoke and burn. Introduce the study of the periodic table and periodic trends with this exciting demonstration of the activity of metals. Concepts • Alkali and alkaline earth metals • Periodic table and trends • Physical and chemical properties • Metal activity Materials Calcium turnings, Ca, 0.3 g Beaker, Berzelius (tall-form), Pyrex®, 500-mL, 4 Lithium metal, Li, precut piece Forceps or tongs Magnesium ribbon, Mg, 3-cm Knife (optional) Sodium metal, Na, precut piece Petri dishes, disposable, 4 Phenolphthalein, 1% solution, 2 mL Scissors Water, distilled or deionized, 600 mL Safety Precautions Lithium and sodium are flammable, water-reactive, corrosive solids; dangerous when exposed to heat or flame. They react violently with water to produce flammable hydrogen gas and solutions of corrosive metal hydroxides. Hydrogen gas may be released in sufficient quantities to cause ignition. Do NOT “scale up” this demonstration using larger pieces of sodium or lithium! These metals are shipped in dry mineral oil. Store them in mineral oil until immediately before use. Do not allow these metals to stand exposed to air from one class period to another or for extended periods of time. Purchasing small, pre-cut pieces of lithium and sodium greatly reduces their potential hazard. Calcium metal is flammable in finely divided form and reacts upon contact with water to give flammable hydrogen gas and corrosive calcium hydroxide.
    [Show full text]
  • CHEMISTRY 130 Periodic Trends
    CHEMISTRY 130 General Chemistry I Periodic Trends Elements within a period or group of the periodic table often show trends in physical and chemical properties. The variation in relative sizes of the halogens is shown above. DEPARTMENT OF CHEMISTRY UNIVERSITY OF KANSAS 1 Periodic Trends Introduction In the modern periodic table (shown below in Figure 1), elements are arranged according to increasing atomic number in horizontal rows called “periods.” In Figure 1, atomic numbers, which represent the number of protons in an atom of a given element, are listed directly above the element symbols. Figure 1: The modern periodic table. Elements in boxes shaded blue, orange, and purple are characterized as metals, metalloids, and nonmetals, respectively. The structure of the periodic table is such that elements with similar properties are aligned vertically in columns called “groups” or “families.” As indicated in Figure 1, each group has a number (1-18) associated with it. Select groups have also been assigned special names. For instance, the elements in Group 1 (hydrogen excluded) are called the alkali metals. These metallic elements react with oxygen to form bases. They also form alkaline (basic) solutions when mixed with water. Elements in other columns of the periodic table have also been given special “family” names. For instance, the elements in Groups 2, 11 (Cu, Ag, and Au), 16, 17, and 18 are commonly referred to as the alkaline earth metals, the coinage metals, the chalcogens, the halogens, and the noble gases, respectively. Many of these names reflect, unsurprisingly, the reactivity (or the lack thereof) of the elements found within the given group.
    [Show full text]
  • Periodic Trends
    Periodic Trends There are three main properties of atoms that we are concerned with. Ionization Energy- the amount of energy need to remove an electron from an atom. Atomic Radius- the estimate of atomic size based on covalent bonding. Electron Affinity- the amount of energy absorbed or released when an atom gains an electron. All three properties have regularly varying trends we can identify in the periodic table and all three properties can be explained using the same properties of electronic structure. Explaining Periodic Trends All of the atomic properties that we are interested in are caused by the attractive force between the positively charged nucleolus and the negatively charged electrons. We need to consider what would affect that relationship. The first thing to consider is the effective nuclear charge. We need to look at the number of protons. Secondly we will need to look at the nucleolus - electron distance and the electron shielding. Lastly we will need to consider electron - electron repulsion. Ionization Energy As we move across a period the general trend is an increase in IE. However when we jump to a new energy level the distance increases and the amount of e-- shielding increases dramatically. Reducing the effective nuclear charge. In addition to the over all trend we need to explain the discrepancies. The discrepancies can be explained by either electron shielding or by electron electron repulsion. 1 Atomic Radius The trend for atomic radius is to decrease across a period and to increase down a family. These trends can be explained with the same reasons as IE.
