Philosophers at War
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Attempts to Measure Annual Stellar Parallax
ATTEMPTS TO MEASURE ANNUAL STELLAR PARALLAX HOOKE TO BESSEL by MARI ELEN WYN WILLIAMS A thesis submitted for the degree of Doctor of Philosophy of the University of London Department of Humanities Imperial College August 19 81 ABSTRACT One of the most obvious consequences of the Copernican theory is that the stars should appear to have shifted slightly when observed from the Earth at opposite ends of its orbit around the Sun. The angle through which the star appears to move is a measure of its annual parallax, a knowledge of which enables astronomers to calculate stellar distances. Parallactic angles, even of the nearest stars, are very small and despite many claims to have measured such an angle, three hundred years elapsed between the publication of Copernicusfs theory in 1543 and the production of acceptable values of annual stellar parallax in the 1830s. In this thesis I trace the development of interest in the problem of the detection of parallax through the period between HookeTs pioneering attempt in the 1660s to design and build an instrument specifically to measure parallax, and the eventual publication by Bessel in 1838 of the widely accepted value for the parallax of the double star 61 Cygni. The production of suitable instruments was essential for the successful measurement of parallax, and I outline the main developments in telescope design. However, good instrumentation alone was not enough; in addition astronomers had to be prepared to devote their time to making very precise observations of carefully selected stars over a period of at least a year. Also, it was vital to develop effective methods of analysing the data once they had been accumulated. -
Newton.Indd | Sander Pinkse Boekproductie | 16-11-12 / 14:45 | Pag
omslag Newton.indd | Sander Pinkse Boekproductie | 16-11-12 / 14:45 | Pag. 1 e Dutch Republic proved ‘A new light on several to be extremely receptive to major gures involved in the groundbreaking ideas of Newton Isaac Newton (–). the reception of Newton’s Dutch scholars such as Willem work.’ and the Netherlands Jacob ’s Gravesande and Petrus Prof. Bert Theunissen, Newton the Netherlands and van Musschenbroek played a Utrecht University crucial role in the adaption and How Isaac Newton was Fashioned dissemination of Newton’s work, ‘is book provides an in the Dutch Republic not only in the Netherlands important contribution to but also in the rest of Europe. EDITED BY ERIC JORINK In the course of the eighteenth the study of the European AND AD MAAS century, Newton’s ideas (in Enlightenment with new dierent guises and interpre- insights in the circulation tations) became a veritable hype in Dutch society. In Newton of knowledge.’ and the Netherlands Newton’s Prof. Frans van Lunteren, sudden success is analyzed in Leiden University great depth and put into a new perspective. Ad Maas is curator at the Museum Boerhaave, Leiden, the Netherlands. Eric Jorink is researcher at the Huygens Institute for Netherlands History (Royal Dutch Academy of Arts and Sciences). / www.lup.nl LUP Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. 1 Newton and the Netherlands Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. 2 Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. -
John Keble's Parishes a History of Hursley and Otterbourne
John Keble's Parishes: A History Of Hursley And Otterbourne By Charlotte M. Yonge John Keble's Parishes: A History Of Hursley And Otterbourne CHAPTER I - MERDON AND OTTERBOURNE The South Downs of England descend at about eight miles from the sea into beds of clay, diversified by gravel and sand, and with an upper deposit of peaty, boggy soil, all having been brought down by the rivers of which the Itchen and the Test remain. On the western side of the Itchen, exactly at the border where the chalk gives way to the other deposits, lies the ground of which this memoir attempts to speak. It is uneven ground, varied by undulations, with gravelly hills, rising above valleys filled with clay, and both alike favourable to the growth of woods. Fossils of belemnite, cockles (cardium), and lamp-shells (terebratula) have been found in the chalk, and numerous echini, with the pentagon star on their base, are picked up in the gravels and called by the country people Shepherds’ Crowns - or even fossil toads. Large boulder stones are also scattered about the country, exercising the minds of some observers, who saw in certain of them Druidical altars, with channels for the flow of the blood, while others discerned in these same grooves the scraping of the ice that brought them down in the Glacial age. But we must pass the time when the zoophytes were at work on our chalk, when the lamp-shells rode at anchor on shallow waves, when the cockles sat “at their doors in a rainbow frill,” and the belemnites spread their cuttlefish arms to the sea, and darkened the water for their enemies with their store of ink. -
