Males of the Wolf Spider Rabidosa Rabida Use Two Mechanisms to Stun Females During Copulation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Checklist of the Non -Acarine Arachnids
Original Research A CHECKLIST OF THE NON -A C A RINE A R A CHNIDS (CHELICER A T A : AR A CHNID A ) OF THE DE HOOP NA TURE RESERVE , WESTERN CA PE PROVINCE , SOUTH AFRIC A Authors: ABSTRACT Charles R. Haddad1 As part of the South African National Survey of Arachnida (SANSA) in conserved areas, arachnids Ansie S. Dippenaar- were collected in the De Hoop Nature Reserve in the Western Cape Province, South Africa. The Schoeman2 survey was carried out between 1999 and 2007, and consisted of five intensive surveys between Affiliations: two and 12 days in duration. Arachnids were sampled in five broad habitat types, namely fynbos, 1Department of Zoology & wetlands, i.e. De Hoop Vlei, Eucalyptus plantations at Potberg and Cupido’s Kraal, coastal dunes Entomology University of near Koppie Alleen and the intertidal zone at Koppie Alleen. A total of 274 species representing the Free State, five orders, 65 families and 191 determined genera were collected, of which spiders (Araneae) South Africa were the dominant taxon (252 spp., 174 genera, 53 families). The most species rich families collected were the Salticidae (32 spp.), Thomisidae (26 spp.), Gnaphosidae (21 spp.), Araneidae (18 2 Biosystematics: spp.), Theridiidae (16 spp.) and Corinnidae (15 spp.). Notes are provided on the most commonly Arachnology collected arachnids in each habitat. ARC - Plant Protection Research Institute Conservation implications: This study provides valuable baseline data on arachnids conserved South Africa in De Hoop Nature Reserve, which can be used for future assessments of habitat transformation, 2Department of Zoology & alien invasive species and climate change on arachnid biodiversity. -
Vibratory Communication in the Black Widow Spider, Latrodectus Hesperus (Araneae: Theridiidae)
Vibratory Communication in the Black Widow Spider, Latrodectus hesperus (Araneae: Theridiidae) by Senthurran Sivalinghem A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Ecology and Evolutionary Biology University of Toronto © Copyright by Senthurran Sivalinghem 2020 Vibratory Communication in the Black Widow Spider, Latrodectus hesperus (Araneae: Theridiidae) Senthurran Sivalinghem Doctor of Philosophy Department of Ecology and Evolutionary Biology University of Toronto 2020 Abstract Several studies have described vibration producing behaviours across many web-building spiders, and vibratory communication is thought to play an integral role during male-female interactions. Despite the presumed ubiquity of vibratory communication in this group of spiders, very little is known about the characteristics and functions of the signals involved, how signals are produced and transmitted through webs, or how vibrations are perceived. In this thesis, I used the western black widow spider, Latrodectus hesperus, as my focal organism, to investigate the details of vibratory communication from sender to the receiver. My results show that male L. hesperus courtship vibration signals comprise three distinct components (abdominal tremulation, bounce and web plucks), each produced using different signal production mechanism. Larger males produced bounce and web pluck signals with high power, which suggests that these signals may carry information about male traits. I found that during the early phase of courtship, males produced these different signal components haphazardly, with little temporal organization among the individual components (unstructured signaling). However, during the later phase of courtship, as males approach females, males intermittently organized signal components into a stereotyped temporal sequence (structured signaling). -
TFG Lucas Fernandez Miriam.Pdf