    [Show full text]
  • Periodic Trends Remember from the "Periodic Table" Notes
    November 07, 2014 Periodic Trends Remember from the "Periodic Table" Notes... • The periodic table is a tabular display of the chemical elements, organized by their atomic number, electron configuration, and recurring properties. • Periodic law: There is a periodic repetition of chemical and physical properties of the elements when they are arranged by increasing atomic number November 07, 2014 Atomic Radius Graph • What are some initial observations about the atomic radius data/graph? • What is atomic radius? November 07, 2014 Go finish the rest of the worksheet with your group! You have 20 minutes. November 07, 2014 Atomic Radius Trend Discussion • What happens to atomic radius as you go across the period? Why? • What happens to atomic radius as you go down the group? Why? November 07, 2014 Periodic Trends Notes Get your handout out! November 07, 2014 Why is it called a periodic table? • The properties of the elements in the table repeat in a "periodic" way (specific pattern). • Periodic law: There is a periodic repetition of chemical and physical properties of the elements when they are arranged by increasing atomic number • The modern periodic table is arranged by > atomic number = # of protons > properties > electron configuration November 07, 2014 Periodic Law • Now lets look at some properties of elements > We looked at some of these in "Meet My Family"! Alkali Metals Halogens November 07, 2014 Periodic Trends • Chemical properties of elements are determined by their electron configuration. • Properties are periodic because the number of valence electrons is periodic. November 07, 2014 Electron Configuration and the Periodic Table • Remember electrons are found in atomic orbitals > Principle energy level (n, shells) tells us the relative size and energy of atomic orbitals.
    [Show full text]
  • Periodic Trends: Electronegativity Answers. Name
    Periodic trends: Electronegativity answers. Name _______________________________________ 1. What is the electronegativity of an element? It is the tendency of a bonded atom to accept or to donate an electron. 2. Is the “electronegativity” the same thing as the “electron affinity”? No, the electronegativity relates to bonded atoms and their tendency to attract electrons. Electron affinity has to do with an unbonded atom in the gaseous phase becoming an anion. 3. Do you think that the electron affinity might have any impact on the electronegativity? Yes, if an element has a higher electron affinity, it is reasonable to assume it will have a higher electronegativity. Energy is released when you add an electron to elements with a high electron affinity. They should be more apt to attract electrons from a less electronegative element. 4. Robert Mulliken developed the following equation to quantify electronegativity based on atomic properties: EN = (IE + EA)/2, where EN = electronegativity, IE = ionization energy, and EA = electron affinity. Does this equation make sense based on what you know about ionization energy and electron affinity? Explain. A higher IE means that it is more difficult to get an electron away from an atom. A higher EA means that it is easier to put an extra electron onto an atom. If you add a high IE to a large EA, then you end up with a high electronegativity. Both a high EA and IE indicate an atom that strongly attracts electrons, which is consistent with an electronegative element. 5. Make a prediction about the trend you expect to see in electronegativity: a.
    [Show full text]
  • Lawrence Berkeley Laboratory· UNIVERSITY of CALIFORNIA'
    LBL-37435 UC-800 Lawrence Berkeley Laboratory· UNIVERSITY OF CALIFORNIA' To be published as a chapter in Frontiers in Nuclear Chemistry, D.D. Sood, Ed., Indian Association of Nuclear Chemists and Allied Scientists, Bombay, India, 1995 Summary of the Properties of the Lanthanide and Actinide Elements G.T. Seaborg and D.E. Hobart June 1995 --- :0 I'T1 ..(") em'"T1 -,o::c oCDm S::III:Z _. (") QI:ZI'T1 r+~(") CD 0 "'0 CD_. -< c.--- CQ. r­ t:Dr- 1 w...... ~ w U1 Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098 DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United .States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately ()wned rights. Reference he~ein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California.
    [Show full text]
  • Periodic Trends 2015.Notebook October 13, 2016
    periodic trends 2015.notebook October 13, 2016 Periodic Trends objectives: (#2­3) How do the properties of electrons and the electron shells contribute to the periodic trends? 1. (#2­3a) I can determine how gaining or losing electrons affects the atomic radius justified by Coulomb's Law and orbital structure. 2. (#2­3b) I can determine how gaining or losing protons affects the atomic radius justified by Coulomb's Law and orbital structure. 3. (#2­3c) I can determine how gaining or losing electrons affects the ionization energy justified by Coulomb's Law and orbital structure. 4. (#2­3d) I can determine how gaining or losing protons affects the ionization energy justified by Coulomb's Law and orbital structure. 5. (#2­3e) I can determine whether an atom is more or less reactive then another justified by Coulomb's Law and orbital structure. Atomic Radius Ionization Energy Reactivity Oct 4­5:28 AM 1 periodic trends 2015.notebook October 13, 2016 Coulomb's Law basis stability of atoms and ions and periodic trends 2 variables: distance and charges Distance: Charge: The greater the charges are, the stronger the force of attraction F = Force q = charge of a particle, need + and ­ to attract r = radius (distance) k = constant protons/nucleus ­­ like a "beacon" sending out a positive charge to attract e­ electron charge does not change move closer or farther away depending on the amount of charge from the nucleus Oct 15­1:31 PM 2 periodic trends 2015.notebook October 13, 2016 Atomic Radius Distance between center and outer electron What do the
    [Show full text]