Newton's Mathematical Physics
Isaac Newton A new era in science Waseda University, SILS, Introduction to History and Philosophy of Science LE201, History and Philosophy of Science Newton . Newton’s Legacy Newton brought to a close the astronomical revolution begun by Copernicus. He combined the dynamic research of Galileo with the astronomical work of Kepler. He produced an entirely new cosmology and a new way of thinking about the world, based on the interaction between matter and mathematically determinate forces. He joined the mathematical and experimental methods: the hypothetico-deductive method. His work became the model for rational mechanics as it was later practiced by mathematicians, particularly during the Enlightenment. LE201, History and Philosophy of Science Newton . William Blake’s Newton (1795) LE201, History and Philosophy of Science Newton LE201, History and Philosophy of Science Newton . Newton’s De Motu coporum in gyrum Edmond Halley (of the comet) visited Cambridge in 1684 and 1 talked with Newton about inverse-square forces (F 9 d2 ). Newton stated that he has already shown that inverse-square force implied an ellipse, but could not find the documents. Later he rewrote this into a short document called De Motu coporum in gyrum, and sent it to Halley. Halley was excited and asked for a full treatment of the subject. Two years later Newton sent Book I of The Mathematical Principals of Natural Philosophy (Principia). Key Point The goal of this project was to derive the orbits of bodies from a simpler set of assumptions about motion. That is, it sought to explain Kepler’s Laws with a simpler set of laws. -
(2018), No. 10 1 Seeing the Light: Being The
Seeing the Light: Being the story of Sir Isaac Newton’s prisms and papers and the means by which they came to New College ‘In the sun’s light let into my darkened chamber through a small round hole … in my window-shutter … I placed a lens … then immediately behind the lens I placed a prism … by which the projected light might be refracted either upwards or sidewise …’ Opticks (1704), Prop. IV, Prob. I, Exper. II Prologue It is one of the most famous images held in the antiquarian collections of New College Library, known around the world and reproduced in countless books and articles—the diagram hand-drawn by Sir Isaac Newton (1642–1727) illustrating his experiments into optics and the refraction of white light into the colours of the spectrum when channelled through a prism. It is such a well-known picture that seeing the original sketch (for that, essentially, is what it is), as opposed to a reproduction, can have a profound effect on people—this author, for example, has witnessed at least one school science teacher reduced to tears in its presence! The drawing is contained within the second of four bound volumes of Newton’s papers (New College MS 361/1- 361/4). Amongst these papers are to be found drafts of his writings on theology and historical/biblical chronology, including A short chronicle from the first memory of things in Europe to the conquest of Persia by Alexander the Great (datable to 1701-2 and later), along with drafts and notes for The original of monarchies (1701-2 and later). -
Reposs #19: Newtonianism in the Scandinavian Countries, 1690–1790
RePoSS: Research Publications on Science Studies RePoSS #19: Newtonianism in the Scandinavian Countries, 1690–1790 Helge Kragh August 2012 Centre for Science Studies, University of Aarhus, Denmark Research group: History and philosophy of science Please cite this work as: Helge Kragh (Aug. 2012). Newtonianism in the Scandinavian Countries, 1690–1790. RePoSS: Research Publications on Sci- ence Studies 19. Aarhus: Centre for Science Studies, University of Aarhus. url: http://www.css.au.dk/reposs. Copyright c Helge Kragh, 2012 1 Newtonianism in the Scandinavian Countries, 1690-1790 HELGE KRAGH 1 Introduction In the present context, the Scandinavian countries refer to two national or administrative units, the one being Denmark and the other Sweden. In the period here considered, largely the century from 1690 to 1790, ‘Denmark’ means really Denmark-Norway, for until 1814 Norway was part of the double monarchy ruled by the king and his government in Copenhagen. It should also be kept in mind that parts of what is today Germany, namely Schleswig-Holstein, belonged to the kingdom. However, as far as language and culture were concerned, these parts of southern Denmark were more German than Danish, and they played no important role in the scientific life of the kingdom. Sweden covered a much larger geographical area than it does today. The country had expanded greatly during the seventeenth century, when not only Finland but also parts of the Baltic area and northern Germany came under Swedish rule. About 1720, after the Great Northern War, Sweden lost most of its possessions, but the major part of Finland remained as part of the country until Centre for Science Studies, Department of Physics and Astronomy, Aarhus University, Denmark. -