UNIVERSIDAD DE JAÉN Facultad de Ciencias Experimentales Trabajo Fin de Grado Revisión bibliográfica de los Licósidos (Araneidae, Lycosidae) presentes en el sureste de la península ibérica Ciencias Experimentales Alumno: Miriam Lucas Fernández Facultad de Julio, 2020 UNIVERSIDAD DE JAÉN FACULTAD DE CIENCIAS EXPERIMENTALES GRADO EN BIOLOGÍA Trabajo Fin de Grado Revisión bibliográfica de los Licósidos (Araneidae, Lycosidae) presentes en el sureste de la península ibérica Miriam Lucas Fernández Julio, 2020 1 RESUMEN ………………………………………………………………………………3 2 INTRODUCCIÓN ................................................................................................ 4 2.1 Distribución y diversidad de las arañas ......................................................... 4 2.2 Morfología biológica ...................................................................................... 5 2.3 Biología reproductiva del orden Araneae ...................................................... 7 3 OBJETIVOS ........................................................................................................ 8 4 MATERIALES Y MÉTODOS ............................................................................... 9 5 FAMILIA LYCOSIDAE: Perspectiva mundial e ibérica ....................................... 9 5.1 Taxonomía .................................................................................................. 10 5.2 Identificación ............................................................................................... 12 5.3 Hábitat ........................................................................................................ -
22 3 259 263 Mikhailov Alopecosa.P65
Arthropoda Selecta 22(3): 259263 © ARTHROPODA SELECTA, 2013 Tarentula Sundevall, 1833 and Alopecosa Simon, 1885: a historical account (Aranei: Lycosidae) Tarentula Sundevall, 1833 è Alopecosa Simon, 1885: èñòîðè÷åñêèé îáçîð (Aranei: Lycosidae) K.G. Mikhailov Ê.Ã. Ìèõàéëîâ Zoological Museum MGU, Bolshaya Nikitskaya Str. 6, Moscow 125009 Russia. Çîîëîãè÷åñêèé ìóçåé ÌÃÓ, óë. Áîëüøàÿ Íèêèòñêàÿ, 6, Ìîñêâà 125009 Ðîññèÿ. KEY WORDS: Tarentula, Alopecosa, nomenclature, synonymy, spiders, Lycosidae. ÊËÞ×ÅÂÛÅ ÑËÎÂÀ: Tarentula, Alopecosa, íîìåíêëàòóðà, ñèíîíèìèÿ, ïàóêè, Lycosidae. ABSTRACT. History of Tarentula Sundevall, 1833 genus Lycosa to include the following 11 species (the and Alopecosa Simon, 1885 is reviewed. Validity of current species assignments follow the catalogues by Alopecosa Simon, 1885 is supported. Reimoser [1919], Roewer [1954a], and, especially, Bonnet [1955, 1957, 1959]): ÐÅÇÞÌÅ. Äàí îáçîð èñòîðèè ðîäîâûõ íàçâà- Lycosa Fabrilis [= Alopecosa fabrilis (Clerck, 1758)], íèé Tarentula Sundevall, 1833 è Alopecosa Simon, L. trabalis [= Alopecosa inquilina (Clerck, 1758), male, 1885. Îáîñíîâàíà âàëèäíîñòü íàçâàíèÿ Alopecosa and A. trabalis (Clerck, 1758), female], Simon, 1885. L. vorax?, male [= either Alopecosa trabalis or A. trabalis and A. pulverulenta (Clerck, 1758), according Introduction to different sources], L. nivalis male [= Alopecosa aculeata (Clerck, 1758)], The nomenclatorial problems concerning the ge- L. barbipes [sp.n.] [= Alopecosa barbipes Sundevall, neric names Tarantula Fabricius, 1793, Tarentula Sun- 1833, = A. accentuata (Latreille, 1817)], devall, 1833 and Alopecosa Simon, 1885 have been L. cruciata female [sp.n.] [= Alopecosa barbipes Sun- discussed in the arachnological literature at least twice devall, 1833, = A. accentuata (Latreille, 1817)], [Charitonov, 1931; Bonnet, 1951]. However, the arach- L. pulverulenta [= Alopecosa pulverulenta], nological community seems to have overlooked or ne- L. -
Sexual Selection Research on Spiders: Progress and Biases
Biol. Rev. (2005), 80, pp. 363–385. f Cambridge Philosophical Society 363 doi:10.1017/S1464793104006700 Printed in the United Kingdom Sexual selection research on spiders: progress and biases Bernhard A. Huber* Zoological Research Institute and Museum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany (Received 7 June 2004; revised 25 November 2004; accepted 29 November 2004) ABSTRACT The renaissance of interest in sexual selection during the last decades has fuelled an extraordinary increase of scientific papers on the subject in spiders. Research has focused both on the process of sexual selection itself, for example on the signals and various modalities involved, and on the patterns, that is the outcome of mate choice and competition depending on certain parameters. Sexual selection has most clearly been demonstrated in cases involving visual and acoustical signals but most spiders are myopic and mute, relying rather on vibrations, chemical and tactile stimuli. This review argues that research has been biased towards modalities that are relatively easily accessible to the human observer. Circumstantial and comparative evidence indicates that sexual selection working via substrate-borne vibrations and tactile as well as chemical stimuli may be common and widespread in spiders. Pattern-oriented research has focused on several phenomena for which spiders offer excellent model objects, like sexual size dimorphism, nuptial feeding, sexual cannibalism, and sperm competition. The accumulating evidence argues for a highly complex set of explanations for seemingly uniform patterns like size dimorphism and sexual cannibalism. Sexual selection appears involved as well as natural selection and mechanisms that are adaptive in other contexts only. Sperm competition has resulted in a plethora of morpho- logical and behavioural adaptations, and simplistic models like those linking reproductive morphology with behaviour and sperm priority patterns in a straightforward way are being replaced by complex models involving an array of parameters. -
Distribution of Spiders in Coastal Grey Dunes
kaft_def 7/8/04 11:22 AM Pagina 1 SPATIAL PATTERNS AND EVOLUTIONARY D ISTRIBUTION OF SPIDERS IN COASTAL GREY DUNES Distribution of spiders in coastal grey dunes SPATIAL PATTERNS AND EVOLUTIONARY- ECOLOGICAL IMPORTANCE OF DISPERSAL - ECOLOGICAL IMPORTANCE OF DISPERSAL Dries Bonte Dispersal is crucial in structuring species distribution, population structure and species ranges at large geographical scales or within local patchily distributed populations. The knowledge of dispersal evolution, motivation, its effect on metapopulation dynamics and species distribution at multiple scales is poorly understood and many questions remain unsolved or require empirical verification. In this thesis we contribute to the knowledge of dispersal, by studying both ecological and evolutionary aspects of spider dispersal in fragmented grey dunes. Studies were performed at the individual, population and assemblage level and indicate that behavioural traits narrowly linked to dispersal, con- siderably show [adaptive] variation in function of habitat quality and geometry. Dispersal also determines spider distribution patterns and metapopulation dynamics. Consequently, our results stress the need to integrate knowledge on behavioural ecology within the study of ecological landscapes. / Promotor: Prof. Dr. Eckhart Kuijken [Ghent University & Institute of Nature Dries Bonte Conservation] Co-promotor: Prf. Dr. Jean-Pierre Maelfait [Ghent University & Institute of Nature Conservation] and Prof. Dr. Luc lens [Ghent University] Date of public defence: 6 February 2004 [Ghent University] Universiteit Gent Faculteit Wetenschappen Academiejaar 2003-2004 Distribution of spiders in coastal grey dunes: spatial patterns and evolutionary-ecological importance of dispersal Verspreiding van spinnen in grijze kustduinen: ruimtelijke patronen en evolutionair-ecologisch belang van dispersie door Dries Bonte Thesis submitted in fulfilment of the requirements for the degree of Doctor [Ph.D.] in Sciences Proefschrift voorgedragen tot het bekomen van de graad van Doctor in de Wetenschappen Promotor: Prof. -
A Protocol for Online Documentation of Spider Biodiversity Inventories Applied to a Mexican Tropical Wet Forest (Araneae, Araneomorphae)
Zootaxa 4722 (3): 241–269 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4722.3.2 http://zoobank.org/urn:lsid:zoobank.org:pub:6AC6E70B-6E6A-4D46-9C8A-2260B929E471 A protocol for online documentation of spider biodiversity inventories applied to a Mexican tropical wet forest (Araneae, Araneomorphae) FERNANDO ÁLVAREZ-PADILLA1, 2, M. ANTONIO GALÁN-SÁNCHEZ1 & F. JAVIER SALGUEIRO- SEPÚLVEDA1 1Laboratorio de Aracnología, Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Colonia Copilco el Bajo. C. P. 04510. Del. Coyoacán, Ciudad de México, México. E-mail: [email protected] 2Corresponding author Abstract Spider community inventories have relatively well-established standardized collecting protocols. Such protocols set rules for the orderly acquisition of samples to estimate community parameters and to establish comparisons between areas. These methods have been tested worldwide, providing useful data for inventory planning and optimal sampling allocation efforts. The taxonomic counterpart of biodiversity inventories has received considerably less attention. Species lists and their relative abundances are the only link between the community parameters resulting from a biotic inventory and the biology of the species that live there. However, this connection is lost or speculative at best for species only partially identified (e. g., to genus but not to species). This link is particularly important for diverse tropical regions were many taxa are undescribed or little known such as spiders. One approach to this problem has been the development of biodiversity inventory websites that document the morphology of the species with digital images organized as standard views. -