Newtonianism and the Physics of Du Châtelet's Institutions De Physique
To appear in: Collected Wisdom of the Early Modern Scholar: Essays in Honor of Mordechai Feingold, eds. Anna Marie Roos and Gideon Manning. Newtonianism and the physics of Du Châtelet’s Institutions de physique Marius Stan This paper is about two things that cross paths. One is the many senses of the category ‘Newtonian,’ and their uses for exegesis. The other is the phys- ics that Emilie du Châtelet grounded philosophically around 1740 in her book, Institutions de physique. I offer it as a tribute to Moti Feingold’s mag- isterial work on how the century after Newton responded to his science. I begin with some context. Many have described Institutions as a work of Leibnizian foundations for Newtonian science. An inspiring image, no doubt, but is it accurate? I argue here that it is not: little physics in her book is really Newtonian. Most of her physics is from figures before Newton; and even when she includes his results, du Châtelet filters them through demonstrably un-Newtonian ideas. So, we must abandon the conventional wisdom about her science.1 1 In the 20th century, the dominant view became that Institutions is concerned with “merg- ing Leibnizianism and Newtonianism”; is a “marriage between Leibnizian metaphysics and Newtonian science”; is an “introduction to Newtonian physics” attesting du Châtelet’s conversion to “Leibnizian metaphysics”; mediates “between Leibniz and Newton”; is a landmark document in the “history of French Newtonianism” and yet “framed according to Leibnizian principles.” Allegedly it is a “fusion of Newton, Descartes, and Leibniz,” and it synthesizes “Newtonian physics” and “Leibnizian metaphysics.” So pervasive is it that it has seeped into the broader consciousness of Anglophone academia. -
Maty's Biography of Abraham De Moivre, Translated
Statistical Science 2007, Vol. 22, No. 1, 109–136 DOI: 10.1214/088342306000000268 c Institute of Mathematical Statistics, 2007 Maty’s Biography of Abraham De Moivre, Translated, Annotated and Augmented David R. Bellhouse and Christian Genest Abstract. November 27, 2004, marked the 250th anniversary of the death of Abraham De Moivre, best known in statistical circles for his famous large-sample approximation to the binomial distribution, whose generalization is now referred to as the Central Limit Theorem. De Moivre was one of the great pioneers of classical probability the- ory. He also made seminal contributions in analytic geometry, complex analysis and the theory of annuities. The first biography of De Moivre, on which almost all subsequent ones have since relied, was written in French by Matthew Maty. It was published in 1755 in the Journal britannique. The authors provide here, for the first time, a complete translation into English of Maty’s biography of De Moivre. New mate- rial, much of it taken from modern sources, is given in footnotes, along with numerous annotations designed to provide additional clarity to Maty’s biography for contemporary readers. INTRODUCTION ´emigr´es that both of them are known to have fre- Matthew Maty (1718–1776) was born of Huguenot quented. In the weeks prior to De Moivre’s death, parentage in the city of Utrecht, in Holland. He stud- Maty began to interview him in order to write his ied medicine and philosophy at the University of biography. De Moivre died shortly after giving his Leiden before immigrating to England in 1740. Af- reminiscences up to the late 1680s and Maty com- ter a decade in London, he edited for six years the pleted the task using only his own knowledge of the Journal britannique, a French-language publication man and De Moivre’s published work. -
Family of Newton
@rnralogtcal ~tmoranba RELATING TO THE FAMILY OF NEWTON. ~tibattl~ ~tintelJ. LONDON: TAYLOR AND CO,, PRINTERS, LITTLE QUEEN STREET, W,C, 1871; PEDIGREE OF NEWTON. Oopied from an ent'l'!f made by Sir Isaac Newton, 2 D 14 in tke College of .Arms, witk additions b9 tke Rev. Jol,,n Mi'J'ekouse, Rector qf Oolsterwortk. John Newton, of Westby in the County of Lincoln in Basingthorp Parish, first mentioned in the Visit. of Lincoln in the year 1634. =;= . I I I I . Thomas Newton of John Newton of Richard Newton William Newton~ of ,Anne daugh- ... 2nd son of John West by aforesaid 3rd son of John Gunnerby in the ter of .•. Newton aforesaid. by deed dated 19th Newton, what County of Lincoln Kellum in What became of him, December 1562 became of him, 4th son of John the county of or his descendants, buried in Westby or his descen- baptized at Westby Lincoln is not yet kuown. Church 22nd Dec. dants, is not yet 30th August 1541. [ ... Kelham [Probably buried at 1563. as appears by known. as appears by the of Ropsley J. Colsterworth as a the register of that Reg. and was Grand Thomas Newton was · church, son and father of John buried there Feb. 20. heir of John afore Newton, mentioned 1572.] said, and who pur• in the said Visitation chased an estate at of Lincoln to have W olstrope in Colster• been 8 years old in worth parish in the the year 1634 and said county. who was afterwards r Baronet. I [Thomas Newton of Gonerby bur. -