Sand Transport and Burrow Construction in Sparassid and Lycosid Spiders
2017. Journal of Arachnology 45:255–264 Sand transport and burrow construction in sparassid and lycosid spiders Rainer Foelix1, Ingo Rechenberg2, Bruno Erb3, Andrea Alb´ın4 and Anita Aisenberg4: 1Neue Kantonsschule Aarau, Biology Department, Electron Microscopy Unit, Zelgli, CH-5000 Aarau, Switzerland. Email: [email protected]; 2Technische Universita¨t Berlin, Bionik & Evolutionstechnik, Sekr. ACK 1, Ackerstrasse 71-76, D-13355 Berlin, Germany; 3Kilbigstrasse 15, CH-5018 Erlinsbach, Switzerland; 4Laboratorio de Etolog´ıa, Ecolog´ıa y Evolucio´n, Instituto de Investigaciones Biolo´gicas Clemente Estable, Avenida Italia 3318, CP 11600, Montevideo, Uruguay Abstract. A desert-living spider sparassid (Cebrennus rechenbergi Ja¨ger, 2014) and several lycosid spiders (Evippomma rechenbergi Bayer, Foelix & Alderweireldt 2017, Allocosa senex (Mello-Leita˜o, 1945), Geolycosa missouriensis (Banks, 1895)) were studied with respect to their burrow construction. These spiders face the problem of how to transport dry sand and how to achieve a stable vertical tube. Cebrunnus rechenbergi and A. senex have long bristles on their palps and chelicerae which form a carrying basket (psammophore). Small balls of sand grains are formed at the bottom of a tube and carried to the burrow entrance, where they are dispersed. Psammophores are known in desert ants, but this is the first report in desert spiders. Evippomma rechenbergi has no psammophore but carries sand by using a few sticky threads from the spinnerets; it glues the loose sand grains together, grasps the silk/sand bundle and carries it to the outside. Although C. rechenbergi and E. rechenbergi live in the same environment, they employ different methods to carry sand. -
Arthropods of Elm Fork Preserve
Arthropods of Elm Fork Preserve Arthropods are characterized by having jointed limbs and exoskeletons. They include a diverse assortment of creatures: Insects, spiders, crustaceans (crayfish, crabs, pill bugs), centipedes and millipedes among others. Column Headings Scientific Name: The phenomenal diversity of arthropods, creates numerous difficulties in the determination of species. Positive identification is often achieved only by specialists using obscure monographs to ‘key out’ a species by examining microscopic differences in anatomy. For our purposes in this survey of the fauna, classification at a lower level of resolution still yields valuable information. For instance, knowing that ant lions belong to the Family, Myrmeleontidae, allows us to quickly look them up on the Internet and be confident we are not being fooled by a common name that may also apply to some other, unrelated something. With the Family name firmly in hand, we may explore the natural history of ant lions without needing to know exactly which species we are viewing. In some instances identification is only readily available at an even higher ranking such as Class. Millipedes are in the Class Diplopoda. There are many Orders (O) of millipedes and they are not easily differentiated so this entry is best left at the rank of Class. A great deal of taxonomic reorganization has been occurring lately with advances in DNA analysis pointing out underlying connections and differences that were previously unrealized. For this reason, all other rankings aside from Family, Genus and Species have been omitted from the interior of the tables since many of these ranks are in a state of flux. -
Common Kansas Spiders
A Pocket Guide to Common Kansas Spiders By Hank Guarisco Photos by Hank Guarisco Funded by Westar Energy Green Team, American Arachnological Society and the Chickadee Checkoff Published by the Friends of the Great Plains Nature Center i Table of Contents Introduction • 2 Arachnophobia • 3 Spider Anatomy • 4 House Spiders • 5 Hunting Spiders • 5 Venomous Spiders • 6-7 Spider Webs • 8-9 Other Arachnids • 9-12 Species accounts • 13 Texas Brown Tarantula • 14 Brown Recluse • 15 Northern Black Widow • 16 Southern & Western Black Widows • 17-18 Woodlouse Spider • 19 Truncated Cellar Spider • 20 Elongated Cellar Spider • 21 Common Cellar Spider • 22 Checkered Cobweb Weaver • 23 Quasi-social Cobweb Spider • 24 Carolina Wolf Spider • 25 Striped Wolf Spider • 26 Dotted Wolf Spider • 27 Western Lance Spider • 28 Common Nurseryweb Spider • 29 Tufted Nurseryweb Spider • 30 Giant Fishing Spider • 31 Six-spotted Fishing Spider • 32 Garden Ghost Spider Cover Photo: Cherokee Star-bellied Orbweaver ii Eastern Funnelweb Spider • 33 Eastern and Western Parson Spiders • 34 Garden Ghost Spider • 35 Bark Crab Spider • 36 Prairie Crab Spider • 37 Texas Crab Spider • 38 Black-banded Crab Spider • 39 Ridge-faced Flower Spider • 40 Striped Lynx Spider • 41 Black-banded Common and Convict Zebra Spiders • 42 Crab Spider Dimorphic Jumping Spider • 43 Bold Jumping Spider • 44 Apache Jumping Spider • 45 Prairie Jumping Spider • 46 Emerald Jumping Spider • 47 Bark Jumping Spider • 48 Puritan Pirate Spider • 49 Eastern and Four-lined Pirate Spiders • 50 Orchard Spider • 51 Castleback Orbweaver • 52 Triangulate Orbweaver • 53 Common & Cherokee Star-bellied Orbweavers • 54 Black & Yellow Garden Spider • 55 Banded Garden Spider • 56 Marbled Orbweaver • 57 Eastern Arboreal Orbweaver • 58 Western Arboreal Orbweaver • 59 Furrow Orbweaver • 60 Eastern Labyrinth Orbweaver • 61 Giant Long-jawed Orbweaver • 62 Silver Long-jawed Orbweaver • 63 Bowl and Doily Spider • 64 Filmy Dome Spider • 66 References • 67 Pocket Guides • 68-69 1 Introduction This is a guide to the most common spiders found in Kansas. -
Optimal Climbing Speed Explains the Evolution of Extreme Sexual Size Dimorphism in Spiders
doi: 10.1111/j.1420-9101.2009.01707.x Optimal climbing speed explains the evolution of extreme sexual size dimorphism in spiders J. MOYA-LARAN˜ O,*D.VINKOVIC´ , C. M. ALLARDà &M.W.FOELLMER§ *Departamento de Ecologı´a Funcional y Evolutiva, Estacio´n Experimental de Zonas A´ ridas, Consejo Superior de Investigaciones Cientı´ficas, General Segura, Almerı´a, Spain Physics Department, University of Split, Split, Croatia àDepartment of Biological Sciences, Clemson University, Clemson, SC, USA §Department of Biology, Adelphi University, Garden City, NY, USA Keywords: Abstract Araneomorphae; Several hypotheses have been put forward to explain the evolution of extreme biomechanics; sexual size dimorphism (SSD). Among them, the gravity hypothesis (GH) dwarf males; explains that extreme SSD has evolved in spiders because smaller males have a gravity hypothesis; mating or survival advantage by climbing faster. However, few studies have mate search; supported this hypothesis thus far. Using a wide span of spider body sizes, we muscle physiology; show that there is an optimal body size (7.4 mm) for climbing and that scramble competition; extreme SSD evolves only in spiders that: (1) live in high-habitat patches and sexual size dimorphism; (2) in which females are larger than the optimal size. We report that the spiders; evidence for the GH across studies depends on whether the body size of stabilizing selection. individuals expands beyond the optimal climbing size. We also present an ad hoc biomechanical model that shows how the higher stride frequency of small animals predicts an optimal body size for climbing. range of SSD in spiders (Araneae) (Head, 1995; Vollrath, Introduction 1998; Hormiga et al., 2000; Foellmer & Moya-Laran˜ o, Understanding the evolution of different phenotypes in 2007). -
Dotted Wolf Spider Rabidosa Punctulata ILLINOIS RANGE
dotted wolf spider Rabidosa punctulata Kingdom: Animalia FEATURES Phylum: Arthropoda Like all wolf spiders, the dotted wolf spider has four, Class: Chelicerata large eyes in a trapezoid shape on the top of the Order: Araneae carapace. The two median eyes in this group of four are the largest and face forward. The two smaller eyes in Family: Lycosidae this group of four are set behind the two central eyes, ILLINOIS STATUS facing to the side or backwards. In front of these four eyes is a row of four, smaller eyes. Females are about common, native 0.43 to 0.67 inch in total body length. Males are 0.51 to 0.59 inch in total body length. The general body color is light brown. The cephalothorax has an alternating pattern of light- and dark-brown stripes. The abdomen has a dark band in the center that does not show any spots. The underside of the abdomen has numerous brown spots. BEHAVIORS This is a nocturnal species that is found in tall grasses and weeds. Adults are present in the fall of the year with mating in November. Females overwinter and lay eggs in March. The adult female carries her egg sac for 30-40 days before the young emerge. They ride on her back for one to two weeks before leaving to live independently. Wolf spiders have good vision. They perform courtship rituals like waving the legs or palps with making sounds created by vibrating body parts against each other or a surface or object they are near. Wolf spiders generally ILLINOIS RANGE do not build a web but use a dragline of silk for communication.