Accounts of Debates in the House of Commons, March–April 1731, Supplementary to the Diary of the First Earl of Egmont
Accounts of Debates in the House of Commons, March–April 1731, Supplementary to the Diary of the First Earl of Egmont D. W. Hayton Introduction John Perceval (1683–1748), fourth baronet, of Burton Hall, near Kanturk in County Cork, created first Baron Perceval (in 1715), first Viscount Perceval (1723) and first Earl of Egmont (1733) in the Irish peerage, sat in the British House of Commons for the government borough of Harwich in the parliament of 1727–34, and left to posterity a diary containing accounts of debates in the Commons which constitute the best source for parliamentary proceedings during the period of Sir Robert Walpole’s prime ministership.1 This was published by the Historical Manuscripts Commission in three volumes between 1905 and 1909, as appendices to its sixteenth report.2 Elsewhere in Perceval’s large personal archive in the British Library other examples survive of the diarist’s craft and some of these have been published: in 1962 Robert McPherson edited the ‘journal’ compiled by Perceval from notes, minutes and papers while he was a trustee of the Georgia Society in the 1730s;3 in 1969 Aubrey Newman printed fragments from 1749–51 and 1760, illustrating the politics of the ‘Leicester House’ faction, with which Perceval was involved;4 in 1982 the present author published excerpts relating to Irish parliamentary proceedings in 1711 and 1713 from a ‘journal of public affairs’ kept by Perceval between 1711 and 1718;5 and in 1989 Mark Wenger edited Perceval’s diary of his travels in 1701 as a young man through the eastern and northern counties of England.6 Occasional references in the Historical Manuscripts Commission volumes indicate that Perceval had compiled other accounts of events – specifically of parliamentary debates – and forwarded them in correspondence. -
Arise Sir Isaac! Newton's London Career
26 February 2020 Arise Sir Isaac! Newton’s London Career Dr Patricia Fara This lecture is based on Patricia Fara’s forthcoming book, to be published by Oxford University Press in 2021. The Indian Emperor. Or the Conquest of Mexico. As performed in the year 1731 in Mr Conduitt’s, Master of the Mint, before the Duke of Cumberland &c. Act 4, Scene 4 by William Hogarth (1731-2) Isaac Newton is celebrated throughout the world as a great scientific genius who conceived the theory of gravity and revolutionized optical science. But in his early fifties, he abandoned his life as a reclusive scholar at Cambridge to spend three decades in London, a long period of metropolitan activity that is often overlooked. Enmeshed in Enlightenment politics and social affairs, Newton engaged in the linked spheres of early science and imperialist capitalism. Instead of the quiet cloisters and dark libraries of Cambridge’s all-male world, he now moved in fashionable London society, which was characterised by patronage relationships, sexual intrigues and ruthless ambition. An eminent Enlightenment figure who had twice served as an MP, Newton liaised with international visitors and mingled among elite circles of the Hanoverian aristocracy. Knighted by Queen Anne, and a close ally of the influential Earl of Halifax, Newton occupied a powerful position as President of London’s Royal Society. He also became Master of the Mint, responsible for the nation’s money at a time of financial crisis and himself making and losing small fortunes on the stock market. A major investor in the East India Company, Newton benefited from the global trading networks that relied on selling African captives to wealthy plantation owners in the Americas and was responsible for monitoring the import of African gold to be melted down for English guineas. -
The History of Newton' S Apple Tree
This article was downloaded by: [University of York] On: 06 October 2014, At: 06:04 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Contemporary Physics Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/tcph20 The history of Newton's apple tree R. G. Keesing Published online: 08 Nov 2010. To cite this article: R. G. Keesing (1998) The history of Newton's apple tree, Contemporary Physics, 39:5, 377-391, DOI: 10.1080/001075198181874 To link to this article: http://dx.doi.org/10.1080/001075198181874 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content. This article may be used for research, teaching, and private study purposes.